Lecture 9

## STLC equations

take the form $\Gamma \vdash s=t: A$ where $\Gamma \vdash s: A$ and $\Gamma \vdash t: A$ are provable.

Such an equation is satisfied by the semantics in a ccc if $M \llbracket \Gamma \vdash s: A \rrbracket$ and $M \llbracket \Gamma \vdash t: A \rrbracket$ are equal C -morphisms $M \llbracket \Gamma \rrbracket \rightarrow M \llbracket A \rrbracket$.

Qu: which equations are always satisfied in any ccc?
Ans: $\beta \eta$-equivalence...

## STLC $\beta \eta$-Equality

The relation $\Gamma \vdash s=_{\beta \eta} t: A$ (where $\Gamma$ ranges over typing environments, $s$ and $t$ over terms and $A$ over types) is inductively defined by the following rules:

## STLC $\beta \eta$-Equality

The relation $\Gamma \vdash s=_{\beta \eta} t: A$ (where $\Gamma$ ranges over typing environments, $s$ and $t$ over terms and $A$ over types) is inductively defined by the following rules:

- $\beta$-conversions

$$
\begin{aligned}
& \frac{\Gamma, x: A \vdash t: B \quad \Gamma \vdash s: A}{\Gamma \vdash(\lambda x: A . t) s=_{\beta \eta} t[s / x]: B} \\
& \hline \frac{\Gamma \vdash s: A \quad \Gamma \vdash t: B}{\Gamma \vdash f \operatorname{fst}(s, t)={ }_{\beta \eta} s: A} \\
& \hline \Gamma \vdash \operatorname{snd}(s, t)==_{\beta \eta} t: B
\end{aligned}
$$

## STLC $\beta \eta$-Equality

The relation $\Gamma \vdash s=_{\beta \eta} t: A$ (where $\Gamma$ ranges over typing environments, $s$ and $t$ over terms and $A$ over types) is inductively defined by the following rules:

- $\beta$-conversions
- $\eta$-conversions

| $\frac{\Gamma \vdash t: A \rightarrow B \quad x \text { does not occur in } t}{\Gamma \vdash t={ }_{\beta \eta}(\lambda x: A . t x): A \rightarrow B}$ |
| :--- |
| $\left.\frac{\Gamma \vdash t: A \times B}{\Gamma \vdash t={ }_{\beta \eta}(\text { fst } t, \text { snd } t): A \times B} \right\rvert\, \frac{\Gamma \vdash t: \text { unit }}{\Gamma \vdash t={ }_{\beta \eta}(): \text { unit }}$ |

## STLC $\beta \eta$-Equality

The relation $\Gamma \vdash s=_{\beta \eta} t: A$ (where $\Gamma$ ranges over typing environments, $s$ and $t$ over terms and $A$ over types) is inductively defined by the following rules:

- $\beta$-conversions
- $\eta$-conversions
- congruence rules

$$
\begin{array}{|c}
\frac{\Gamma, x: A \vdash t={ }_{\beta \eta} t^{\prime}: B}{\Gamma \vdash \lambda x: A . t={ }_{\beta \eta} \lambda x: A \cdot t^{\prime}: A \rightarrow B} \\
\hline \frac{\Gamma \vdash s={ }_{\beta \eta} s^{\prime}: A \rightarrow B \quad \Gamma \vdash t={ }_{\beta \eta} t^{\prime}: A}{\Gamma \vdash s t={ }_{\beta \eta} s^{\prime} t^{\prime}: B} \\
\hline
\end{array}
$$

## STLC $\beta \eta$-Equality

The relation $\Gamma \vdash s=_{\beta \eta} t: A$ (where $\Gamma$ ranges over typing environments, $s$ and $t$ over terms and $A$ over types) is inductively defined by the following rules:

- $\beta$-conversions
- $\eta$-conversions
- congruence rules
- $={ }_{\beta_{\eta}}$ is reflexive, symmetric and transitive

$$
\begin{array}{|c|c|}
\hline \frac{\Gamma \vdash t: A}{\Gamma \vdash t=\beta_{\beta \eta} t: A} & \frac{\Gamma \vdash s=_{\beta \eta} t: A}{\Gamma \vdash t=\beta_{\beta \eta} s: A} \\
\hline \hline \Gamma \vdash r==_{\beta \eta} s: A & \Gamma \vdash s==_{\beta \eta} t: A \\
\hline \Gamma \vdash r={ }_{\beta \eta} t: A \\
\hline
\end{array}
$$

## STLC $\beta \eta$-Equality

Soundness Theorem for semantics of STLC in a ccc. If $\Gamma \vdash s={ }_{\beta \eta} t: A$ is provable, then in any ccc

$$
M \llbracket \Gamma \vdash s: A \rrbracket=M \llbracket \Gamma \vdash t: A \rrbracket
$$

are equal C-morphisms $M \llbracket \Gamma \rrbracket \rightarrow M \llbracket A \rrbracket$.
Proof is by induction on the structure of the proof of $\Gamma \vdash s={ }_{\beta \eta} t: A$.
Here we just check the case of $\beta$-conversion for functions.
So suppose we have $\Gamma, x: A \vdash t: B$ and $\Gamma \vdash s: A$. We have to see that

$$
M \llbracket \Gamma \vdash(\lambda x: A . t) s: B \rrbracket=M \llbracket \Gamma \vdash t[s / x]: B \rrbracket
$$

Suppose

$$
\begin{aligned}
M \llbracket \Gamma \rrbracket & =X \\
M \llbracket A \rrbracket & =Y \\
M \llbracket B \rrbracket & =Z \\
M \llbracket \Gamma, x: A \vdash t: B \rrbracket & =f: X \times Y \rightarrow Z \\
M \llbracket \Gamma \vdash s: A \rrbracket & =g: X \rightarrow Z
\end{aligned}
$$

Then

$$
M \llbracket \Gamma \vdash \lambda x: A . t: A \rightarrow B \rrbracket=\operatorname{cur} f: X \rightarrow Z^{Y}
$$

and hence

$$
\begin{array}{ll}
M \llbracket \Gamma \vdash(\lambda x: A . t) s: B \rrbracket & \\
=\operatorname{app} \circ\langle\operatorname{cur} f, g\rangle & \\
=\operatorname{app} \circ\left(\operatorname{cur} f \times \operatorname{id}_{Y}\right) \circ\left\langle\operatorname{id}_{X}, g\right\rangle & \\
=\text { since }(a \times b) \circ\langle c, d\rangle=\langle a \circ c, b \circ d\rangle \\
=f \circ\left\langle i d_{X}, g\right\rangle & \\
=M \llbracket \Gamma \vdash t[s / x]: B \rrbracket & \\
\text { by definition of cur } f \\
=\text { by the Substitution Theorem }
\end{array}
$$

as required.

## The internal language of a ccc, $\mathbf{C}$

- one ground type for each C-object $X$
- for each $X \in \mathrm{C}$, one constant $f^{X}$ for each C-morphism $f: 1 \rightarrow X$ ("global element" of the object $X$ )

The types and terms of STLC over this language usefully describe constructions on the objects and morphisms of C using its cartesian closed structure, but in an "element-theoretic" way.

For example...

## Example

In any ccc C , for any $X, Y, Z \in \mathrm{C}$ there is an isomorphism $Z^{(X \times Y)} \cong\left(Z^{Y}\right)^{X}$

## Example

In any ccc C , for any $X, Y, Z \in \mathrm{C}$ there is an isomorphism
$Z^{(X \times Y)} \cong\left(Z^{Y}\right)^{X}$
which in the internal language of C is described by the terms

$$
\begin{aligned}
& \diamond \vdash s:((X \times Y) \rightarrow Z) \rightarrow(X \rightarrow(Y \rightarrow Z)) \\
& \diamond \vdash t:(X \rightarrow(Y \rightarrow Z)) \rightarrow((X \times Y) \rightarrow Z)
\end{aligned}
$$

where $\left\{\begin{array}{l}s \triangleq \lambda f:(X \times Y) \rightarrow Z . \lambda x: X . \lambda y: Y . f(x, y) \\ t \triangleq \lambda g: X \rightarrow(Y \rightarrow Z) . \lambda z: X \times Y . g(\text { fst } z)(\operatorname{snd} z)\end{array}\right.$ and
which satisfy $\left\{\begin{array}{l}\diamond, f:(X \times Y) \rightarrow Z \vdash t(s f)=\beta_{\eta} f \\ \diamond, g: X \rightarrow(Y \rightarrow Z) \vdash s(t g)=\beta_{\eta} g\end{array}\right.$

## Free cartesian closed categories

The Soundness Theorem has a converse-completeness.
In fact for a given set of ground types and typed constants there is a single ccc $F$ (the free ccc for that language) with an interpretation function $M$ so that $\Gamma \vdash s={ }_{\beta \eta} t: A$ is provable iff $M \llbracket \Gamma \vdash s: A \rrbracket=M \llbracket \Gamma \vdash t: A \rrbracket$ in F .

## Free cartesian closed categories

The Soundness Theorem has a converse-completeness.
In fact for a given set of ground types and typed constants there is a single ccc F (the free ccc for that language) with an interpretation function $M$ so that $\Gamma \vdash s={ }_{\beta \eta} t: A$ is provable iff $M \llbracket \Gamma \vdash s: A \rrbracket=M \llbracket \Gamma \vdash t: A \rrbracket$ in F .

- F-objects are the STLC types over the given set of ground types
- F-morphisms $A \rightarrow B$ are equivalence classes of STLC terms $t$ satisfying $\diamond \vdash t: A \rightarrow B$ (so $t$ is a closed term-it has no free variables) with respect to the equivalence relation equating $s$ and $t$ if $\diamond \vdash s={ }_{\beta \eta} t: A \rightarrow B$ is provable.
- identity morphism on $A$ is the equivalence class of $\diamond \vdash \lambda x: A \cdot x: A \rightarrow A$.
- composition of a morphism $A \rightarrow B$ represented by $\diamond \vdash s: A \rightarrow B$ and a morphism $B \rightarrow C$ represented by $\diamond \vdash t: B \rightarrow C$ is represented by $\diamond \vdash \lambda x: A . t(s x): A \rightarrow C$.


# Curry-Howard correspondence 

\author{

Type <br> | Logic |  | Theory |
| :---: | :---: | :---: |
| propositions | $\leftrightarrow$ | types |
| proofs | $\leftrightarrow$ | terms |

}
E.g. IPL versus STLC.

## Curry-Howard for IPL vs STLC

Proof of $\diamond, \varphi \Rightarrow \psi, \psi \Rightarrow \theta \vdash \varphi \Rightarrow \theta$ in IPL
where $\Phi=\diamond, \quad \varphi \Rightarrow \psi, \quad \psi \Rightarrow \theta, \quad \varphi$

## Curry-Howard for IPL vs STLC

and a corresponding STLC term

$$
\begin{aligned}
& \frac{\ldots(\mathrm{Ax})}{\Phi \vdash z: \psi \Rightarrow \theta}(\mathrm{WK}) \frac{\ldots(\mathrm{Ax})}{\frac{\ldots(\mathrm{WK})}{}(\mathrm{WK})} \frac{\overline{\Phi \vdash y: \varphi \Rightarrow \psi})}{\Phi \vdash y x: \psi}(\mathrm{Ax}) \\
& \frac{\Phi \vdash z(y x): \theta}{}(\Rightarrow \mathrm{E}) \\
& \diamond, y: \varphi \Rightarrow \psi, z: \psi \Rightarrow \theta \vdash \lambda x: \varphi \cdot z(y x): \varphi \Rightarrow \theta
\end{aligned}(\Rightarrow \mathrm{I})
$$

where $\Phi=\diamond, y: \varphi \Rightarrow \psi, z: \psi \Rightarrow \theta, x: \varphi$

# Curry-Howard-Lawvere/Lambek correspondence 



> E.g. IPL versus STLC versus CCCs

# Curry-Howard-Lawvere/Lambek correspondence 

| Logic |  | Type <br> Theory |  | Category <br> Theory |
| :---: | :---: | :---: | :---: | :---: |
| propositions <br> proofs | $\leftrightarrow$ | types | $\leftrightarrow$ | objects |
| terms | $\leftrightarrow$ | morphisms |  |  |

## E.g. IPL versus STLC versus CCCs

These correspondences can be made into category-theoretic equivalences-we first need to define the notions of functor and natural transformation in order to define the notion of equivalence of categories.

