Lecture 8

Recall:

Simply-Typed Lambda Calculus (STLC)

```
Types: A, B, C, \ldots :=
    G, G', G'' \dots "ground" types
         unit type
    unit
    A \times B product type
    A \rightarrow B function type
Terms: s, t, r, \ldots :=
                  constants (of given type A)
                  variable (countably many)
                  unit value
               pair
    fst t snd t projections
    \lambda x : A.t function abstraction
          function application
    st
```

L7

Recall:

Semantics of STLC terms in a ccc

Given a cartesian closed category C, given any function M mapping

- \triangleright ground types G to C-objects M(G)
- ightharpoonup constants c^A to C-morphisms $M(c^A): 1 \to M[\![A]\!]$

we get a function mapping provable instances of the typing relation $\Gamma \vdash t : A$ to C-morphisms

$$M\llbracket\Gammadash t:A
rbracket:M\llbracket\Gamma
rbracket o M\llbracket A
rbracket$$

defined by recursing over the proof of $\Gamma \vdash t : A$ from the typing rules (which follows the structure of t):

Variables:

$$M[\Gamma, x : A \vdash x : A] = M[\Gamma] \times M[A] \xrightarrow{\pi_2} M[A]$$

$$M[\Gamma, x' : A' \vdash x : A] =$$

$$M[\Gamma] \times M[A'] \xrightarrow{\pi_1} M[\Gamma] \xrightarrow{M[\Gamma \vdash x : A]} M[A]$$

Constants:

$$M \llbracket \Gamma dash c^A : A
rbracket = M \llbracket \Gamma
rbracket \xrightarrow{\langle
angle} 1 \xrightarrow{M(c^A)} M \llbracket A
rbracket$$

Unit value:

$$M \llbracket \Gamma \vdash () : \text{unit} \rrbracket = M \llbracket \Gamma \rrbracket \xrightarrow{\langle \rangle} 1$$

Pairing:

$$M[\Gamma \vdash (s,t) : A \times B] = M[\Gamma \vdash (s,t) : A \times B] + M[\Gamma \vdash (s,t) : A \times B] + M[A] \times M[B]$$

Projections:

$$M[\Gamma \vdash \operatorname{fst} t : A] = M[\Gamma \vdash \operatorname{fil} A \times B] \longrightarrow M[A] \times M[B] \xrightarrow{\pi_1} M[A]$$

Pairing:

$$M[\Gamma \vdash (s,t) : A \times B] = M[\Gamma \vdash (s,t) : A \times B] + M[\Gamma \vdash (s,t) : A \times B] + M[A] \times M[B]$$

Projections:

$$M[\Gamma \vdash \mathrm{fst}\, t : A] = egin{pmatrix} \mathrm{Such that}\, \Gamma \vdash \iota : A imes B \text{ already holds.} \\ M[\Gamma] & \xrightarrow{M[\Gamma \vdash t : A imes B]} M[A] imes M[B] & \xrightarrow{\pi_1} M[A] \end{bmatrix}$$

Given that $\Gamma \vdash fst t : A$ holds, there is a unique type Bsuch that $\Gamma \vdash t : A \times B$ already

$$M\llbracket A
rbracket imes M\llbracket B
rbracket o M\llbracket A
rbracket$$

Lemma. If $\Gamma \vdash t : A$ and $\Gamma \vdash t : B$ are provable, then A = B.

Pairing:

$$M[\Gamma \vdash (s,t) : A \times B] = M[\Gamma \vdash (s,t) : A \times B] + M[\Gamma \vdash (s,t) : A \times B] + M[A] \times M[B]$$

Projections:

$$M[\![\Gamma dash \operatorname{snd} t : B]\!] = M[\![\Gamma dash d t : B]\!] \xrightarrow{M[\![\Gamma dash t : A imes B]\!]} M[\![A]\!] imes M[\![B]\!] \xrightarrow{\pi_2} M[\![B]\!]$$

(As for the case of fst, if $\Gamma \vdash \operatorname{snd} t : B$, then $\Gamma \vdash t : A \times B$ already holds for a unique type A.)

Function abstraction:

$$M[\Gamma \vdash \lambda x : A.t : A \Rightarrow B] =$$

$$\operatorname{cur} f : M[\Gamma] \to (M[A] \to M[B])$$

where

$$f = M[\Gamma, x : A \vdash t : B] : M[\Gamma] \times M[A] \rightarrow M[B]$$

Function application:

$$egin{align*} M \llbracket \Gamma dash s \, t : B
bracket = \ M \llbracket \Gamma
bracket & s \, t : B
bracket = \ M \llbracket \Gamma
bracket & s \, t : B
bracket = \ M \llbracket A
bracket & s \, t : B
bracket = \ M \llbracket A
bracket & s \, t : B
bracket = \ M \llbracket A
bracket & s \, t : B
bracket = \ M \llbracket A
bracket & s \, t : B
bracket = \ M \llbracket A
bracket & s \, t : B
brack$$

where

```
A = unique type such that \Gamma \vdash s : A \Rightarrow B and \Gamma \vdash t : A already holds (exists because \Gamma \vdash s t : B holds) f = M[\Gamma \vdash s : A \Rightarrow B] : M[\Gamma] \to (M[A] \to M[B]) g = M[\Gamma \vdash t : A] : M[\Gamma] \to M[A]
```

L8

Example

```
Consider t \triangleq \lambda x : A.g(f x) so that \Gamma \vdash t : A \Rightarrow C when
\Gamma \triangleq \Diamond_{f} f : A \rightarrow B_{f} g : B \rightarrow C
Suppose M[A] = X, M[B] = Y and M[C] = Z in C. Then
                                      M[\![\Gamma]\!] = (1 \times Y^X) \times Z^Y
                           M[\Gamma, x : A] = ((1 \times Y^X) \times Z^Y) \times X
             M[\Gamma, x:A \vdash x:A] = \pi_2
    M[\Gamma, x: A \vdash g: B \Rightarrow C] = \pi_2 \circ \pi_1
    M[\Gamma, x: A \vdash f: A \rightarrow B] = \pi_2 \circ \pi_1 \circ \pi_1
          M[\Gamma, x : A \vdash f x : B] = \operatorname{app} \circ \langle \pi_2 \circ \pi_1 \circ \pi_1, \pi_2 \rangle
  M[\Gamma, x : A \vdash g(fx) : C] = \operatorname{app} \circ \langle \pi_2 \circ \pi_1, \operatorname{app} \circ \langle \pi_2 \circ \pi_1 \circ \pi_1, \pi_2 \rangle \rangle
                M[\Gamma \vdash t : A \Rightarrow C] = \operatorname{cur}(\operatorname{app} \circ \langle \pi_2 \circ \pi_1, \operatorname{app} \circ \langle \pi_2 \circ \pi_1 \circ \pi_1, \pi_2 \rangle \rangle)
```

STLC equations

take the form $\Gamma \vdash s = t : A$ where $\Gamma \vdash s : A$ and $\Gamma \vdash t : A$ are provable.

Such an equation is satisfied by the semantics in a ccc if $M[\Gamma \vdash s : A]$ and $M[\Gamma \vdash t : A]$ are equal C-morphisms $M[\Gamma] \to M[A]$.

Qu: which equations are always satisfied in any ccc?

STLC equations

take the form $\Gamma \vdash s = t : A$ where $\Gamma \vdash s : A$ and $\Gamma \vdash t : A$ are provable.

Such an equation is satisfied by the semantics in a ccc if $M[\Gamma \vdash s : A]$ and $M[\Gamma \vdash t : A]$ are equal C-morphisms $M[\Gamma] \to M[A]$.

Qu: which equations are always satisfied in any ccc?

Ans: $(\alpha)\beta\eta$ -equivalence — to define this, first have to define alpha-equivalence, substitution and its semantics.

The names of λ -bound variables should not affect meaning.

E.g. $\lambda f: A \rightarrow B. \lambda x: A. fx$ should have the same meaning as $\lambda x: A \rightarrow B. \lambda y: A. xy$

The names of λ -bound variables should not affect meaning.

E.g. $\lambda f: A \rightarrow B. \lambda x: A. fx$ should have the same meaning as $\lambda x: A \rightarrow B. \lambda y: A. xy$

This issue is best dealt with at the level of syntax rather than semantics: from now on we re-define "STLC term" to mean not an abstract syntax tree (generated as described before), but rather an equivalence class of such trees with respect to alpha-equivalence s = t, defined as follows...

(Alternatively, one can use a "nameless" (de Bruijn) representation of terms.)

$$\frac{c^{A} =_{\alpha} c^{A}}{c^{A}} \begin{bmatrix} x =_{\alpha} x \end{bmatrix} \underbrace{\begin{pmatrix} () =_{\alpha} () \end{pmatrix}} \underbrace{\begin{cases} s =_{\alpha} s' & t =_{\alpha} t' \\ (s,t) =_{\alpha} (s',t') \end{cases}}$$

$$\frac{t =_{\alpha} t'}{\text{fst } t =_{\alpha} \text{ fst } t'} \begin{bmatrix} t =_{\alpha} t' \\ \text{snd } t =_{\alpha} \text{ snd } t' \end{bmatrix} \underbrace{\begin{cases} s =_{\alpha} s' & t =_{\alpha} t' \\ st =_{\alpha} s't' \end{cases}}$$

$$\frac{(y x) \cdot t =_{\alpha} (y x') \cdot t'}{\lambda x : A \cdot t =_{\alpha} \lambda x' : A \cdot t'}$$

$$\frac{\lambda x : A \cdot t =_{\alpha} \lambda x' : A \cdot t'}{\lambda x : A \cdot t'}$$

$$\frac{c^{A} =_{\alpha} c^{A}}{c^{A}} \left[\begin{array}{c} x =_{\alpha} x \end{array} \right] \left[\begin{array}{c} s =_{\alpha} s' & t =_{\alpha} t' \\ \hline (s,t) =_{\alpha} (s',t') \end{array} \right] \\
\frac{t =_{\alpha} t'}{\text{fst } t =_{\alpha} \text{ fst } t'} \left[\begin{array}{c} t =_{\alpha} t' \\ \hline \text{snd } t =_{\alpha} \text{ snd } t' \end{array} \right] \left[\begin{array}{c} s =_{\alpha} s' & t =_{\alpha} t' \\ \hline st =_{\alpha} s't' \end{array} \right] \\
\frac{(y x) \cdot t =_{\alpha} (y x') \cdot t'}{\lambda x : A \cdot t =_{\alpha} \lambda x' : A \cdot t'} \quad \text{y does not occur in } \{x, x', t, t'\} \\
\frac{\lambda x : A \cdot t =_{\alpha} \lambda x' : A \cdot t'}{\text{occurrences of } x \text{ with } y \text{ in } t} \quad \text{occurrences of } x \text{ with } y \text{ in } t$$

L8

$$\frac{1}{c^{A}} =_{\alpha} c^{A}$$

$$\frac{1}{x =_{\alpha} x}$$

$$\frac{1}{(1) =_{\alpha} (1)}$$

$$\frac{1}{(1) =$$

E.g.

$$\lambda x : A. x x =_{\alpha} \lambda y : A. y y \neq_{\alpha} \lambda x : A. x y$$
$$(\lambda y : A. y) x =_{\alpha} (\lambda x : A. x) x \neq_{\alpha} (\lambda x : A. x) y$$

Substitution

t[s/x] = result of replacing all free occurrences of variable x in term t (i.e. those not occurring within the scope of a $\lambda x : A$._ binder) by the term s, alpha-converting λ -bound variables in t to avoid them "capturing" any free variables of t.

E.g. $(\lambda y : A.(y,x))[y/x]$ is $\lambda z : A.(z,y)$ and is not $\lambda y : A.(y,y)$

87

L8

Substitution

t[s/x] = result of replacing all free occurrences of variable x in term t (i.e. those not occurring within the scope of a $\lambda x : A$._ binder) by the term s, alpha-converting λ -bound variables in t to avoid them "capturing" any free variables of t.

E.g. $(\lambda y : A.(y,x))[y/x]$ is $\lambda z : A.(z,y)$ and is not $\lambda y : A.(y,y)$

L8

The relation t[s/x] = t' can be inductively defined by the following rules...

Substitution

$$\frac{t_1[s/x] = c^A}{c^A[s/x] = c^A} \frac{1}{x[s/x] = s} \frac{y \neq x}{y[s/x] = y} \frac{t_1[s/x] = t'_1}{(t_1, t_2)[s/x] = (t'_1, t'_2)} \frac{t[s/x] = t'}{(fst t)[s/x] = fst t'}$$

$$\frac{t[s/x] = t'_1}{(snd t)[s/x] = snd t'} \frac{t_1[s/x] = t'_1}{(t_1 t_2)[s/x] = t'_1} \frac{t_2[s/x] = t'_2}{(t_1 t_2)[s/x] = t'_1 t'_2}$$

$$\frac{t[s/x] = t'_1}{(snd t)[s/x] = snd t'} \frac{t_2[s/x] = t'_1}{(t_1 t_2)[s/x] = t'_1 t'_2}$$

$$\frac{t[s/x] = t'_1}{(\lambda y : A. t)[s/x] = \lambda y : A. t'}$$

Semantics of substitution in a ccc

Substitution Lemma If $\Gamma \vdash s : A$ and $\Gamma, x : A \vdash t : B$ are provable, then so is $\Gamma \vdash t[s/x] : B$.

Substitution Theorem If $\Gamma \vdash s : A$ and $\Gamma, x : A \vdash t : B$ are provable, then in any ccc the following diagram commutes: $M[\Gamma] \xrightarrow{\langle \mathrm{id}, M[\Gamma \vdash s : A] \rangle} M[\Gamma] \times M[A]$

 $M[\Gamma \vdash t[s/x]:B] \longrightarrow M[B]$