
Exercises for Arti�cial Intelligence
Dr Sean B Holden, 2022.

1 Introduction

�ese notes provide some extra exercises for Arti�cial Intelligence and, depending on when you
download them, their solutions.

2 Introduction and Agents

It is notoriously di�cult to predict what will be possible in the future, so your answers might well be
amusing to you when you �nd them in twenty years time. On the other hand, given the current hype
surrounding arti�cial intelligence, it’s worthwhile to form an informed opinion on what is feasible
and what is not.

1. If you haven’t seen it already, watch the �lm A.I. Arti�cial Intelligence paying particular a�en-
tion to the character “Teddy”.

2. A large number of subjects are mentioned in the initial lectures in terms of how they’ve in�u-
enced AI: for example philosophy, mathematics, economics and so on. How do these show up
in Teddy’s design?

3. What aspects of Teddy were not feasible when the �lm was made, but have become feasible
since?

4. What aspects of Teddy are within our current capabilities to design?

5. What aspects of Teddy would you expect to be able to implement within the next ten years.
How about the next ��y years?

6. Are there aspects of Teddy that you would expect to elude us for one hundred years or more?

7. To what extent does the “natural basic structure” for an agent, as described in the lectures,
form a useful basis for implementing Teddy’s internals? What is missing?

3 Search

1. Explain why breadth-�rst search is optimal if path-cost is a non-decreasing function of node-
depth.

2. Iterative deepening depends on the fact that the vast majority of the nodes in a tree are in the
bo�om level.

• Denote by f1(b, d) the total number of nodes appearing in a tree with branching factor
b and depth d. Find a closed-form expression for f1(b, d).

• Denote by f2(b, d) the total number of nodes generated in a complete iterative deepening
search to depth d of a tree having branching factor b. Find a closed-form expression for
f2(b, d) in terms of f1(b, d).
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• How do f1(b, d) and f2(b, d) compare when b is large?

3. �e A? tree-search algorithm does not perform a goal test on any state until it has selected it
for expansion. We might consider a slightly di�erent approach: namely, each time a node is
expanded check all of its descendants to see if they include a goal.
Give two reasons why this is a misguided idea, where possible illustrating your answer using
a speci�c example of a search tree for which it would be problematic.

4. �e f -cost is de�ned in the usual way as

f(n) = p(n) + h(n)

where n is any node, p denotes path cost and h denotes the heuristic. An admissible heuristic
is one for which, for any n

h(n) ≤ actual distance from n to the goal

and a heuristic is monotonic if for consecutive nodes n and n′ it is always the case that

f(n′) ≥ f(n).

• Prove that h is monotonic if and only if it obeys the triangle inequality, which states that
for any consecutive nodes n and n′

h(n) ≤ cn→n′ + h(n′)

where cn→n′ is the cost of moving from n to n′.
• Prove that if a heuristic is monotonic then it is also admissible.
• Is the converse true? (�at is, are all admissible heuristics also monotonic?) Either prove
that this is the case or provide a counterexample.

5. In RBFS we are replacing f values every time we backtrack to explore the current best alter-
native. �is seems to imply a need to remember the new f values for all the nodes in the path
we’re discarding, and this in turn suggests a potentially exponential memory requirement.
Why is this not the case?

6. In some problems we can simultaneously search:

• forward from the start state
• backward from the goal state

until the searches meet. �is seems like it might be a very good idea:

• If the search methods have complexity O(bd) then…
• …we are converting this to O(2bd/2) = O(bd/2).

(Here, we are assuming the branching factor is b in both directions.) Why might this not be
as e�ective as it seems?

7. Suggest a method for performing depth-�rst search using only O(d) space.
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8. One modi�cation to the basic local search algorithm suggested in the lectures was to make
steps probabilistically, but only if the value of f is improved.

(a) Would it be a good idea to also allow steps that move to a state with a worse value for f?
(b) Suggest an algorithm for achieving this, such that you have some control over the balance

between steps that increase or decrease f .

4 Games

1. Consider the following game tree:

523 4 3 2 1 7 8 9 10 2 1 30 4 5112072 19 181 15

Large outcomes are bene�cial for Max. How is this tree pruned by α − β minimax if Max
moves �rst? (�at is, Max is the root.) How is it pruned if Min is the root, and therefore moves
�rst?

2. Implement the α − β pruning algorithm and use it to verify your answer to the previous
problem.

3. Is the minimax approach to playing games optimal against an imperfect opponent? Either
prove this is the case or give a counterexample.

5 Constraint satisfaction problems

1. Consider the following constraint satisfaction problem:

81
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We want to colour the nodes using the colours red (R), cyan (C) and black (B) in such a way
that connected nodes have di�erent colours.

• Assume we a�empt the assignments 1 = R, 4 = C , 5 = R, 8 = C , 6 = B. Explain how
forward checking operates in this example, and how it detects the need to backtrack.

• Will the AC-3 algorithm detect a problem earlier in this case? Explain the operation of
the algorithm in this example.

• Implement the AC-3 algorithm and use it to verify your answer to the preceding problem.
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6 Knowledge representation and reasoning

1. �ere were in fact two queries suggested in the notes for obtaining a sequence of actions. �e
details for

∃a ∃s . Sequence(a, s0, s) ∧ Goal(s)

were provided, but earlier in the notes the format

∃actionList . Goal(. . . actionList . . .)

was suggested. Explain how this alternative form of query might be made to work.

2. Making correct use of the situation calculus, write the sentences in FOL required to implement
the Shoot action in Wumpus World. Write further sentences in FOL to allow movement and
change of orientation.

3. Download and install a copy of Prover9 from www.cs.unm.edu/˜mccune/mace4/. (If you’re
Linux-based then you’ll probably �nd it’s already packaged. Under OS X it appears to be
available through HomeBrew. As for Windows, I have no idea. It’s just too awful to contem-
plate!)
Referring to exam question 2003, paper 9, question 8 assume that initially both owner and cat
are in the living room. �e cat can make its owner move to the kitchen by going to its food
bowl in the kitchen and meeowing. It can then of course return to the living room and scratch
something valuable.
Implement su�cient knowledge in the situation calculus to allow an action sequence to be
derived allowing the cat to achieve this, and use Prover9 to derive such an action sequence.
In order to do this you need to know how to extract an answer from the theorem prover.
Taking an easy example:
formulas(assumptions).

wife(x,y) <-> (female(x) & married(x,y)).
female(Violet).
married(Violet,Bill).

endoflist.

formulas(goals).

exists x wife(Violet,x).

endoflist.

Extracting the value of x requires two things: we need to move the goal into the assumptions
(remember how in Logic and Proof you converted ¬(A→ B) to A ∧ ¬B when negating and
converting to clauses) and we need to add a command to the knowledge base to get:
formulas(assumptions).

wife(x,y) <-> (female(x) & married(x,y)).
female(Violet).
married(Violet,Bill).

-wife(Violet,x) # answer(x).

endoflist.

formulas(goals).
endoflist.

Here, the addition of # answer(x) causes the prover to output the value of x as part of the
solution.
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7 Planning

1. We’ve seen how heuristics can be used to speed up the process of searching. Planning has
much in common with search. Can you devise any general heuristics that you might expect
to speed up the planning process?

2. An undergraduate has turned up at this term’s Big Party, only to �nd that it is in the home of
her arch rival, who has turned her away. She spies in the driveway a large box and a ladder,
and hatches a plan to gatecrash by ge�ing in through a second �oor window. Party on!
Here is the planning problem. She needs to move the box to the house, the ladder onto the
box, then climb onto the box herself and at that point she can climb the ladder to the window.
Using the abbreviations

• B - Box
• L - Ladder
• H - House
• V - VioletScroot
• W - Window
• D - Driveway

�e start state is ¬At(B,H), ¬At(L,B), ¬At(V,W ) and ¬At(V,B). �e goal is At(V,W ).
�e available actions are

At(B,H),At(L,B),At(V,B)

At(B,H) At(V,W )

At(L,B)

At(L,B) At(V,B) ¬At(L,B)

Move(L,B) Move(V,B) Move(L,D)

¬At(V,B)¬At(L,B)

Move(B,H) Move(V,W )

¬At(B,H),¬At(L,B)

• Construct a solution to the problem using the partial order planning algorithm.
• Construct the planning graph for this problem (you should probably start by �nding a
nice big piece of paper) and use the Graphplan algorithm to obtain a plan.
If you are feeling keen, implement the algorithm for constructing the planning graph
and use it to check your answer.

3. Return of the Evil Cat Robot. Consider the problem involving the situation calculus and
Prover9 that you addressed on the previous problem sheet.

• Represent this problem in the STRIPS format so that it could be given as input to the
partial order planning algorithm.

• Construct a solution to the problem using the partial order planning algorithm. How
many speci�c plans can be extracted from the result?
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4. Beginning with the domains

D1 = {climber}
D2 = {home, jokeShop, hardwareStore, spire}
D3 = {rope, gorilla, firstAidKit}

and adding whatever actions, relations and so on you feel are appropriate, explain how the
problem of purchasing and a�aching a gorilla to a famous spire can be encoded as a constraint
satisfaction problem (CSP).
If you are feeling keen, �nd a CSP solver and use it to �nd a plan. �e course text book has a
code archive including various CSP solvers at:

http : //aima.cs.berkeley.edu/code.html

�e following is an example of how to set up and solve a very simple CSP.
import j a v a . i o . ∗ ;
import j a v a . u t i l . ∗ ;
import aima . co r e . s e a r ch . csp . ∗ ;

public c l a s s s impleCSP {
public s t a t i c void main ( S t r i n g [ ] a r g s ) {

Va r i a b l e v1 = new Va r i a b l e ( ” v1 ” ) ;
V a r i a b l e v2 = new Va r i a b l e ( ” v2 ” ) ;
V a r i a b l e v3 = new Va r i a b l e ( ” v3 ” ) ;

L i s t <S t r i ng> domain1 = new L ink edL i s t<S t r i ng > ( ) ;
domain1 . add ( ” red ” ) ;
domain1 . add ( ” green ” ) ;
domain1 . add ( ” b l ue ” ) ;

Domain d1 = new Domain ( domain1 ) ;

L i s t<Var i a b l e> va r s = new ArrayL i s t<Var i a b l e > ( ) ;
v a r s . add ( v1 ) ;
v a r s . add ( v2 ) ;
v a r s . add ( v3 ) ;

CSP csp = new CSP ( va r s ) ;

c sp . setDomain ( v1 , d1 ) ;
c sp . setDomain ( v2 , d1 ) ;
c sp . setDomain ( v3 , d1 ) ;

C on s t r a i n t c1 = new NotEqua lCon s t r a i n t ( v1 , v2 ) ;
C on s t r a i n t c2 = new NotEqua lCon s t r a i n t ( v1 , v3 ) ;
C on s t r a i n t c3 = new NotEqua lCon s t r a i n t ( v2 , v3 ) ;
c sp . a ddCon s t r a i n t ( c1 ) ;
c sp . a ddCon s t r a i n t ( c2 ) ;
c sp . a ddCon s t r a i n t ( c3 ) ;

Imp rov edBa ck t r a ck i ngS t r a t e gy s o l v e r =
new Imp rov edBa ck t r a c k i ngS t r a t e gy ( ) ;

Assignment s o l u t i o n = new Assignment ( ) ;
s o l u t i o n = s o l v e r . s o l v e ( csp ) ;

System . out . p r i n t l n ( s o l u t i o n ) ;
}

}

8 Learning

1. �e purpose of this exercise is to gain some insight into the way in which the parameters of
a basic, linear perceptron a�ect the position and orientation of its decision boundary. Recall
that a linear perceptron is based on the function

f(x) = wTx+ b
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where x ∈ Rn, w ∈ Rn and b ∈ R. �e perceptron decides that a new input x is in class 1 if
f(x) ≥ 0 and decides that the input is in class 2 otherwise. �e decision boundary is therefore
the collection of all points where f(x) = 0.
It’s always easy to �nd n distinct points where f(x) = 0 because for any w and b we just
need to solve

wTx′ = −b
which is easy using

xT = ( (−b/w1) 0 · · · 0 )

xT = ( 0 (−b/w2) · · · 0 )

and so on. If any of the weights is 0 this is problematic but easy to �x. (I leave it as a warm-up
exercise to work out how.) Let x′ and x′′ be two points where f(x′) = 0 and f(x′′) = 0. Let’s
concentrate on the case where n = 2. Consider the vector

y = x′ − x′′.

Now take any number a ∈ R and look at what happens if we evaluate

f(x′ + ay).

We obtain
f(x′ + ay) = wT (x′ + ay) + b

= wTx′ + awTy + b

= f(x′) + awT (x′ − x′′)

= a(wTx′ −wTx′′)

= a(−b− (−b))
= 0.

�is works for any value a ∈ R, and suggests that the decision boundary is a straight line in
R2 as illustrated in �gure 1. (Note however that we haven’t yet demonstrated that f(x) 6= 0
if x is not of the form x = x′ + ay.)

(a) Prove that the weight vectorw is perpendicular to the line described by x′ + ay; that is,
the line corresponding to the set

{x|x = x′ + ay where a ∈ R}.

(Hint: remember that vectors are perpendicular if their inner product is 0.) Note that this
tells us that w describes the orientation of the decision boundary.

(b) Let v be the vector from the origin to the line described by x′+ay and perpendicular to
it as illustrated in �gure 1. Prove that

||v|| = |b|
||w||

.

Note that this tells us the following: if ||w|| = 1 then |b| tells us the distance from the
origin to the decision boundary.
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Do�ed line f(x) = 0.

y = x′ − x′′

x′′

x

vx′

z

Figure 1: �e decision boundary appears to be a straight line.

(c) Let x be any point not on the line described by x′+ ay. Let z be the vector from the line
to x and perpendicular to the line as illustrated in �gure 1. Prove that

||z|| = |f(x)|
||w||

.

�is tells us that points not on the line do not obey f(x) = 0 and that the value of f(x)
tells us the distance from the decision boundary to x.

(d) Prove that replacingwwithw/||w|| and bwith b/||w|| does not alter the decision bound-
ary.

2. In the application of neural networks to pa�ern classi�cation—where we wish to assign any
input vectorx tomembership in a speci�c class—itmakes sense to a�empt to interpret network
outputs as probabilities of class membership.
For example, in the medical diagnosis scenario presented in the lectures, where we try to map
an input x to either class A (patient has the disease) or class B (patient is free of the disease)
it makes sense to use a network with a single output producing values constrained between 0
and 1 such that the output h(w;x) of a network using weights w is interpreted as

h(w;x) = Pr(x is in class A).

Clearly we also have
Pr(x is in class B) = 1− h(w;x)

and it follows that training examples should be labelled 1 and 0 for classes A and B respec-
tively.
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Say we have a speci�c training example (x′, 0). What does it tell us about how to choose a
good w? Clearly we might want to choose w to maximise1

Pr(We see the example (x′, 0)|w) = Pr(We see the label 0|w,x′)× Pr(x′)

=
{
1− h(w;x′)

}
× Pr(x′)

where the second step incorporates the assumption that x′ andw are independent. �is quan-
tity is called the likelihood of w. Given an entire training sequence

s = ((x1, c1), (x2, c2), . . . , (xm, cm))

where the labels ci take values 0 or 1 we can also consider choosingw to maximise the prob-
ability that the entire collection of m input vectors is labelled in the speci�ed manner (the
likelihood Pr(s|w) of w).
Assuming that the examples in s are independent, show that in order to achieve this we should
choose w to maximise the expression

m∑
i=1

ci log h(w;xi) + (1− ci) log(1− h(w;xi)).

(Hint: When independence is assumed, Pr(A,B) = Pr(A) Pr(B), and you can maximise an
expression equally well by maximising its log.) What does this allow you to conclude about
the version of the backpropagation algorithm presented in the lectures?

3. We now return to the case of regression. As in the previous question, the likelihood of a
hypothesis h can be thought of as the probability of obtaining a training sequence s given
that h is a perfect mapping from a�ribute vectors to classi�cations. Assume that H contains
functions h : X → R and examples are labelled using a speci�c target function f ∈ H but
corrupted by noise, so

s = ((x1, o1), (x2, o2), . . . , (xm, om))

and
oi = f(xi) + ei

for i = 1, 2, . . . ,m where ei denotes noise. If the a�ribute vectors are �xed, and the ei are
independent and identically distributed with the Gaussian distribution

p(ei) =
1√
2πσ2

exp

(
−(ei − µ)2

2σ2

)
where µ is the noise mean and σ2 the noise variance, then the likelihood of any hypothesis is

p(s|h) = p((o1, o2, . . . , om)|h) =
m∏
i=1

p(oi|h)

where the last step follows because the ei are independent. Assume in the following that
µ = 0.

1�e basic result in probability theory being used here is that Pr(A,B|C) = Pr(A|B,C) Pr(B|C). You might want
at this point to review the relevant notes.
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(a) Show that the mean of oi is f(xi) and the variance of oi is σ2.
(b) Show that

p(oi|h) =
1√
2πσ2

exp

(
−(oi − h(xi))

2

2σ2

)
.

(Hint: what happens to data having a Gaussian density if you linearly transform it?)
(c) Show that any hypothesis that maximises the likelihood is also one that minimises the

quantity
m∑
i=1

(oi − h(xi))
2.

(d) What does this tell you about the speci�c example of the backpropagation algorithm
given in the lectures?

4. �e demonstration of the backpropagation algorithm given in the lectures can be improved.
In solving the parity problem what we really want to know is the probability that an example
should be placed in class one, exactly as described above. Probabilities lie in the interval [0, 1],
but the output of the network used in the lectures is unbounded.

• Derive the modi�cation required to the algorithm if the activation function on the output
node is changed from g(x) = x to g(x) = 1/(1+exp(−x)). (�is is a function commonly
used to produce probabilities as outputs, as it has range lying between 0 and 1.)

• Implement the modi�ed algorithm. (Matlab is probably a good language to use.) Apply
it to the parity data described in the lectures, and plot the results you obtain.
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