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Presheaf categories

Let C be a small category. The functor category |Set®”

is called the category of presheaves on C.

> objects are contravariant functors from C to Set

» morphisms are natural transformations

Much used in the semantics of various dependently-typed languages and logics.
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Presheaf categories

Let C be a small category. The functor category |Set®”

is called the category of presheaves on C.

> objects are contravariant functors from C to Set

» morphisms are natural transformations

Much used in the semantics of various dependently-typed languages and logics.
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Yoneda functor
¥ :C = Set¢”

(where C is a small category)

is the Curried version of the hom functor

Hom
C x C%P = CP x C —55 Set
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Yoneda functor
¥ :C = Set¢”

(where C is a small category)

is the Curried version of the hom functor

Hom
C x C%P = CP x C —55 Set

> For each C-object X, the object JX € Set®™ is the functor
C(_,X) : C°? — Set given by

Z = C(ZX)  gof
v T
Y > C(Y,X) g
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Yoneda functor
¥ :C = Set¢”

(where C is a small category)

is the Curried version of the hom functor

Hom
C x C%P = CP x C —55 Set

> For each C-object X, the object JX € Set®™ is the functor
C(_,X) : C°? — Set given by

Z = C(ZX)  gof
v T {r
Y > C(Y,X) g

this function is often written as f~
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Yoneda functor
¥ :C = Set¢”

(where C is a small category)

is the Curried version of the hom functor

Hom
C x CP =~ C° x C —55 Set

&
» For each C-morphism Y EN X, the morphism XY R XX in
Set®” is the natural transformation whose component at any

given Z € C°P is the function

ry(z) %y x(z)
| I

C(Z,Y) C(Z,X)

g feg
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Yoneda functor
¥ :C = Set¢”

(where C is a small category)

is the Curried version of the hom functor

Homc

CXC° = CPXxC —— Set

f

&
» For each C-morphism Y = X, the morphism XY R XX in
Set®” is the natural transformation whose component at any
given Z € C°P is the function

this function is often
written as f.

ry(z) % y x(2)
||
C(Z.Y) C(Z.X)

_——ﬁ\\\\“~——+ﬁ
g feg

170



The Yoneda Lemma

For each small category C, each object X € C and each
presheaf F € Set®", there is a bijection of sets

NX.F : Setcop(J:X, F) — F(X)

which is natural in both X and F.
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L15

The Yoneda Lemma

For each small category C, each object X € C and each
presheaf F € Set®", there is a bijection of sets

NX.F : Setcop(J:X, F) — F(X)

which is natural in both X /and F.

the value of
F : C°P — Set
at X

the set of natural transformations from
the functor XX : C°P — Set

to the functor F : C°? — Set
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For each small category C, each object X € C and each
presheaf F € Set®", there is a bijection of sets

NX.F : SetCop(J:X, F) — F(X)

which is natural in both X and F.
Definition of the function 1y : Set®” ( kX, F) — F(X):

for each 0 : XX — Fin Set®” we have the function

C(X,X) = £X(X) o, F(X) and define

nxr(0) = Ox(idx)
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For each small category C, each object X € C and each
presheaf F € Set®", there is a bijection of sets

NX.F : SetCop(J:X, F) — F(X)

which is natural in both X and F.
Definition of the function 17;(,1}, : F(X) — Set®™ (XX, F):

foreach x € F(X),Y e Cand f € XX(Y) = C(Y,X),

we get a F(X) ﬂ F(Y) in Set and hence F(f)(x) € F(Y);
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The Yoneda Lemma

For each small category C, each object X € C and each
presheaf F € Set®", there is a bijection of sets

NX.F : SetCop(J:X, F) — F(X)

which is natural in both X and F.
Definition of the function 17)_<,1F . F(X) — Set®" (XX, F):

foreach x € F(X),Y e Cand f € XX(Y) = C(Y,X),

we get a F(X) i F(Y) in Set and hence F(f)(x) € F(Y);

Define (U)_(,F(x))y : XX(Y) = F(Y) by

check this gives a

(U)_(lF(x)) (f) = F(f)(x) natural transformation

Nxrp(x): &X —F
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Proof of |nxr o 17;(1F = 1dpx)

For any x € F(X) we have

NX.F (UXF(x)) (UXF(x)) (idy) by definition of nx r
= F(idy)(x) by definition of n)_(lF
= idp(x)(x) since F is a functor

=X
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Proof of |1 o nxr = idgcop 1y

0 0
Forany XX — FinSet®” and Y i> X in C, we have

(e (1xr(0))) £ = (% (Ox(2dx))) f by definition of nx.r

= F(f)(0x(idx)) by definition of q;(’lF
=0y (f" (idx)) by naturality of 6

= Oy(idx ° f) by definition of f~
=0y (f)

naturality of 6
EX(Y) 2 F(Y)

Tf* TF(f)

\. J
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Proof of |1 o nxr = idgcop 1y

0 0
Forany XX — FinSet®” and Y i> X in C, we have

(e (1xr(0))) £ = (% (Ox(2dx))) f by definition of nx.r

= F(f)(0x(idx)) by definition of 17)_(’11;
=0y (f" (idx)) by naturality of 6

= Oy(idx ° f) by definition of f~
=0y (f)

0 VO, Y. (3 (nxr(9))), = O
so V0, ny's (nx.r(0)) = 0

—1 =
SO NNy r ° Nx,F = 1d.
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The Yoneda Lemma

For each small category C, each object X € C and each
presheaf F € Set®™, there is a bijection of sets

NXF: Setcop(cJ:X, F) = F(X)

which is natural in both X and F.
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Proof that nx r is natural in F:

. o . o
Given F — G in Set®”, have to show that

Set®” ( kX, F) ™ F(X)
Set®” (X X,G) — G(X)

0
commutes in Set. For all <X — F we have

ox (mx.r(0)) = ox (Ox(idx))
= (¢ °0)x(idx)
= nx,6(@ o 0)
= nx.6(«(0))
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Proof that nx r is natural in X:

Given Y L X in C, have to show that

Set®” ( kX, F) X R(X)
(ckf)*l lF(f)
Set“” (XY, F) ——=F(Y)

. 0
commutes in Set. For all kXX — F we have

F(F) ((nx.6(0)  F(f)(0x (idx))
= Oy (f"(idx)) by naturality of 6
=0y (f)
= Oy (f:(idy))
= (0 &f)y(idy)
= ny,r(0e Xf)
= ny,r((£f)7(0))
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Corollary of the Yoneda Lemma:

the functor X : C — Set®”™ is full and faithful.

In general, a functor F: C — D is

» faithful if for all X, Y € C the function
C(X,Y) — D(F(X),F(Y))
e F(f)

IS Injective:

VI eCXY), F(f)=F(f)=f=f

» full if the above functions are all surjective:
Vg e D(F(X),F(Y)),3f e C(X,Y), F(f) =g
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Corollary of the Yoneda Lemma:

the functor X : C — Set®” is full and faithful.

Proof. From the proof of the Yoneda Lemma, for each F € Set“” we have a
bijection

-1
F(X) X2 SetC7 (XX, F)

By definition of (nx r)~!, when F = XY the above function is equal to

FY(X)=C(X,Y) — Set®" (XX, XY)
= fi=&f

So, being a bijection, f + X f is both injective and surjective; so X is both
faithful and full.

177



L15

Recall (for a small category C):
Yoneda functor J : C — Set®”

Yoneda Lemma: there is a bijection
Set®” (XX, F) = F(X) which is natural both in
F € Set®” and X € C.

An application of the Yoneda Lemma:

Theorem. For each small category C, the category
Set®™ of presheaves is cartesian closed.
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Theorem. For each small category C, the category
Set®™ of presheaves is cartesian closed.
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Theorem. For each small category C, the category
Set®™ of presheaves is cartesian closed.

Proof sketch.

Terminal object in Set®” is the functor 1 : C°P — Set given by

1(X) = {0} terminal object in Set
1(f) = idyg
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Theorem. For each small category C, the category
Set®™ of presheaves is cartesian closed.

Proof sketch.

Product of F,G € Set®™ is the functor F x G : C°P — Set given by

(FXG)(X) = F(X) XxG(X) cartesian product of sets
(FXG)(f) = F(f) xG(f)

with projection morphisms F S FXGESG given by the natural
transformations whose components at X € C are the projection

functions F(X) < F(X) x G(X) — G(X).
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Theorem. For each small category C, the category
Set®™ of presheaves is cartesian closed.

Proof sketch.

We can work out what the value of the exponential G € Set®” at

X € C has to be using the Yoneda Lemma:

GI(X) = Set®™ (X X,GF) = Set®™ (XX x F,G)

Yoneda Lemma

universal property of
the exponential
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Theorem. For each small category C, the category
Set®™ of presheaves is cartesian closed.

Proof sketch.

We can work out what the value of the exponential GF € Set®” at
X € C has to be using the Yoneda Lemma:

GI(X) = Set®™ (X X,GF) = Set®™ (XX X F,G)

We take the set Set®™ ( £ X X F, G) to be the definition of the value
of GI at X...
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Exponential objects in Set® " :

GF(X) = Set®" (XX X F,G)

X o
Given Y i) X in C, we have XY —f> X X in Set®” and hence

GF(Y) 2Set®" (XY XF,G) — Sett” (XX XF,G) 2 GF(X)
0 QO(J:indF)

We define

G'(f) = (&f xidp)"

Have to check that these definitions make G! ino a functor
C° — Set.
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Application morphisms in Set® " :

Given F, G € Set®”, the application morphism
app: G' XF = G

is the natural transformation whose component at X € C is the
function

(GF x F)(X) 2 GF(X) x F(X) £ Set®" (£ X x F,G) X F(X) —2 G(X)

defined by

appy (0, x) = 0x(idyx, x)

Have to check that this is natural in X.
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Currying operation in Set® " :

cur 0

(HxFiG)H(H_>6F)

0 o
Given H X F — G in Set®™, the component of cur § at X € C

cur 0 o
H(x) 2% GF (x) £ $etC® (XX X F,G)

is the function mapping each z € H(X) to the natural
transformation JX X F — G whose component at Y € C is the

function

(XX XF)(Y) =2C(Y,X) X F(Y) > G(Y)
defined by

((cur 0)x(2))y(f.y) = Ov(H(f)(2),y)

182



Currying operation in Set® " :

(HxFi G) R (Hi‘ir—iGF)

((cur 0)x(2))y(f.y) = Oy(H(f)(2),y)

Have to check that this is natural in Y,

then that (cur 0)x is natural in X,

then that cur 0 is the unique morphism H % GF in SetC” satisfying

app °(¢ X idp) = 6.
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Theorem. For each small category C, the category
Set®™ of presheaves is cartesian closed.

So we can interpret simply typed lambda calculus in any
presheaf category.

More than that, presheaf categories (usefully) model
dependently-typed languages.
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