Lecture 2
Exercise Sheet 1 available (course web page)
Virtual office hour Mondays 17:00-18:00 Zoom details on course Moodle page

Recall

A category C is specified by

- a set obj C whose elements are called C-objects
- for each $X, Y \in$ obj C , a set $\mathrm{C}(X, Y)$ whose elements are called C -morphisms from X to Y
- a function assigning to each $X \in o b j \mathrm{C}$ an element $\operatorname{id}_{X} \in \mathrm{C}(X, X)$ called the identity morphism for the C-object X
- a function assigning to each $f \in \mathrm{C}(X, Y)$ and $g \in \mathrm{C}(Y, Z)$ (where $X, Y, Z \in \operatorname{obj} \mathrm{C}$) an element $g \circ f \in \mathrm{C}(X, Z)$ called the composition of C-morphisms f and g and satisfying associativity and unity properties.

Example:
 category of pre-orders, Preord

- objects are sets P equipped with a pre-order _ \sqsubseteq i.e. a binary relation on P that is
reflexive: $\forall x \in P, x \sqsubseteq x$
transitive: $\forall x, y, z \in P, x \sqsubseteq y \wedge y \sqsubseteq z \Rightarrow x \sqsubseteq z$
A partial order is a pre-order that is also anti-symmetric: $\forall x, y \in P, x \sqsubseteq y \wedge y \sqsubseteq x \Rightarrow x=y$

Example: category of pre-orders, Preord

- objects are sets P equipped with a pre-order \sqsubseteq_{-}
- morphisms: Preord $\left(\left(P_{1}, \sqsubseteq_{1}\right),\left(P_{2}, \sqsubseteq_{2}\right)\right) \triangleq$ $\left\{f \in \operatorname{Set}\left(P_{1}, P_{2}\right) \mid f\right.$ is monotone $\}$

Example:
 category of pre-orders, Preord

- objects are sets P equipped with a pre-order \sqsubseteq_{-}
- morphisms: Preord $\left(\left(P_{1}, \sqsubseteq_{1}\right),\left(P_{2}, \sqsubseteq_{2}\right)\right) \triangleq$ $\left\{f \in \operatorname{Set}\left(P_{1}, P_{2}\right) \mid f\right.$ is monotone $\}$
- identities and composition: as for Set

Q: why is this well-defined?
A: because the set of monotone functions contains identity functions and is closed under composition.

Example:
 category of pre-orders, Preord

- objects are sets P equipped with a pre-order \sqsubseteq_{-}
- morphisms: Preord $\left(\left(P_{1}, \sqsubseteq_{1}\right),\left(P_{2}, \sqsubseteq_{2}\right)\right) \triangleq$ $\left\{f \in \operatorname{Set}\left(P_{1}, P_{2}\right) \mid f\right.$ is monotone $\}$
- identities and composition: as for Set

Pre- and partial orders are relevant to the denotational semantics of programming languages (among other things).

Example:

category of monoids, Mon

- objects are monoids (M, \cdot, e) - set M equipped with a binary operation ${ }^{\cdot}$ _ $: M \times M \rightarrow M$ which is associative $\forall x, y, z \in M, x \cdot(y \cdot z)=(x \cdot y) \cdot z$ has e as its unit $\forall x \in M, e \cdot x=x=x \cdot e$

CS-relevant example of a monoid: (List Σ, @, nil) where

$$
\begin{aligned}
\text { List } \Sigma= & \text { set of finite lists of elements of set } \Sigma \\
@ & \text { list concatenation } \\
& \text { nil @ } \ell=\ell \\
& (a:: \ell) @ \ell^{\prime}=a::\left(\ell @ \ell^{\prime}\right) \\
\text { nil }= & \text { empty list }
\end{aligned}
$$

Example:

category of monoids, Mon

- objects are monoids (M, \cdot, e)
- morphisms: $\operatorname{Mon}\left(\left(M_{1}, \cdot_{1}, e_{1}\right),\left(M_{2}, \cdot_{2}, e_{2}\right)\right) \triangleq$ $\left\{f \in \operatorname{Set}\left(M_{1}, M_{2}\right) \mid f e_{1}=e_{2} \wedge\right.$

$$
\left.\forall x, y \in M_{1}, f(x \cdot 1 y)=(f x) \cdot{ }_{2}(f y)\right\}
$$

It's common to denote a monoid (M, \cdot, e) just by its underlying set M, leaving _ _ and e implicit (hence the same notation gets used for different instances of monoid operations).

Example:
 category of monoids, Mon

- objects are monoids (M, \cdot, e)
- morphisms: $\operatorname{Mon}\left(\left(M_{1},{ }_{1}, e_{1}\right),\left(M_{2},{ }_{2}, e_{2}\right)\right) \triangleq$
$\left\{f \in \operatorname{Set}\left(M_{1}, M_{2}\right) \mid f e_{1}=e_{2} \wedge\right.$

$$
\left.\forall x, y \in M_{1}, f\left(x \cdot{ }_{1} y\right)=(f x) \cdot 2(f y)\right\}
$$

- identities and composition: as for Set

Q: why is this well-defined?
A: because the set of functions that are monoid morphisms contains identity functions and is closed under composition.

Example:

category of monoids, Mon

- objects are monoids (M, \cdot, e)
- morphisms: $\operatorname{Mon}\left(\left(M_{1},{ }_{1}, e_{1}\right),\left(M_{2},{ }_{2}, e_{2}\right)\right) \triangleq$

$$
\begin{aligned}
& \left\{f \in \operatorname{Set}\left(M_{1}, M_{2}\right) \mid f e_{1}=e_{2} \wedge\right. \\
& \left.\quad \forall x, y \in M_{1}, f(x \cdot 1 y)=(f x) \cdot 2(f y)\right\}
\end{aligned}
$$

- identities and composition: as for Set

Monoids are relevant to automata theory (among other things).

Example: each pre-order determines a category

Given a pre-ordered set (P, \sqsubseteq), we get a category C_{P} by taking

- objects obj $\mathrm{C}_{P}=P$
- morphisms $C_{P}(x, y) \triangleq \begin{cases}1 & \text { if } x \sqsubseteq y \\ \emptyset & \text { if } x \nsubseteq y\end{cases}$
(where 1 is some fixed one-element set and \emptyset is the empty set)

Example: each pre-order determines a category

Given a pre-ordered set (P, \sqsubseteq), we get a category C_{P} by taking

- objects obj $\mathrm{C}_{P}=P$
- morphisms $\mathrm{C}_{P}(x, y) \triangleq \begin{cases}1 & \text { if } x \sqsubseteq y \\ \emptyset & \text { if } x \nsubseteq y\end{cases}$
- identity morphisms and composition are uniquely determined (why?)

Example: each pre-order determines a category

Given a pre-ordered set (P, \sqsubseteq),
we get a category C_{P} by taking

- objects obj $\mathrm{C}_{P}=P$
- morphisms $C_{P}(x, y) \triangleq \begin{cases}1 & \text { if } x \sqsubseteq y \\ \emptyset & \text { if } x \nsubseteq y\end{cases}$
- identity morphisms and composition are uniquely determined (why?)

$$
\begin{aligned}
& \text { E.g. when }(P, \sqsubseteq) \text { has just one element } 0 \\
& \qquad \mathrm{C}_{P}=\text { ine object, one morphism }_{0}
\end{aligned}
$$

Example: each pre-order determines a category

Given a pre-ordered set (P, \sqsubseteq),
we get a category C_{P} by taking

- objects obj $\mathrm{C}_{P}=P$
- morphisms $\mathrm{C}_{P}(x, y) \triangleq \begin{cases}1 & \text { if } x \sqsubseteq y \\ \emptyset & \text { if } x \nsubseteq y\end{cases}$
- identity morphisms and composition are uniquely determined (why?)

Example: each pre-order determines a category

Given a pre-ordered set (P, \sqsubseteq),
we get a category C_{P} by taking

- objects obj $\mathrm{C}_{P}=P$
- morphisms $\mathrm{C}_{P}(x, y) \triangleq \begin{cases}1 & \text { if } x \sqsubseteq y \\ \emptyset & \text { if } x \nsubseteq y\end{cases}$
- identity morphisms and composition are uniquely determined (why?)

Example of a finite category that does not arise from a pre-ordered set:

Example: each monoid determines a category

Given a monoid (M, \cdot, e),
we get a category C_{M} by taking

- objects: obj $\mathrm{C}_{M}=1=\{0\}$ (one-element set)
- morphisms: $\mathrm{C}_{M}(0,0)=M$
- identity morphism: $\mathrm{id}_{0}=e \in M=\mathrm{C}_{M}(0,0)$
- composition of $f \in \mathrm{C}_{M}(0,0)$ and $g \in \mathrm{C}_{M}(0,0)$ is

$$
g \cdot f \in M=\mathrm{C}_{M}(0,0)
$$

Definition of isomorphism

Let C be a category. A C-morphism $f: X \rightarrow Y$ is an isomorphism if there is some $g: Y \rightarrow X$ for which

is a commutative diagram.

Definition of isomorphism

Let C be a category. A C-morphism $f: X \rightarrow Y$ is an isomorphism if there is some $g: Y \rightarrow X$ with $g \circ f=\operatorname{id}_{X}$ and $f \circ g=\operatorname{id}_{Y}$.

- Such a g is uniquely determined by f (why?) and we write f^{-1} for it.
- Given $X, Y \in \mathbf{C}$, if such an f exists, we say the objects X and Y are isomorphic in C and write $X \cong Y$
(There may be many different f that witness the fact that X and Y are isomorphic.)

Theorem. A function $f \in \operatorname{Set}(X, Y)$ is an isomorphism in the category Set iff f is a bijection, that is

- injective: $\forall x, x^{\prime} \in X, f x=f x^{\prime} \Rightarrow x=x^{\prime}$
- surjective: $\forall y \in Y, \exists x \in X, f x=y$

Proof...

Theorem. A function $f \in \operatorname{Set}(X, Y)$ is an isomorphism in the category Set iff f is a bijection, that is

- injective: $\forall x, x^{\prime} \in X, f x=f x^{\prime} \Rightarrow x=x^{\prime}$
- surjective: $\forall y \in Y, \exists x \in X, f x=y$

Proof...

Theorem. A monoid morphism
$f \in \operatorname{Mon}\left(\left(M_{1},{ }_{1}, e_{1}\right),\left(M_{2},{ }_{2}, e_{2}\right)\right)$ is an isomorphism in the category Mon iff $f \in \operatorname{Set}\left(M_{1}, M_{2}\right)$ is a bijection.

Proof...

Define Poset to be the category whose objects are posets
= pre-ordered sets for which the pre-order is anti-symmetric, but is otherwise defined like the category Preord of pre-ordered sets.

Define Poset to be the category whose objects are posets
= pre-ordered sets for which the pre-order is
anti-symmetric, but is otherwise defined like the category Preord of pre-ordered sets.

Theorem. A monotone function
$f \in \operatorname{Poset}\left(\left(P_{1}, \sqsubseteq_{1}\right),\left(P_{2}, \sqsubseteq_{2}\right)\right)$ is an isomorphism in the category Poset iff $f \in \operatorname{Set}\left(P_{1}, P_{2}\right)$ is a surjective function satisfying

- reflective: $\forall x, x^{\prime} \in P_{1}, f x \sqsubseteq_{2} f x^{\prime} \Rightarrow x \sqsubseteq_{1} x^{\prime}$

Proof...

Define Poset to be the category whose objects are posets
= pre-ordered sets for which the pre-order is
anti-symmetric, but is otherwise defined like the category Preord of pre-ordered sets.

Theorem. A monotone function
$f \in \operatorname{Poset}\left(\left(P_{1}, \sqsubseteq_{1}\right),\left(P_{2}, \sqsubseteq_{2}\right)\right)$ is an isomorphism in the category Poset iff $f \in \operatorname{Set}\left(P_{1}, P_{2}\right)$ is a surjective function satisfying

- reflective: $\forall x, x^{\prime} \in P_{1}, f x \sqsubseteq_{2} f x^{\prime} \Rightarrow x \sqsubseteq_{1} x^{\prime}$

Proof...
(Why does this characterisation not work for Preord?)

