Category Theory

Presheaf categories

Let C be a small category. The functor category $\mathrm{Set}^{\mathrm{C}^{\text {op }}}$ is called the category of presheaves on \mathbf{C}.

- objects are contravariant functors from C to Set
- morphisms are natural transformations

Much used in the semantics of various dependently-typed languages and logics.

Given category \mathbb{C} with terminal object 1
global dement of some $X \in$ obj \mathbb{C} are by definition the morphisms $1 \rightarrow X$ in \mathbb{C}
e.g. in Set...
but in Mon...

Given category. \mathbb{C}
with terminal object 1
global dement of some $X \in \operatorname{obj} \mathbb{C}$ are by definition the morphisms $1 \rightarrow X$ in \mathbb{C}
We say \mathbb{C} is well-pointed if for all $X \underset{\vec{g}}{f} y$
in \mathbb{C} we hare:

$$
(\forall \mid \xrightarrow{x} X, f \cdot x=g \cdot x) \Rightarrow f=g
$$

(Sot is, Mon is nt)

YIdeaミ́ replace global elements $\mid \xrightarrow{x} x$ by $Y \xrightarrow{x} X \quad($ any $Y \in o b j \mathbb{C})$ (1 $x \in_{Y} X^{\prime \prime}$ " x is a generalised dement Have to take into account change of stage:

$$
x \in_{Y} X \& Z \stackrel{f}{\rightarrow} Y \leadsto x \circ f \in \in_{Z} X
$$

Presheaf categories

Let C be a small category. The functor category $\mathrm{Set}^{\mathrm{C}^{\text {op }}}$ is called the category of presheaves on \mathbf{C}.

- objects are contravariant functors from C to Set
- morphisms are natural transformations

Much used in the semantics of various dependently-typed languages and logics.

Yoneda functor

$$
\text { 上: } \mathrm{C} \rightarrow \mathrm{Set}^{\mathrm{Cop}}
$$

(where C is a small category)
is the Curried version of the hom functor

$$
\mathrm{C} \times \mathrm{C}^{\mathrm{op}} \cong \mathrm{C}^{\mathrm{op}} \times \mathrm{C} \xrightarrow{\text { Hom }_{\mathrm{C}}} \text { Set }
$$

Yoneda functor

$$
\text { よ }: \mathrm{C} \rightarrow \mathrm{Set}^{\mathrm{Cop}}
$$

(where C is a small category)
is the Curried version of the hom functor

$$
\mathrm{C} \times \mathrm{C}^{\mathrm{op}} \cong \mathrm{C}^{\mathrm{op}} \times \mathrm{C} \xrightarrow{\text { Hom }} \text { Set }
$$

- For each C-object X, the object $よ X \in \operatorname{Set}^{\mathrm{C}^{\mathrm{op}}}$ is the functor $\mathrm{C}\left(_, X\right): \mathrm{C}^{\mathrm{op}} \rightarrow$ Set given by

Yoneda functor

$$
\text { よ: } \mathrm{C} \rightarrow \mathrm{Set}^{\mathrm{Cop}}
$$

(where C is a small category)
is the Curried version of the hom functor

$$
\mathrm{C} \times \mathrm{C}^{\mathrm{op}} \cong \mathrm{C}^{\mathrm{op}} \times \mathrm{C} \xrightarrow{\mathrm{Hom}_{\mathrm{C}}} \text { Set }
$$

- For each C-object X, the object $よ X \in \operatorname{Set}^{\mathrm{C}^{\mathrm{OP}}}$ is the functor $\mathrm{C}\left(__{-}, X\right): \mathrm{C}^{\mathrm{op}} \rightarrow$ Set given by

Yoneda functor

$$
\text { 上: } \mathrm{C} \rightarrow \mathrm{Set}^{\mathrm{Cop}}
$$

（where C is a small category）
is the Curried version of the hom functor

$$
\mathrm{C} \times \mathrm{C}^{\mathrm{op}} \cong \mathrm{C}^{\mathrm{op}} \times \mathrm{C} \xrightarrow{\text { Hom }} \text { Set }
$$

－For each C－morphism $Y \xrightarrow{f} X$ ，the morphism よ $Y \xrightarrow{\text { よ } f}$ よ X in Set ${ }^{\mathrm{Cop}}$ is the natural transformation whose component at any given $Z \in \mathrm{C}^{\circ}{ }^{\circ}$ is the function

$$
\begin{array}{cr}
\text { よ } Y(Z) \xrightarrow{(よ f)_{z}} & \text { よ } X(Z) \\
\mathrm{C}(Z, Y) & \mathrm{C}(Z, X) \\
g \longmapsto & f \circ g
\end{array}
$$

Yoneda functor

$$
\text { よ: } \mathrm{C} \rightarrow \mathrm{Set}^{\mathrm{CP}}
$$

（where C is a small category）
is the Curried version of the hom functor

$$
\mathrm{C} \times \mathrm{C}^{\mathrm{op}} \cong \mathrm{C}^{\mathrm{op}} \times \mathrm{C} \xrightarrow{\mathrm{Hom}_{\mathrm{C}}} \text { Set }
$$

－For each C－morphism $Y \xrightarrow{f} X$ ，the morphism よ $Y \xrightarrow{\text { よ } f}$ よ X in $\mathrm{Set}^{\mathrm{Cop}}$ is the natural transformation whose component at any given $Z \in \mathrm{C}^{\circ}{ }^{\circ}$ is the function

The Yoneda Lemma

For each small category C , each object $X \in \mathrm{C}$ and each presheaf $F \in \mathrm{Set}^{\mathrm{Cop}}$, there is a bijection of sets

$$
\eta_{X, F}: \operatorname{Set}^{\mathrm{Cop}}(\text { よ } X, F) \cong F(X)
$$

which is natural in both X and F.

The Yoneda Lemma

For each small category C , each object $X \in \mathrm{C}$ and each presheaf $F \in \mathrm{Set}^{\mathrm{Cop}}$, there is a bijection of sets

The Yoneda Lemma

For each small category C ，each object $X \in \mathrm{C}$ and each presheaf $F \in \mathrm{Set}^{\mathrm{C}^{\text {op }}}$ ，there is a bijection of sets

$$
\eta_{X, F}: \operatorname{Set}^{\mathrm{Cop}}(\text { よ } X, F) \cong F(X)
$$

which is natural in both X and F ．
Definition of the function $\eta_{X, F}: \mathrm{Set}^{\mathrm{CP}}(よ X, F) \rightarrow F(X)$ ： for each $\theta: よ X \rightarrow F$ in Set ${ }^{\text {Cop }}$ we have the function
$\mathrm{C}(X, X)=よ X(X) \xrightarrow{\theta_{X}} F(X)$ and define

$$
\eta_{X, F}(\theta) \triangleq \theta_{X}\left(\mathrm{id}_{X}\right)
$$

The Yoneda Lemma

For each small category C ，each object $X \in \mathrm{C}$ and each presheaf $F \in$ Set $^{\text {Cop }}$ ，there is a bijection of sets

$$
\eta_{X, F}: \operatorname{Set}^{\mathrm{C}^{\mathrm{op}}}(\text { よ } X, F) \cong F(X)
$$

which is natural in both X and F ．
Definition of the function $\eta_{X, F}^{-1}: F(X) \rightarrow \operatorname{Set}^{\text {Opp }}($ よ $X, F)$ ：
for each $x \in F(X), Y \in \mathrm{C}$ and $f \in よ X(Y)=\mathrm{C}(Y, X)$ ，
we get a $F(X) \xrightarrow{F(f)} F(Y)$ in Set and hence $F(f)(x) \in F(Y)$ ；

The Yoneda Lemma

For each small category C ，each object $X \in \mathrm{C}$ and each presheaf $F \in \mathrm{Set}^{\mathrm{CP}}$ ，there is a bijection of sets

$$
\eta_{X, F}: \operatorname{Set}^{\mathrm{Cop}}(\text { よ } X, F) \cong F(X)
$$

which is natural in both X and F ．
Definition of the function $\eta_{X, F}^{-1}: F(X) \rightarrow \operatorname{Set}^{\text {Cop }}(よ X, F)$ ：
for each $x \in F(X), Y \in \mathrm{C}$ and $f \in よ X(Y)=\mathrm{C}(Y, X)$ ，
we get a $F(X) \xrightarrow{F(f)} F(Y)$ in Set and hence $F(f)(x) \in F(Y)$ ；
Define $\left(\eta_{X, F}^{-1}(x)\right)_{Y}: よ X(Y) \rightarrow F(Y)$ by

$$
\left(\eta_{X, F}^{-1}(x)\right)_{Y}(f) \triangleq F(f)(x)
$$

check this gives a
natural transformation
$\eta_{X, F}^{-1}(x):$ よ $X \rightarrow F$

Proof of $\eta_{X, F} \circ \eta_{X, F}^{-1}=\operatorname{id}_{F(X)}$

For any $x \in F(X)$ we have

$$
\begin{aligned}
\eta_{X, F}\left(\eta_{X, F}^{-1}(x)\right) & \triangleq\left(\eta_{X, F}^{-1}(x)\right)_{X}\left(\operatorname{id}_{X}\right) & & \text { by definition of } \eta_{X, F} \\
& \triangleq F\left(\operatorname{id}_{X}\right)(x) & & \text { by definition of } \eta_{X, F}^{-1} \\
& =\operatorname{id}_{F(X)}(x) & & \text { since } F \text { is a functor } \\
& =x & &
\end{aligned}
$$

Proof of $\eta_{X, F}^{-1} \circ \eta_{X, F}=\operatorname{id}_{\mathrm{Set}^{\mathrm{cop}}(よ X, F)}$

For any $よ X \xrightarrow{\theta} F$ in $\operatorname{Set}^{\text {Cop }}$ and $Y \xrightarrow{f} X$ in C, we have

$$
\begin{aligned}
& \left.\left(\eta_{X, F}^{-1}\left(\eta_{X, F}(\theta)\right)\right)_{Y} f \triangleq\left(\eta_{X, F}^{-1}\left(\theta_{X}\left(\operatorname{id}_{X}\right)\right)\right)\right)_{Y} f \quad \text { by definition of } \eta_{X, F} \\
& \triangleq F(f)\left(\theta_{X}\left(\mathrm{id}_{X}\right)\right) \\
& =\theta_{Y}\left(f^{*}\left(i d_{X}\right)\right) \\
& \triangleq \theta_{Y}\left(i d_{X} \circ f\right) \\
& =\theta_{Y}(f)
\end{aligned}
$$

> by definition of $\eta_{X, F}$
> by definition of $\eta_{X, F}^{-1}$
> by naturality of θ
> by definition of f^{*}

Proof of $\eta_{X, F}^{-1} \circ \eta_{X, F}=\mathrm{id}_{\mathrm{Set}^{\mathrm{cop}}(よ X, F)}$

For any $よ X \xrightarrow{\theta} F$ in $\operatorname{Set}^{\text {Cop }}$ and $Y \xrightarrow{f} X$ in C, we have

$$
\begin{aligned}
\left(\eta_{X, F}^{-1}\left(\eta_{X, F}(\theta)\right)\right)_{Y} f & \left.\triangleq\left(\eta_{X, F}^{-1}\left(\theta_{X}\left(\mathrm{id}_{X}\right)\right)\right)\right)_{Y} f & & \text { by definition of } \eta_{X, F} \\
& \triangleq F(f)\left(\theta_{X}\left(\mathrm{id}_{X}\right)\right) & & \text { by definition of } \eta_{X, F}^{-1} \\
& =\theta_{Y}\left(f^{*}\left(i d_{X}\right)\right) & & \text { by naturality of } \theta \\
& \triangleq \theta_{Y}\left(\mathrm{id}_{X} \circ f\right) & & \text { by definition of } f^{*} \\
& =\theta_{Y}(f) & &
\end{aligned}
$$

so $\forall \theta, Y,\left(\eta_{X, F}^{-1}\left(\eta_{X, F}(\theta)\right)\right)_{Y}=\theta_{Y}$
so $\forall \theta, \eta_{X, F}^{-1}\left(\eta_{X, F}(\theta)\right)=\theta$
so $\eta_{X, F}^{-1} \circ \eta_{X, F}=i d$.

The Yoneda Lemma

For each small category \mathbf{C}, each object $X \in \mathbf{C}$ and each presheaf $F \in \mathrm{Set}^{\mathrm{C}^{\text {op }}}$, there is a bijection of sets

$$
\eta_{X, F}: \operatorname{Set}^{\mathrm{Cop}}(\text { よ } X, F) \cong F(X)
$$

which is natural in both X and F.

Proof that $\eta_{X, F}$ is natural in F :

Given $F \xrightarrow{\varphi} G$ in Set ${ }^{\mathrm{C}^{\text {op }}}$, have to show that

commutes in Set. For all よ $X \xrightarrow{\theta} F$ we have

$$
\begin{aligned}
\varphi_{X}\left(\eta_{X, F}(\theta)\right) & \triangleq \varphi_{X}\left(\theta_{X}\left(\mathrm{id}_{X}\right)\right) \\
& \triangleq(\varphi \circ \theta)_{X}\left(\mathrm{id} \mathrm{X}_{X}\right) \\
& \triangleq \eta_{X, G}(\varphi \circ \theta) \\
& \triangleq \eta_{X, G}\left(\varphi_{*}(\theta)\right)
\end{aligned}
$$

Proof that $\eta_{X, F}$ is natural in X ：

Given $Y \xrightarrow{f} X$ in C ，have to show that

commutes in Set．For all よ $X \xrightarrow{\theta} F$ we have

$$
\begin{aligned}
F(f)\left(\left(\eta_{X, F}(\theta)\right)\right. & \triangleq F(f)\left(\theta_{X}\left(\mathrm{id}_{X}\right)\right) \\
& =\theta_{Y}\left(f^{*}\left(\mathrm{id}_{X}\right)\right) \quad \text { by naturality of } \theta \\
& =\theta_{Y}(f) \\
& =\theta_{Y}\left(f_{*}\left(\operatorname{id}_{Y}\right)\right) \\
& \triangleq(\theta \circ \text { よ } f)_{Y}\left(\operatorname{id}_{Y}\right) \\
& \triangleq \eta_{Y, F}(\theta \circ \text { よ } f) \\
& \triangleq \eta_{Y, F}\left((\text { よ } f)^{*}(\theta)\right)
\end{aligned}
$$

Corollary of the Yoneda Lemma:

the functor よ: $\mathrm{C} \rightarrow \mathrm{Set}^{\mathrm{C}^{\mathrm{OP}}}$ is full and faithful.
In general, a functor $F: \mathrm{C} \rightarrow \mathrm{D}$ is

- faithful if for all $X, Y \in \mathrm{C}$ the function

$$
\begin{array}{ccc}
\mathrm{C}(X, Y) & \rightarrow & \mathrm{D}(F(X), F(Y)) \\
f & \mapsto & F(f)
\end{array}
$$

is injective:

$$
\forall f, f^{\prime} \in \mathrm{C}(X, Y), F(f)=F\left(f^{\prime}\right) \Rightarrow f=f^{\prime}
$$

- full if the above functions are all surjective:

$$
\forall g \in \mathbf{D}(F(X), F(Y)), \exists f \in \mathbf{C}(X, Y), F(f)=g
$$

Corollary of the Yoneda Lemma：

the functor よ： $\mathrm{C} \rightarrow \mathrm{Set}^{\mathrm{COP}^{\text {P }}}$ is full and faithful．

Proof．From the proof of the Yoneda Lemma，for each $F \in \operatorname{Set}^{\mathrm{C}^{\mathrm{OP}}}$ we have a bijection

$$
F(X) \xrightarrow{\left(\eta_{X, F}\right)^{-1}} \operatorname{Set}^{\mathrm{Cop}}(\text { よ } X, F)
$$

By definition of $\left(\eta_{X, F}\right)^{-1}$ ，when $F=よ Y$ the above function is equal to

$$
\begin{aligned}
\text { よ } Y(X)=\mathrm{C}(X, Y) & \rightarrow \operatorname{Set}^{\mathrm{Cop}}(\text { よ } X, \text { よ } Y) \\
f & \mapsto f_{*}=\text { よ } f
\end{aligned}
$$

So，being a bijection，$f \mapsto よ f$ is both injective and surjective；so よ is both faithful and full．

Recall (for a small category C):
Yoneda functor $よ: \mathrm{C} \rightarrow \mathrm{Set}^{\mathrm{CP}}$
Yoneda Lemma: there is a bijection $\operatorname{Set}^{\mathrm{Cop}}(よ X, F) \cong F(X)$ which is natural both in $F \in \mathrm{Set}^{\text {Cop }}$ and $X \in \mathrm{C}$.

An application of the Yoneda Lemma:
Theorem. For each small category C, the category Set ${ }^{\mathrm{CPP}}$ of presheaves is cartesian closed.

Theorem. For each small category C, the category $\mathrm{Set}^{\mathrm{CP}}$ of presheaves is cartesian closed.

Theorem. For each small category C, the category $\mathrm{Set}^{\mathrm{Cop}}$ of presheaves is cartesian closed.

Proof sketch.

Terminal object in Set ${ }^{\mathrm{C}^{\mathrm{op}}}$ is the functor $1: \mathrm{C}^{\mathrm{OP}} \rightarrow$ Set given by

$$
\left\{\begin{array}{l}
1(X) \triangleq\{0\} \quad \text { terminal object in Set } \\
1(f) \triangleq \operatorname{id}_{\{0\}}
\end{array}\right.
$$

Theorem. For each small category C, the category $\mathrm{Set}^{\mathrm{CP}}$ of presheaves is cartesian closed.

Proof sketch.

Product of $F, G \in \mathrm{Set}^{\mathrm{C}^{\mathrm{op}}}$ is the functor $F \times G: \mathrm{C}^{\mathrm{op}} \rightarrow$ Set given by

$$
\left\{\begin{array}{l}
(F \times G)(X) \triangleq F(X) \times G(X) \quad \text { cartesian product of sets } \\
(F \times G)(f) \triangleq F(f) \times G(f)
\end{array}\right.
$$

with projection morphisms $F \stackrel{\pi_{1}}{\longleftarrow} F \times G \xrightarrow{\pi_{2}} G$ given by the natural transformations whose components at $X \in \mathrm{C}$ are the projection functions $F(X) \stackrel{\pi_{1}}{\longleftarrow} F(X) \times G(X) \xrightarrow{\pi_{2}} G(X)$.

Theorem. For each small category C, the category $\mathrm{Set}^{\mathrm{CP}}$ of presheaves is cartesian closed.

Proof sketch.

We can work out what the value of the exponential $G^{F} \in \operatorname{Set}^{\mathrm{C}^{\text {op }}}$ at $X \in \mathrm{C}$ has to be using the Yoneda Lemma:

Theorem．For each small category C，the category $\mathrm{Set}^{\mathrm{CP}}$ of presheaves is cartesian closed．

Proof sketch．

We can work out what the value of the exponential $G^{F} \in \operatorname{Set}^{\mathrm{C}^{\text {op }}}$ at $X \in \mathrm{C}$ has to be using the Yoneda Lemma：

$$
G^{F}(X) \cong \operatorname{Set}^{\mathrm{Cop}}\left(\text { よ } X, G^{F}\right) \cong \operatorname{Set}^{\mathrm{C}^{\mathrm{op}}}(\text { よ } X \times F, G)
$$

We take the set Set ${ }^{\text {Cop }}(よ X \times F, G)$ to be the definition of the value of G^{F} at $X \ldots$ ．

Exponential objects in Set ${ }^{C{ }^{\circ p}}$ ：

$$
G^{F}(X) \triangleq \operatorname{Set}^{\mathrm{C}^{\mathrm{op}}}(\text { よ } X \times F, G)
$$

Given $Y \xrightarrow{f} X$ in C，we have $よ Y \xrightarrow{よ f}$ よ X in Set ${ }^{\text {Cpp }}$ and hence

$$
\begin{aligned}
& G^{F}(Y) \triangleq \operatorname{Set}^{\text {Cop }}(よ Y \times F, G) \rightarrow \operatorname{Set}^{\mathrm{CPP}^{\mathrm{OP}}}(よ X \times F, G) \triangleq G^{F}(X) \\
& \theta \mapsto \theta \circ\left(\text { よ } f \times \mathrm{id}_{F}\right)
\end{aligned}
$$

We define

$$
G^{F}(f) \triangleq\left(\text { よ } f \times \mathrm{id}_{F}\right)^{*}
$$

Have to check that these definitions make G^{F} ino a functor $\mathrm{C}^{\mathrm{op}} \rightarrow$ Set．

Application morphisms in Set ${ }^{\mathrm{Cop}}:$

Given $F, G \in$ Set $^{\text {Cop }}$, the application morphism

$$
\text { app : } G^{F} \times F \rightarrow G
$$

is the natural transformation whose component at $X \in \mathrm{C}$ is the function

$$
\left(G^{F} \times F\right)(X) \triangleq G^{F}(X) \times F(X) \triangleq \operatorname{Set}^{\mathrm{Cop}^{\mathrm{op}}}(よ X \times F, G) \times F(X) \xrightarrow{\text { app }} \mathrm{C}_{\mathrm{X}} G(X)
$$

defined by

$$
\operatorname{app}_{X}(\theta, x) \triangleq \theta_{X}\left(\operatorname{id}_{X}, x\right)
$$

Have to check that this is natural in X.

Currying operation in $\mathrm{Set}^{\mathrm{Cop}}$ ：

$$
(H \times F \xrightarrow{\theta} G) \mapsto\left(H \xrightarrow{\operatorname{cur} \theta} G^{F}\right)
$$

Given $H \times F \xrightarrow{\theta} G$ in Set $^{\mathrm{C}^{\text {op }}}$ ，the component of $\operatorname{cur} \theta$ at $X \in \mathrm{C}$

$$
H(X) \xrightarrow{(\operatorname{cur} \theta)_{X}} G^{F}(X) \triangleq \operatorname{Set}^{\mathrm{Cop}}(\text { よ } X \times F, G)
$$

is the function mapping each $z \in H(X)$ to the natural transformation $よ X \times F \rightarrow G$ whose component at $Y \in \mathrm{C}$ is the function

$$
(\text { よ } X \times F)(Y) \triangleq \mathrm{C}(Y, X) \times F(Y) \rightarrow G(Y)
$$

defined by

$$
\left((\operatorname{cur} \theta)_{X}(z)\right)_{Y}(f, y) \triangleq \theta_{Y}(H(f)(z), y)
$$

Currying operation in Set ${ }^{\mathrm{Cop}}:$

$$
(H \times F \xrightarrow{\theta} G) \mapsto\left(H \xrightarrow{\operatorname{cur} \theta} G^{F}\right)
$$

$$
\left((\operatorname{cur} \theta)_{X}(z)\right)_{Y}(f, y) \triangleq \theta_{Y}(H(f)(z), y)
$$

Have to check that this is natural in Y, then that $(\operatorname{cur} \theta)_{X}$ is natural in X,
then that $\operatorname{cur} \theta$ is the unique morphism $H \xrightarrow{\varphi} G^{F}$ in Set ${ }^{\mathrm{C}^{\text {op }}}$ satisfying $\operatorname{app} \circ\left(\varphi \times \mathrm{id}_{F}\right)=\theta$.

Theorem. For each small category C, the category $\mathrm{Set}^{\mathrm{CP}}$ of presheaves is cartesian closed.

So we can interpret simply typed lambda calculus in any presheaf category.
More than that, presheaf categories (usefully) model dependently-typed languages.

