Category Theory

Andrew Pitts

University of Cambridge
Computer Science Tripos
Part II Unit of Assessment
Part III and MPhil. ACS Module L108
Michaelmas Term 2021

Course web page

Go to

```
https://www.cl.cam.ac.uk/teaching/2122/CatTheory/https://www.cl.cam.ac.uk/teaching/2122/L108/for
```

- these slides and lecture recordings
- exercise sheets and details of examples classes + o + ' (continued to the exercises is essential!)
- pointers to some additional material

Recommended text for the course is:

[Awodey] Steve Awodey, *Category theory*, Oxford University Press (2nd ed.), 2010.

Assessment

- ► A graded exercise sheet (25% of the final mark). issued in lecture 10 with a one week deadline
- ► A take-home test (75% of the final mark). issued after the end of the course

There will be two one-hour example class sessions to provide help with the exercises.

See course web page for dates and deadlines.

Lecture 1

What is category theory?

What we are probably seeking is a "purer" view of functions: a theory of functions in themselves, not a theory of functions derived from sets. What, then, is a pure theory of functions? Answer: category theory.

Dana Scott, *Relating theories of the* λ -calculus, p406

set theory gives an "element-oriented" account of mathematical structure, whereas

category theory takes a 'function-oriented' view – understand structures not via their elements, but by how they transform, i.e. via morphisms.

(Both theories are part of Logic, broadly construed.)

GENERAL THEORY OF NATURAL EQUIVALENCES

BY

SAMUEL EILENBERG AND SAUNDERS MACLANE

CONTENTS

I	Page
Introduction	231
I. Categories and functors	237
1. Definition of categories	237
2. Examples of categories	239
3. Functors in two arguments	241
4. Examples of functors	242
5. Slicing of functors	245
6. Foundations	246
II. Natural equivalence of functors	248
7. Transformations of functors	248
8. Categories of functors	250
9. Composition of functors	250
10. Examples of transformations	251
11. Groups as categories	256
12. Construction of functors by transformations	257
13. Combination of the arguments of functors	258
III. Functors and groups	260
14. Subfunctors	260
15. Quotient functors	262
16. Examples of subfunctors	263
17. The isomorphism theorems	265
18. Direct products of functors	267
19. Characters	270
IV. Partially ordered sets and projective limits	272
20. Quasi-ordered sets	272
21. Direct systems as functors	273
22. Inverse systems as functors	276
23. The categories Dir and Inv	277
24. The lifting principle	280
25. Functors which commute with limits	281
V. Applications to topology	283
26. Complexes	283
27. Homology and cohomology groups	284
28. Duality	287
29. Universal coefficient theorems	288
30. Čech homology groups	290
31. Miscellaneous remarks	292
Appendix. Representations of categories	292

Introduction. The subject matter of this paper is best explained by an example, such as that of the relation between a vector space L and its "dual"

Presented to the Society, September 8, 1942; received by the editors May 15, 1945.

Category Theory emerges

```
1945 Eilenberg<sup>†</sup> and MacLane<sup>†</sup>
        General Theory of Natural Equivalences,
        Trans AMS 58, 231–294
        (algebraic topology, abstract algebra)
1950s Grothendieck<sup>†</sup> (algebraic geometry)
1960s Lawvere (logic and foundations)
1970s Joyal and Tierney<sup>†</sup> (elementary topos theory)
1980s Dana Scott, Plotkin
        (semantics of programming languages)
        Lambek<sup>†</sup> (linguistics)
```

Category Theory and Computer Science

"Category theory has...become part of the standard "tool-box" in many areas of theoretical informatics, from programming languages to automata, from process calculi to Type Theory."

Dagstuhl Perpectives Workshop on *Categorical Methods at the Crossroads*April 2014

See http://www.appliedcategorytheory.org/events for recent examples of category theory being applied (not just in computer science).

This course

basic concepts of category theory

adjunction — natural transformation

category — functor

applied to typed lambda-calculus functional programming

Lont Term ACS module on Advanced topics in Contegory theory

Definition

A category C is specified by

- ► a set obj C whose elements are called C-objects
- ► for each $X, Y \in \text{obj } \mathbb{C}$, a set $\boxed{\mathbb{C}(X, Y)}$ whose elements are called \mathbb{C} -morphisms from X to Y

(so far, that is just what some people call a directed graph)

Definition

A category C is specified by

- ► a set obj C whose elements are called C-objects
- ► for each $X, Y \in \text{obj } \mathbb{C}$, a set $\boxed{\mathbb{C}(X, Y)}$ whose elements are called \mathbb{C} -morphisms from X to Y
- ▶ a function assigning to each $X \in \text{obj } \mathbb{C}$ an element $id_X \in \mathbb{C}(X,X)$ called the identity morphism for the \mathbb{C} -object X
- ▶ a function assigning to each $f \in C(X, Y)$ and $g \in C(Y, Z)$ (where $X, Y, Z \in \text{obj } C$) an element $g \circ f \in C(X, Z)$ called the composition of C-morphisms f and g and satisfying...

Definition, continued

satisfying...

▶ associativity: for all $X, Y, Z, W \in \text{obj } \mathbb{C}$, $f \in \mathbb{C}(X, Y), g \in \mathbb{C}(Y, Z)$ and $h \in \mathbb{C}(Z, W)$

$$h\circ (g\circ f)=(h\circ g)\circ f$$

▶ unity: for all $X, Y \in \text{obj } \mathbb{C}$ and $f \in \mathbb{C}(X, Y)$

$$\operatorname{id}_Y\circ f=f=f\circ\operatorname{id}_X$$

- obj Set = some fixed universe of sets (more on universes later)
- ► Set(X, Y) = { $f \subseteq X \times Y \mid f$ is single-valued and total}

Cartesian product of sets X and Y is the set of all ordered pairs (x, y) with $x \in X$ and $y \in Y$.

Equality of ordered pairs:

$$(x, y) = (x', y') \Leftrightarrow x = x' \land y = y'$$

- obj Set = some fixed universe of sets (more on universes later)
- ► Set(X, Y) = { $f \subseteq X \times Y \mid f$ is single-valued and total}

```
\forall x \in X, \forall y, y' \in Y,

(x, y) \in f \land (x, y') \in f \Rightarrow y = y'
```

 $\forall x \in X, \exists y \in Y, \\ (x, y) \in f$

- obj Set = some fixed universe of sets (more on universes later)
- Set(X, Y) = $\{f \subseteq X \times Y \mid f \text{ is single-valued and total}\}$
- ► composition of $f \in \text{Set}(X, Y)$ and $g \in \text{Set}(Y, Z)$ is

$$g \circ f = \{(x, z) \mid \exists y \in Y, \ (x, y) \in f \land (y, z) \in g\}$$

(check that associativity and unity properties hold)

Notation. Given $f \in \text{Set}(X, Y)$ and $x \in X$, it is usual to write f(x) (or f(x)) for the unique $y \in Y$ with $(x, y) \in f$. Thus

$$id_X x = x$$
$$(g \circ f) x = g(f x)$$

Domain and codomain

Given a category C,

write
$$f: X \to Y$$
 or $X \xrightarrow{f} Y$

to mean that $f \in C(X, Y)$,

in which case one says

object X is the domain of the morphism f object Y is the codomain of the morphism f

and writes

$$X = \operatorname{dom} f$$
 $Y = \operatorname{cod} f$

(Which category C we are referring to is left implicit with this notation.)

Commutative diagrams

in a category C:

a diagram is

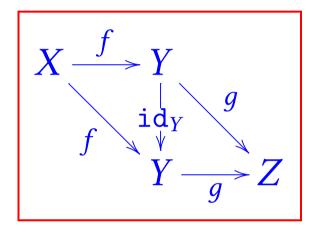
a directed graph whose vertices are C-objects and whose edges are C-morphisms

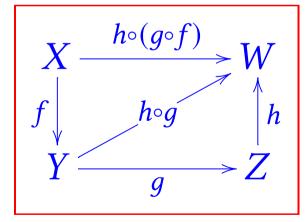
and the diagram is commutative (or commutes) if any two finite paths in the graph between any two vertices determine equal morphisms in the category under composition

(N.B. Fanother kind of diagram, Enler anal of this kind)

Commutative diagrams

Examples:





Alternative notations

```
I will often just write

C for obj C

id for id_X

Some people write

Hom_C(X, Y) for C(X, Y)

1_X for id_X

gf for g \circ f
```

I use "applicative order" for morphism composition; other people use "diagrammatic order" and write

```
f; g (or f g) for g \circ f
```

Alternative definition of category

The definition given here is "dependent-type friendly".

See [Awodey, Definition 1.1] for an equivalent formulation:

```
One gives the whole set of morphisms \operatorname{mor} C (in bijection with \sum_{X,Y \in \operatorname{obj} C} C(X,Y) in my definition) plus functions
```

```
dom, cod : mor C \rightarrow obj C

id : obj C \rightarrow mor C
```

and a partial function for composition

```
\_\circ\_: \operatorname{mor} \mathbb{C} \times \operatorname{mor} \mathbb{C} \longrightarrow \operatorname{mor} \mathbb{C} defined at (f,g) iff \operatorname{cod} f = \operatorname{dom} g and satisfying the associativity and unity equations.
```

L1 18