Lecture 10
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are the appropriate notion of morphism between categories

Given categories C and D, a functor
specified by:

F:C—>Dji

IS

» a function obj C — obj D whose value at X is

written | F X

» forall X,Y € C, afunction C(X,Y) > D(FX,FY)
whose value at f : X — Y is written

FfF:FX >FY

and which is required to preserve composition and

identity morphisms:

F(gof) = FgoFf

F(idx)

1dr x
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Examples of functors

“Forgetful” functors from categories of
set-with-structure back to Set.

E.g.|U : Mon — Set

(U(M, - e) =
f f
U((My,+1,e1) = (M, -5,e3)) = M; — M,
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L10

Examples of functors

“Forgetful” functors from categories of
set-with-structure back to Set.

E.g.|U : Mon — Set

(U(M, - e) =
f f
U((My,+1,e1) = (M, -5,e3)) = M; — M,

Similarly U : Preord — Set.
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Examples of functors

Free monoid functor | F : Set — Mon

Given X € Set,

F> = (List2, @,nil), the free monoid on X
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Examples of functors

Free monoid functor | F : Set — Mon

Given X € Set,

F> = (List 2, @,nil), the free monoid on X

Given a function f : 3; — X,, we get a function
Ff :List>; — List 2, by mapping f over finite lists:

Fflay,....,a,) =|fay,...,fal

This gives a monoid morphism FX; — F X,; and mapping over lists preserves
composition (F(ge f) = Fgo F f) and identities (F idy = idry). So we do get a
functor from Set to Mon.
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Examples of functors

If C is a category with binary products and X € C, then
the function (_) X X : obj C — obj C extends to a
functor |(_) X X : C — C|mapping morphisms
f:Y—>Yto

fxidy: Y XX > Y xX

mo(fXg) =feom

recall that f X g is the unique morphism with
me (fXg) =gem

sfince it is the case that
1dyx X 1dy = 1dxxy

<\(f'°f)><idx = (f" X idx) o (f X idy)

(see Exercise Sheet 2, question 1c).
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Examples of functors

If C is a cartesian closed category and X € C, then the
function (_)* : obj C — obj C extends to a functor

(L)* : C — C|mapping morphisms f : Y — Y’ to

X 2 cur(feoapp): YX - V¥

(1dy)¥
(g° )

idYx

g* o f*

since it is the case that <

(see Exercise Sheet 3, question 4).
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Contravariance

Given categories C and D, a functor F : C°? — D is
called a contravariant functor from C to D.

Note that ifXL YiZin C, thenX<i Y&Zin C°p

Ff Fg
soF X «—FY «— FZinD and hence

F(gocf) =FfeopFg

(contravariant functors reverse the order of composition)

A functor C — D is sometimes called a covariant functor from C to D.
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Example of a contravariant functor

If C is a cartesian closed category and X € C, then the
function X-) : obj C — obj C extends to a functor

X : C°P — C|mapping morphisms f: Y — Y’ to

X/ £ cur(appeo(idyy’ X f)) XY - xY

(id :
X Y — lde

since it is the case that <
x9f = xJ o X9
\

(see Exercise Sheet 3, question 5).
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Note that since a functor F : C — D preserves domains,
codomains, composition and identity morphisms

it sends commutative diagrams in C to commutative
diagrams in D

E.g.
f X iy FX
v
Y h |£> F Y/ F h=F(gof)=F g°F f
N PN

Z FZ
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Note that since a functor F : C — D preserves domains,

codomains, composition and identity morphisms

it sends isomorphisms in C to isomorphisms in D,
because

x 1.y Fx L Fy
idy F idry
idlx\ lg\ = ick lFN
X -y FX -
f i FY

so F(f ) =(Ff)™
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Composing functors

Given functors F: C - Dand G : D — E, we get a
functor |G o F : C — E|with

X G(F X)
GoF lf — lG(Ff)
Y /] G(FY)

(this preserves composition and identity morphisms, because F and G do)
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ldentity functor

on a category Cis|idc : C — C
X
ide| | |=

Y

L10

where

X

I

Y
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Functor composition and identity functors satisfy

associativity Ho(GoF)=(HoG)oF
unity idpe F = F = Foidc

So we can get categories whose objects are categories
and whose morphisms are functors

but we have to be a bit careful about size...
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Size
One of the axioms of set theory is

set membership is a well-founded relation, that is, there
is no infinite sequence of sets X, Xj, X5, ... with

cceXpmeXpe-e€Xp e Xy eX

So in particular there is no set X with X € X.

So we cannot form the “set of all sets” or the “category of all categories”.
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Size
One of the axioms of set theory is

set membership is a well-founded relation, that is, there
is no infinite sequence of sets X, Xj, X5, ... with

cceXpmeXpe-e€Xp e Xy eX

So in particular there is no set X with X € X.
So we cannot form the “set of all sets” or the “category of all categories”.

But we do assume there are (lots of) big sets
%06%16%26‘“

where “big” means each %, is a Grothendieck universe...
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Grothendieck universes
A Grothendieck universe % is a set of sets satisfying

>» XeYeU=>XeU
> X, YelU={X,Y}eU
> X eU>PX={Y|YCX}eWU

» XeceUAFeU* =
{y|IxeX, ye Fx} €U
(hencealso X, Y e % = XXYeU AN YX € U)

The above properties are satisfied by % = (), but we will always assume

» Ne U
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We assume
there is an infinite sequence %, € %, € %, € - - - of
bigger and bigger Grothendieck universes

and revise the previous definition of “the” category of sets and functions:

Set, = category whose objects are all the sets in %,, and
with Set,(X,Y) = Y* = all functions from X to Y.

Notation: |Set = Set, | — its objects are called small sets
(and other sets we call large).
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Set is the category of small sets.

Definition. A category C is locally small if for all
X,Y € C, the set of C-morphisms X — Y is small, that

is, C(X,Y) € Set.

C is a small category if it is both locally small and
obj C € Set.

E.g. Set, Preord and Mon are all locally small (but not small).

Given P € Preord, the cateogry Cp it determines is small; similarly, the category
Cyr determined by M € Mon is small.
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The category of small categories, Cat

> objects are all small categories
» morphisms in Cat(C, D) are all functors C — D

» composition and identity morphisms as for functors

Cat is a locally small category
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