L8

Lecture 8

77

Recal
Simply-Typed Lambda Calculus
(STLC)

Types: A,B,C,... =
G,G’,G" ... "“ground” types

unit unit type
AxB product type
A->B function type
Terms: s, t,r,... =
c constants (of given type A)
X variable (countably many)
() unit value
(s, 1) pair
fstt sndt projections
Ax: At function abstraction

st function application
L7

69

Recall. :

L8

Semantics of STLC terms in a ccc

Given a cartesian closed category C,

given any function M mapping

» ground types G to C-objects M (G)
» constants ¢? to C-morphisms M(c?) : 1 — M[A]

we get a function mapping provable instances of the
typing relation I' = £ : A to C-morphisms

MIT'Et:A]: M|T]| - M[A]

defined by recursing over the proof of I' = £ : A from the
typing rules (which follows the structure of t):

78

L8

Semantics of STLC terms in a ccc

Variables:
M[L,x: A x: A] = M[I] x M[A] = M[A]
M|I,x" : A’ x: A] =

MT] x MJA"] 2 mr] A

> M[A]
Constants:

M[T ¢ : AT = M[r] 2 1 2 Mpaj
Unit value:

MIT - () : unit] = M[T] < 1

79

L8

Semantics of STLC terms in a ccc

Pairing:

M[T' + (s,t) : AxB] =
(M[I't+s:A],M[T'+t:B])

MI(I] » M[A] X M[B]

Projections:

M|l = fstt: A =

M|T+#:AxB]

M > M[A] x M[B] = M[A]

80

Semantics of STLC terms in a ccc

Pairing:

M[T + (s,t) : AxB] =
(M[T'+s:A],M[T+¢:B])

MII] » M[A] X M[B]

ProjectionS' Given that T - fstt: A holds, |
] there is a unique type B

such that I' = t : A x B already
MITFtstt: Al = [| holds |

M[I+t:AxB]

M > M[A] x M[B] = MJ[A]

Lemma. IfI'-t: A and I' = t: B are provable, then A = B.]

80

L8

Semantics of STLC terms in a ccc
Pairing:

M[I' - (s,t) : AxB] =

(M[I+s:A],M[T+¢:B])

M(T] » M[A] X M[B]

Projections:

M|I | sndt: B]| =
M[T+t:AxB]

MII] > M[A] x M[B] = M][B]

(As for the case of fst, if I = sndt: B, then I' =t : A x B already holds for a

unique type A.)
80

L8

Semantics of STLC terms in a ccc

Function abstraction:

MIT'FAx:At: A>B| =
cur f: M[I'] — (M[A] - M[B])

where

f=MII,x: AFt:B]: M[I] x M[A] — M[B]

81

Semantics of STLC terms in a ccc

Function application:

M[I'=st:B]| =

<f g)

M[I] =25 (M[A] - M[B]) x M[A] =5 M]B]

where

A = unique type such that ' ms: A=>Band T Ht: A
already holds (exists because I - st : B holds)

f=M[TFs:A->B]:M[I] — (M[A] — M[B])
g=M[I'Ft:A]: M[I] - M[A]

L8 82

Example

Consider [t = Ax: A.g(fx) |sothat T+t : A - C when
r=o,f:A>B,g:B->C.
Suppose M|A] = X, M[B] =Y and M||[C]| = Z in C. Then

M[I] = (1 x YX) x Z¥
ML, x: Al = (1 x Y*) x Z¥) x X

MI,x:AFx:A] = m
M[I,x:AFg:B>C]=mom
M[I,x:AF f:A>B] = momom
M|I,x: AF fx:B] = app o(7Tp o 771 © 7T, TT2)
M[T,x: A I—g(fx) : C| = appo<7'[207'[1,appo<71'207'(1O7T1,7T2>>

MI[T +t: A-> C] = cur(appo(7ma o 7t1,app o{ms o 711 0 711, 712)))

83

L8

STLC equations

take the form|[I' s =t: A|whereT s : A and
I' = t: A are provable.

Such an equation is satisfied by the semantics in a ccc if
M[I'=s:A] and M|T' =t : A] are equal
C-morphisms M|[I'|] — M|[A].

which equations are always satisfied in any ccc?

84

L8

STLC equations

take the form|[I' s =t: A|whereT s : A and
I' = t: A are provable.

Such an equation is satisfied by the semantics in a ccc if
M[I'=s:A] and M|T' =t : A] are equal
C-morphisms M|[I'|] — M|[A].

which equations are always satisfied in any ccc?

Ans: («)PBn-equivalence — to define this, first have to
define alpha-equivalence, substitution and its
semantics.

84

L8

Alpha equivalence of STLC terms

The names of A-bound variables should not affect
meaning.

Eg. Af: A—>B.Ax: A. f x should have the same
meaning as Ax : A>B. Ay : A.xy

85

L8

The names of A-bound variables should not affect

meaning.

Eg Af:A->B.Ax: A. f x should have the same

meaning as Ax : A>B. Ay : A.xy

This issue is best dealt with at the level of syntax rather
than semantics: from now on we re-define “STLC term”
to mean not an abstract syntax tree (generated as

described before), but rather an equivalence class of such

trees with respect to alpha-equivalence
as follows. . .

s =, 1

~defined

(Alternatively, one can use a “nameless” (de Bruijn) representation of terms.)

85

Alpha equivalence of STLC terms

s =, s t =, t
A=y ctx=ax||()=x (0] (s,8) =u(s,1)
t =, t/ t =, t/ s=,5 t=,t
fstt =, fst t’ || sndt —, snd t/ st =, s't

(yx)-t=4 (yx')-t' vy does not occurin {x,x',t,t'}
Ax: At =, Ax' At

Alpha equivalence of STLC terms

s =, s t =, t

A=y x=ax|| () =20 (s,t) =a(s,t)

t =, t/ t =, t/ s=,5 t=,t
fsttzafstt' sndtzasndt' stzas't'

(yx)-t=4 (yx')-t' vy doesnot occurin {x,x',t,t'}
A\ Ax: At =, Ax' At

\ result of replacing all

occurrences of x with y in

Alpha equivalence of STLC terms

s =, s t =, t

A=t || x=ax||()=2 | (s,t) =4 (s, 1)

t =, t' t =, t' s=p,8 t=,t
fsttzafstt' sndt:“sndt' stzas't'

(yx)-t=4 (yx')-t' vy does not occurin {x,x',t,t'}
Ax: At =, Ax' At

E.g.
Ax:Axx =4, Ay : A.yy 4 Ax: A.xy
(Ay: A y)x =4 (Ax: A.x)x 7y (Ax: A.X)y

L8

t[s/x] = result of replacing all free occurrences of
variable x in term t (i.e. those not occurring within the
scope of a Ax : A._ binder) by the term s,
alpha-converting A-bound variables in t to avoid them
“capturing” any free variables of t.

Eg (Ay:A.(y,x))[y/x]isAz:A.(z,y) and is not Ay : A. (y,vy)

87

L8

t[s/x] = result of replacing all free occurrences of

variable x in term t (i.e. those not occurring within the
scope of a Ax : A._ binder) by the term s,
alpha-converting A-bound variables in t to avoid them
“capturing” any free variables of t.

Eg (Ay:A.(y,x))[y/x]isAz:A.(z,y) and is not Ay : A. (y,vy)

The relation t[s/x] = t’ can be inductively defined by
the following rules. ..

87

Substitution

y 7 X
cAlslx] = || x[s/x] = s || y[s/x] =y || O[s/x] = ()
ti[slx] = t; tslx] =t t[s/x] =t
(t1,t)[slx] = (t1,t}) (fst t)[s/x] = fstt’
t[s/x] =t ti[slx] = t; ts/x] =t
(snd t)[s/x] = snd ¢’ (t1 t2) [s/x] = t1t5

t[s/lx] =t y # x and y does not occur in s
(Ay : A.t)[slx] = Ay : At

88

L8

Semantics of substitution in a ccc

Substitution Lemma lfI'Fs: AandI,x: A+ t:B
are provable, then so is T - t[s/x] : B. J

Substitution Theorem If I' - s : A and
Ix: A t:B are provable, then in any ccc the
following diagram commutes:

M[[F]] (id, M[Tts:A]) M[[F]] v M[[A]]

MIT,x:A+t:B]

M[T'+t[s/x]:

M|B]

89

