

Lecture 15

Presheaf categories

Let C be a small category. The functor category $Set^{C^{op}}$ is called the category of presheaves on C.

- objects are contravariant functors from C to Set
- morphisms are natural transformations

Much used in the semantics of various dependently-typed languages and logics.

Criven category (with terminal object 1

global elements of some XEOGÍ are by definition the morphisms $1 \longrightarrow \times i \land \bigcirc$

global elements of some
$$X \in obj C$$

are by definition the morphisms
 $1 \longrightarrow X$ in C

We say
$$C$$
 is well-pointed if for all $x \neq y$
in C we have:
 $(\forall l \stackrel{2c}{\rightarrow} X, f \cdot x = g \cdot x) \Rightarrow f = g$
(Set is, Mon is n't)

Etdea replace global elements I ~ X by $\gamma \xrightarrow{x} \chi$ (any $Y \in obj \mathbb{C}$) " $x \in X$ " ("x is a generalised element of X at stage Y" Have to take into account change f-stage: $x \in X \& Z \xrightarrow{f} Y \longrightarrow x \circ f \in Z X$

Presheaf categories

Let C be a small category. The functor category $Set^{C^{op}}$ is called the category of presheaves on C.

- objects are contravariant functors from C to Set
- morphisms are natural transformations

Much used in the semantics of various dependently-typed languages and logics.

$$\boldsymbol{\natural}: \mathbf{C} \to \mathbf{Set}^{\mathbf{C}^{\mathsf{op}}}$$

is the Curried version of the hom functor

 $\mathbf{C} \times \mathbf{C}^{\mathsf{op}} \cong \mathbf{C}^{\mathsf{op}} \times \mathbf{C} \xrightarrow{\operatorname{Hom}_{\mathbf{C}}} \mathbf{Set}$

$$\mathcal{L}: \mathbf{C} \to \mathbf{Set}^{\mathbf{C}^{\mathsf{op}}}$$

is the Curried version of the hom functor $\mathbf{C} \times \mathbf{C}^{\mathsf{op}} \cong \mathbf{C}^{\mathsf{op}} \times \mathbf{C} \xrightarrow{\mathsf{Hom}_{\mathbf{C}}} \mathbf{Set}$

► For each C-object X, the object $JX \in Set^{C^{op}}$ is the functor $C(_, X) : C^{op} \rightarrow Set$ given by

$$\begin{array}{cccccccc} Z & \mapsto & \mathbf{C}(Z,X) & g \circ f \\ \downarrow f & \mapsto & \uparrow & & \uparrow \\ Y & \mapsto & \mathbf{C}(Y,X) & & g \end{array}$$

$$\mathcal{L}: \mathbf{C} \to \mathbf{Set}^{\mathbf{C}^{\mathsf{op}}}$$

is the Curried version of the hom functor $\mathbf{C} \times \mathbf{C}^{\mathsf{op}} \cong \mathbf{C}^{\mathsf{op}} \times \mathbf{C} \xrightarrow{\mathsf{Hom}_{\mathbf{C}}} \mathbf{Set}$

► For each C-object X, the object $JX \in Set^{C^{op}}$ is the functor $C(_, X) : C^{op} \rightarrow Set$ given by

Yoneda functor

$$\mathcal{L}: \mathbf{C} \to \mathbf{Set}^{\mathbf{C}^{\mathsf{op}}}$$

is the Curried version of the hom functor

$$\mathbf{C} \times \mathbf{C}^{\mathrm{op}} \cong \mathbf{C}^{\mathrm{op}} \times \mathbf{C} \xrightarrow{\mathrm{Hom}_{\mathrm{C}}} \mathbf{Set}$$

► For each C-morphism $Y \xrightarrow{f} X$, the morphism $J \xrightarrow{X} Y \xrightarrow{J} J X$ in Set^{C°P} is the natural transformation whose component at any given $Z \in C^{op}$ is the function

$$\begin{array}{c}
\downarrow Y(Z) \xrightarrow{(\downarrow f)_Z} \downarrow X(Z) \\
\parallel \\
C(Z, Y) & C(Z, X) \\
g \longmapsto f \circ g
\end{array}$$

Yoneda functor

$$\mathcal{L}: \mathbf{C} \to \mathbf{Set}^{\mathbf{C}^{\mathsf{op}}}$$

is the Curried version of the hom functor

$$\mathbf{C} \times \mathbf{C}^{\mathsf{op}} \cong \mathbf{C}^{\mathsf{op}} \times \mathbf{C} \xrightarrow{\operatorname{Hom}_{\mathbf{C}}} \mathbf{Set}$$

► For each C-morphism $Y \xrightarrow{f} X$, the morphism $J \xrightarrow{X} \xrightarrow{J} J X$ in Set^{C^{op}} is the natural transformation whose component at any given $Z \in C^{op}$ is the function

For each small category C, each object $X \in C$ and each presheaf $F \in Set^{C^{op}}$, there is a bijection of sets

 $\eta_{X,F}$: Set^{C^{op}}(&X,F) \cong F(X)

which is natural in both X and F.

For each small category C, each object $X \in C$ and each presheaf $F \in Set^{C^{op}}$, there is a bijection of sets

For each small category C, each object $X \in C$ and each presheaf $F \in Set^{C^{op}}$, there is a bijection of sets

 $\eta_{X,F}$: Set^{C^{op}}(&X,F) \cong F(X)

which is natural in both X and F.

Definition of the function $\eta_{X,F} : \operatorname{Set}^{\operatorname{C^{op}}}({}^{\natural}X,F) \to F(X)$: for each $\theta : {}^{\natural}X \to F$ in $\operatorname{Set}^{\operatorname{C^{op}}}$ we have the function $\operatorname{C}(X,X) = {}^{\natural}X(X) \xrightarrow{\theta_X} F(X)$ and define

 $\eta_{X,F}(\theta) \triangleq \theta_X(\mathrm{id}_X)$

For each small category C, each object $X \in C$ and each presheaf $F \in Set^{C^{op}}$, there is a bijection of sets

 $\eta_{X,F}$: Set^{C^{op}}(&X,F) \cong F(X)

which is natural in both X and F.

Definition of the function $\eta_{X,F}^{-1} : F(X) \to \operatorname{Set}^{\operatorname{C^{op}}}({} \natural X, F):$ for each $x \in F(X), Y \in \mathbb{C}$ and $f \in {} \natural X(Y) = \mathbb{C}(Y,X),$ we get a $F(X) \xrightarrow{F(f)} F(Y)$ in Set and hence $F(f)(x) \in F(Y);$

For each small category C, each object $X \in C$ and each presheaf $F \in Set^{C^{op}}$, there is a bijection of sets

 $\eta_{X,F}$: Set^{C^{op}}(&X,F) \cong F(X)

which is natural in both X and F.

Definition of the function $\eta_{X,F}^{-1} : F(X) \to \operatorname{Set}^{\operatorname{C^{op}}}({} \& X, F)$: for each $x \in F(X), Y \in \mathbb{C}$ and $f \in {} \& X(Y) = \mathbb{C}(Y,X)$, we get a $F(X) \xrightarrow{F(f)} F(Y)$ in Set and hence $F(f)(x) \in F(Y)$; Define $\left(\eta_{X,F}^{-1}(x)\right)_{V} : {} \& X(Y) \to F(Y)$ by

$$\left(\eta_{X,F}^{-1}(x)\right)_{Y}(f) \triangleq F(f)(x)$$

check this gives a natural transformation $\eta_{X,F}^{-1}(x) : \& X \to F$

Proof of
$$\eta_{X,F} \circ \eta_{X,F}^{-1} = id_{F(X)}$$

For any $x \in F(X)$ we have

$$\eta_{X,F}\left(\eta_{X,F}^{-1}(x)\right) \triangleq \left(\eta_{X,F}^{-1}(x)\right)_{X} (\operatorname{id}_{X})$$
$$\triangleq F(\operatorname{id}_{X})(x)$$
$$= \operatorname{id}_{F(X)}(x)$$
$$= x$$

by definition of $\eta_{X,F}$ by definition of $\eta_{X,F}^{-1}$ since *F* is a functor

Proof of
$$\begin{aligned}
\eta_{X,F}^{-1} \circ \eta_{X,F} &= \mathrm{id}_{\mathrm{Set}^{\mathrm{C^{op}}}(\downarrow X,F)} \\
\text{For any } \downarrow X \xrightarrow{\theta} F \text{ in } \mathrm{Set}^{\mathrm{C^{op}}} \text{ and } Y \xrightarrow{f} X \text{ in } \mathrm{C}, \text{ we have} \\
\left(\eta_{X,F}^{-1}(\eta_{X,F}(\theta))\right)_{Y} f &\triangleq \left(\eta_{X,F}^{-1}(\theta_{X}(\mathrm{id}_{X})))\right)_{Y} f \\
&\triangleq F(f)(\theta_{X}(\mathrm{id}_{X})) \\
&\triangleq \theta_{Y}(\mathrm{id}_{X} \circ f) \\
&= \theta_{Y}(f) \\
\end{aligned}$$
naturality of θ
 $\downarrow X(Y) \xrightarrow{\theta_{Y}} F(Y) \\
&\uparrow f^{*} \qquad \uparrow F(f) \\
&\downarrow X(X) \xrightarrow{\theta_{X}} F(X)
\end{aligned}$

by definition of $\eta_{X,F}$ by definition of $\eta_{X,F}^{-1}$ by naturality of θ by definition of f^*

Proof of
$$\eta_{X,F}^{-1} \circ \eta_{X,F} = \operatorname{id}_{\operatorname{Set}^{\operatorname{Cop}}(\&X,F)}$$

For any $\downarrow X \xrightarrow{\theta} F$ in Set^{C°P} and $Y \xrightarrow{f} X$ in C, we have

$$\begin{pmatrix} \eta_{X,F}^{-1} \left(\eta_{X,F}(\theta) \right) \end{pmatrix}_{Y} f \triangleq \left(\eta_{X,F}^{-1} \left(\theta_{X}(\mathrm{id}_{X}) \right) \right)_{Y} f$$

$$\triangleq F(f)(\theta_{X}(\mathrm{id}_{X}))$$

$$= \theta_{Y}(f^{*}(id_{X}))$$

$$\triangleq \theta_{Y}(\mathrm{id}_{X} \circ f)$$

$$= \theta_{Y}(f)$$

by definition of $\eta_{X,F}$ by definition of $\eta_{X,F}^{-1}$ by naturality of θ by definition of f^*

so
$$\forall \theta, Y, \left(\eta_{X,F}^{-1}\left(\eta_{X,F}(\theta)\right)\right)_{Y} = \theta_{Y}$$

so $\forall \theta, \eta_{X,F}^{-1}\left(\eta_{X,F}(\theta)\right) = \theta$
so $\eta_{X,F}^{-1} \circ \eta_{X,F} = \text{id.}$

For each small category **C**, each object $X \in \mathbf{C}$ and each presheaf $F \in \mathbf{Set}^{\mathbf{C}^{op}}$, there is a bijection of sets

$$\eta_{X,F}: \mathbf{Set}^{\mathbf{C}^{\mathrm{op}}}(\, {\boldsymbol{\natural}} X,F) \cong F(X)$$

which is natural in both X and F.

Proof that $\eta_{X,F}$ **is natural in** *F*:

Given $F \xrightarrow{\varphi} G$ in Set^{Cop}, have to show that

commutes in Set. For all $\downarrow X \xrightarrow{\theta} F$ we have

$$\varphi_X \left(\eta_{X,F}(\theta) \right) \triangleq \varphi_X \left(\theta_X(\mathrm{id}_X) \right)$$
$$\triangleq \left(\varphi \circ \theta \right)_X(\mathrm{id}_X)$$
$$\triangleq \eta_{X,G}(\varphi \circ \theta)$$
$$\triangleq \eta_{X,G}(\varphi_*(\theta))$$

Proof that $\eta_{X,F}$ is natural in X:

Given $Y \xrightarrow{f} X$ in **C**, have to show that

commutes in Set. For all $\& X \xrightarrow{\theta} F$ we have $F(f)((\eta_{X,F}(\theta)) \triangleq F(f)(\theta_X(id_X)))$ $= \theta_Y(f^*(id_X)) \qquad \text{by naturality of } \theta$ $= \theta_Y(f)$ $= \theta_Y(f_*(id_Y))$ $\triangleq (\theta \circ \& f)_Y(id_Y)$ $\triangleq \eta_{Y,F}(\theta \circ \& f)$ $\triangleq \eta_{Y,F}((\& f)^*(\theta))$ **Corollary** of the Yoneda Lemma:

the functor $\downarrow : \mathbf{C} \to \mathbf{Set}^{\mathbf{C}^{\mathsf{op}}}$ is full and faithful.

In general, a functor $F : \mathbb{C} \to \mathbb{D}$ is

► faithful if for all $X, Y \in \mathbf{C}$ the function $\begin{array}{ccc} \mathbf{C}(X,Y) & \to & \mathbf{D}(F(X),F(Y)) \\ f & \mapsto & F(f) \end{array}$

is injective:

 $\forall f, f' \in \mathbf{C}(X, Y), \ F(f) = F(f') \Rightarrow f = f'$

► full if the above functions are all surjective: $\forall g \in \mathbf{D}(F(X), F(Y)), \exists f \in \mathbf{C}(X, Y), F(f) = g$ **Corollary** of the Yoneda Lemma:

the functor $\downarrow : \mathbf{C} \to \mathbf{Set}^{\mathbf{C}^{\mathsf{op}}}$ is full and faithful.

Proof. From the proof of the Yoneda Lemma, for each $F \in Set^{C^{op}}$ we have a bijection

By definition of $(\eta_{X,F})^{-1}$, when F = & Y the above function is equal to

$$\mathcal{L}Y(X) = \mathbf{C}(X, Y) \quad \to \quad \mathbf{Set}^{\mathbf{C}^{\mathrm{op}}}(\mathcal{L}X, \mathcal{L}Y)$$

$$f \quad \mapsto \quad f_* = \mathcal{L}f$$

So, being a bijection, $f \mapsto \&f$ is both injective and surjective; so &f is both faithful and full.

Recall (for a small category **C**):

Yoneda Lemma: there is a bijection $\operatorname{Set}^{\operatorname{C^{op}}}({}_{\mathcal{L}}X, F) \cong F(X)$ which is natural both in $F \in \operatorname{Set}^{\operatorname{C^{op}}}$ and $X \in \mathbb{C}$.

An application of the Yoneda Lemma:

Theorem. For each small category **C**, the category **Set**^{C°P} of presheaves is cartesian closed.

Proof sketch.

Terminal object in Set^{C^{op}} is the functor $1 : C^{op} \rightarrow Set$ given by

 $\begin{cases} 1(X) \triangleq \{0\} & \text{terminal object in Set} \\ 1(f) \triangleq id_{\{0\}} \end{cases}$

Proof sketch.

Product of $F, G \in \text{Set}^{\mathbb{C}^{op}}$ is the functor $F \times G : \mathbb{C}^{op} \to \text{Set}$ given by

 $\begin{cases} (F \times G)(X) \triangleq F(X) \times G(X) & \text{cartesian product of sets} \\ (F \times G)(f) \triangleq F(f) \times G(f) \end{cases}$

with projection morphisms $F \xleftarrow{\pi_1}{\leftarrow} F \times G \xrightarrow{\pi_2}{\rightarrow} G$ given by the natural transformations whose components at $X \in \mathbb{C}$ are the projection functions $F(X) \xleftarrow{\pi_1}{\leftarrow} F(X) \times G(X) \xrightarrow{\pi_2}{\rightarrow} G(X)$.

Proof sketch.

We can work out what the value of the exponential $G^F \in Set^{C^{op}}$ at $X \in C$ has to be using the Yoneda Lemma:

Proof sketch.

We can work out what the value of the exponential $G^F \in Set^{C^{op}}$ at $X \in C$ has to be using the Yoneda Lemma:

 $G^{F}(X) \cong \operatorname{Set}^{\operatorname{C^{op}}}({}^{\natural}X, G^{F}) \cong \operatorname{Set}^{\operatorname{C^{op}}}({}^{\natural}X \times F, G)$

We take the set $\operatorname{Set}^{C^{op}}({}^{L}X \times F, G)$ to be the definition of the value of G^{F} at X...

Exponential objects in Set^{C°P}:

$$G^F(X) \triangleq \mathbf{Set}^{\mathbf{C^{op}}}(\ \ \mathcal{L}X \times F, G)$$

Given
$$Y \xrightarrow{f} X$$
 in **C**, we have $\natural Y \xrightarrow{\natural f} \natural X$ in $\operatorname{Set}^{\operatorname{C^{op}}}$ and hence
 $G^{F}(Y) \triangleq \operatorname{Set}^{\operatorname{C^{op}}}(\natural Y \times F, G) \xrightarrow{} \operatorname{Set}^{\operatorname{C^{op}}}(\natural X \times F, G) \triangleq G^{F}(X)$
 $\theta \mapsto \theta \circ (\natural f \times \operatorname{id}_{F})$

We define

$$G^F(f) \triangleq (\ \texttt{L}f \times \texttt{id}_F)^*$$

Have to check that these definitions make G^F ino a functor $C^{op} \rightarrow Set$.

Application morphisms in Set^{C^{op}}:

Given $F, G \in \mathbf{Set}^{\mathbf{C}^{\mathsf{op}}}$, the application morphism

 $\operatorname{app}: G^F \times F \to G$

is the natural transformation whose component at $X \in \mathbb{C}$ is the function

 $(G^F \times F)(X) \triangleq G^F(X) \times F(X) \triangleq \mathbf{Set}^{\mathbf{C}^{\mathrm{op}}}(\ \& X \times F, G) \times F(X) \xrightarrow{\mathrm{app}_X} G(X)$

defined by

 $\texttt{app}_X(\theta, x) \triangleq \theta_X(\texttt{id}_X, x)$

Have to check that this is natural in X.

Currying operation in Set^{C°P}:

$$\left(H \times F \xrightarrow{\theta} G\right) \mapsto \left(H \xrightarrow{\operatorname{cur} \theta} G^F\right)$$

Given $H \times F \xrightarrow{\theta} G$ in Set^{C°P}, the component of cur θ at $X \in \mathbb{C}$

$$H(X) \xrightarrow{(\operatorname{cur} \theta)_X} G^F(X) \triangleq \operatorname{Set}^{\operatorname{C^{op}}}(\, \natural X \times F, G)$$

is the function mapping each $z \in H(X)$ to the natural transformation $\ \ X \times F \to G$ whose component at $Y \in \mathbb{C}$ is the function

$$(\pounds X \times F)(Y) \triangleq \mathbf{C}(Y, X) \times F(Y) \to G(Y)$$

defined by

$$((\operatorname{cur} \theta)_X(z))_Y(f, y) \triangleq \theta_Y(H(f)(z), y)$$

Currying operation in Set^{C°P}**:**

$$\left(H \times F \xrightarrow{\theta} G\right) \mapsto \left(H \xrightarrow{\operatorname{cur} \theta} G^F\right)$$

$$((\operatorname{cur} \theta)_X(z))_Y(f, y) \triangleq \theta_Y(H(f)(z), y)$$

Have to check that this is natural in Y,

then that $(\operatorname{cur} \theta)_X$ is natural in *X*,

then that $\operatorname{cur} \theta$ is the unique morphism $H \xrightarrow{\varphi} G^F$ in $\operatorname{Set}^{\operatorname{C^{op}}}$ satisfying $\operatorname{app} \circ (\varphi \times \operatorname{id}_F) = \theta$.

So we can interpret simply typed lambda calculus in any presheaf category.

More than that, presheaf categories (usefully) model dependently-typed languages.