Lecture 10

Functors

are the appropriate notion of morphism between categories

Given categories C and D, a functor $F : C \rightarrow D$ is specified by:

- ► a function obj $C \rightarrow obj D$ whose value at X is written FX
- ► for all $X, Y \in C$, a function $C(X, Y) \rightarrow D(FX, FY)$ whose value at $f : X \rightarrow Y$ is written $Ff : FX \rightarrow FY$

and which is required to preserve composition and identity morphisms:

 $\begin{array}{rcl}F(g \circ f) &=& F \, g \circ F \, f \\F(\mathrm{id}_X) &=& \mathrm{id}_{F \, X}\end{array}$

"Forgetful" functors from categories of set-with-structure back to Set.

E.g. $U : Mon \rightarrow Set$

$$\begin{cases} U(M, \cdot, e) &= M \\ U((M_1, \cdot_1, e_1) \xrightarrow{f} (M_2, \cdot_2, e_2)) &= M_1 \xrightarrow{f} M_2 \end{cases}$$

"Forgetful" functors from categories of set-with-structure back to Set.

E.g. $U : Mon \rightarrow Set$

$$\begin{cases} U(M, \cdot, e) &= M \\ U((M_1, \cdot_1, e_1) \xrightarrow{f} (M_2, \cdot_2, e_2)) &= M_1 \xrightarrow{f} M_2 \end{cases}$$

Similarly $U : \mathbf{Preord} \to \mathbf{Set}$.

Free monoid functor $F : \mathbf{Set} \to \mathbf{Mon}$

Given $\Sigma \in$ **Set**,

 $F \Sigma = (\text{List} \Sigma, @, \text{nil}), \text{ the free monoid on } \Sigma$

Free monoid functor $F : \text{Set} \rightarrow \text{Mon}$ Given $\Sigma \in \text{Set}$,

 $F \Sigma = (\text{List} \Sigma, @, \text{nil}), \text{ the free monoid on } \Sigma$

Given a function $f : \Sigma_1 \to \Sigma_2$, we get a function $Ff : \text{List} \Sigma_1 \to \text{List} \Sigma_2$ by mapping f over finite lists:

$$Ff[a_1,\ldots,a_n] = [fa_1,\ldots,fa_n]$$

This gives a monoid morphism $F \Sigma_1 \rightarrow F \Sigma_2$; and mapping over lists preserves composition ($F(g \circ f) = F g \circ F f$) and identities ($F \operatorname{id}_{\Sigma} = \operatorname{id}_{F\Sigma}$). So we do get a functor from Set to Mon.

If **C** is a category with binary products and $X \in \mathbf{C}$, then the function (_) × X : obj **C** \rightarrow obj **C** extends to a functor (_) × X : **C** \rightarrow **C** mapping morphisms $f : Y \rightarrow Y'$ to

$f \times \mathrm{id}_X : Y \times X \to Y' \times X$

 $\left(\text{recall that } f \times g \text{ is the unique morphism with } \begin{cases} \pi_1 \circ (f \times g) &= f \circ \pi_1 \\ \pi_2 \circ (f \times g) &= g \circ \pi_2 \end{cases} \right)$

since it is the case that $\begin{cases} id_X \times id_Y &= id_{X \times Y} \\ (f' \circ f) \times id_X &= (f' \times id_X) \circ (f \times id_X) \end{cases}$

(see Exercise Sheet 2, question 1c).

If **C** is a cartesian closed category and $X \in \mathbf{C}$, then the function $(_)^X : \operatorname{obj} \mathbf{C} \to \operatorname{obj} \mathbf{C}$ extends to a functor $(_)^X : \mathbf{C} \to \mathbf{C}$ mapping morphisms $f : Y \to Y'$ to

$$f^X \triangleq \operatorname{cur}(f \circ \operatorname{app}) : Y^X \to {Y'}^X$$

since it is the case that

$$\operatorname{t} \begin{cases} (\operatorname{id}_Y)^X &= \operatorname{id}_{Y^X} \\ (g \circ f)^X &= g^X \circ f^X \end{cases}$$

(see Exercise Sheet 3, question 4).

Contravariance

Given categories C and D, a functor $F : \mathbb{C}^{op} \to \mathbb{D}$ is called a contravariant functor from C to D.

Note that if $X \xrightarrow{f} Y \xrightarrow{g} Z$ in **C**, then $X \xleftarrow{f} Y \xleftarrow{g} Z$ in **C**^{op}

so $FX \xleftarrow{Ff} FY \xleftarrow{Fg} FZ$ in **D** and hence

$$F(g \circ_{\mathbf{C}} f) = Ff \circ_{\mathbf{D}} Fg$$

(contravariant functors reverse the order of composition)

A functor $\mathbf{C} \rightarrow \mathbf{D}$ is sometimes called a covariant functor from \mathbf{C} to \mathbf{D} .

Example of a contravariant functor

If **C** is a cartesian closed category and $X \in \mathbf{C}$, then the function $X^{(_)} : \operatorname{obj} \mathbf{C} \to \operatorname{obj} \mathbf{C}$ extends to a functor $X^{(_)} : \mathbf{C}^{\operatorname{op}} \to \mathbf{C}$ mapping morphisms $f : Y \to Y'$ to

$$X^f \triangleq \operatorname{cur}(\operatorname{app} \circ (\operatorname{id}_{X^{Y'}} \times f)) : X^{Y'} \to X^Y$$

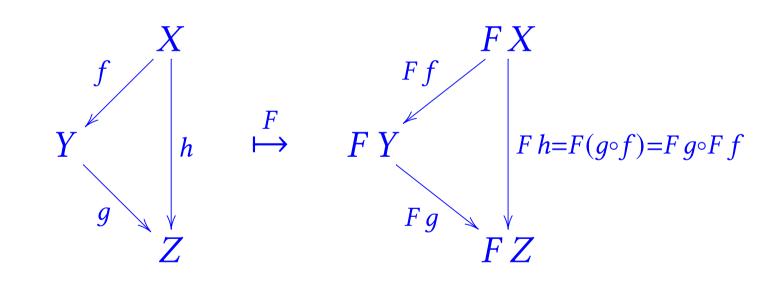
since it is the case that
$$\begin{cases} X^{id_Y} &= id_{X^Y} \\ X^{g \circ f} &= X^f \circ X^g \end{cases}$$

(see Exercise Sheet 3, question 5).

Note that since a functor $F : \mathbb{C} \to \mathbb{D}$ preserves domains, codomains, composition and identity morphisms

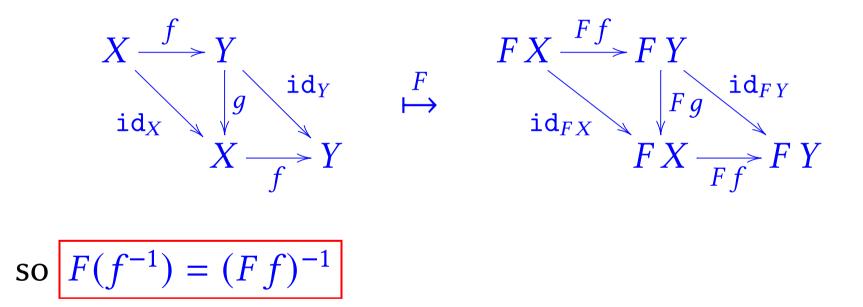
it sends commutative diagrams in **C** to commutative diagrams in **D**

E.g.



Note that since a functor $F : \mathbb{C} \to \mathbb{D}$ preserves domains, codomains, composition and identity morphisms

it sends isomorphisms in C to isomorphisms in D, because



Composing functors

Given functors $F : \mathbb{C} \to \mathbb{D}$ and $G : \mathbb{D} \to \mathbb{E}$, we get a functor $G \circ F : \mathbb{C} \to \mathbb{E}$ with

$$G \circ F\begin{pmatrix} X \\ \downarrow f \\ Y \end{pmatrix} = \begin{array}{c} G(FX) \\ \downarrow G(Ff) \\ G(FY) \end{array}$$

(this preserves composition and identity morphisms, because F and G do)

Identity functor

on a category C is $id_C : C \rightarrow C$ where

$$\operatorname{id}_{\mathbf{C}}\begin{pmatrix}X\\ & \\ f\\ & Y\end{pmatrix} = \begin{array}{c}X\\ & \\ f\\ & Y\end{pmatrix}$$

Functor composition and identity functors satisfy

associativity $H \circ (G \circ F) = (H \circ G) \circ F$ unity $\mathrm{id}_{\mathbf{D}} \circ F = F = F \circ \mathrm{id}_{\mathbf{C}}$

So we can get categories whose objects are categories and whose morphisms are functors

but we have to be a bit careful about size...

Size

One of the axioms of set theory is

set membership is a well-founded relation, that is, there is no infinite sequence of sets X_0, X_1, X_2, \ldots with

$$\cdots \in X_{n+1} \in X_n \in \cdots \in X_2 \in X_1 \in X_0$$

So in particular there is no set *X* with $X \in X$.

So we cannot form the "set of all sets" or the "category of all categories".

Size

One of the axioms of set theory is

set membership is a well-founded relation, that is, there is no infinite sequence of sets X_0, X_1, X_2, \ldots with

$$\cdots \in X_{n+1} \in X_n \in \cdots \in X_2 \in X_1 \in X_0$$

So in particular there is no set *X* with $X \in X$.

So we cannot form the "set of all sets" or the "category of all categories".

But we do assume there are (lots of) big sets

 $\mathcal{U}_0 \in \mathcal{U}_1 \in \mathcal{U}_2 \in \cdots$

where "big" means each \mathcal{U}_n is a Grothendieck universe...

Grothendieck universes

A Grothendieck universe \mathcal{U} is a set of sets satisfying

The above properties are satisfied by $\mathcal{U} = \emptyset$, but we will always assume

▶
$$\mathbb{N} \in \mathcal{U}$$

Size

We assume

there is an infinite sequence $\mathcal{U}_0 \in \mathcal{U}_1 \in \mathcal{U}_2 \in \cdots$ of bigger and bigger Grothendieck universes

and revise the previous definition of "the" category of sets and functions:

Set_n = category whose objects are all the sets in \mathcal{U}_n and with Set_n(X, Y) = Y^X = all functions from X to Y.

Notation: Set \triangleq Set₀ – its objects are called small sets (and other sets we call large).

Size

Set is the category of small sets.

Definition. A category C is locally small if for all $X, Y \in C$, the set of C-morphisms $X \rightarrow Y$ is small, that is, $C(X, Y) \in Set$.

C is a small category if it is both locally small and obj $C \in Set$.

E.g. Set, Preord and Mon are all locally small (but not small).

Given $P \in \mathbf{Preord}$, the cateogry \mathbf{C}_P it determines is small; similarly, the category \mathbf{C}_M determined by $M \in \mathbf{Mon}$ is small.

The category of small categories, Cat

- objects are all small categories
- morphisms in Cat(C, D) are all functors $C \rightarrow D$
- composition and identity morphisms as for functors

Cat is a locally small category