
GANs and other optimizations





Flickr-Faces-HQ Dataset (FFHQ)
https://github.com/NVlabs/ffhq-dataset

Given a dataset of images, how can we 
train a neural network to be able to 
generate realistic fakes?

StyleGan2 by Nvidia labs



random 
noise 𝑍

fake image
𝑋 = 𝑓(𝑍)

generator network

discriminator
network

image
𝑥

realism score
𝜆(𝑥)

▪ train the discriminator to distinguish genuine images from fake
▪ train the generator to fool the discriminator

Given a dataset of images, how can we 
train a neural network to be able to 
generate realistic fakes?



random 
noise 𝑍

fake image
𝑋 = 𝑓(𝑍)

generator network

Given a dataset of images, how can we 
train a neural network to be able to 
generate realistic fakes?

To understand what’s going on, it’s useful to restate the problem 
using in the language of random variables.

discriminator
network

image
𝑥

realism score
𝜆(𝑥)



Given a dataset of images, how can we 
train a neural network to be able to 
generate realistic fakes?

random 
noise 𝑍

fake image
𝑋 = 𝑓𝜃(𝑍)

generator network 
weights 𝜃

def gen_face(𝜃):
𝑍 = random.random()
𝑋 = 𝑓𝜃 𝑍
return 𝑋

To understand what’s going on, it’s useful to restate the problem 
using in the language of random variables.



def gen_geom(p):
Z = random.random()
λ = - math.log(1-p)
X = math.ceil(-math.log(Z)/λ)
return X

WHAT IS A RANDOM VARIABLE?

HOW DO WE LEARN FROM DATA?
Suppose we’re given a dataset 𝑥1, 𝑥2, … , 𝑥𝑛 and we want to tune our random variable 
generator by choosing 𝑝 to match the dataset as closely as possible. How can we do this?



Given a dataset of images, how can we 
train a neural network to be able to 
generate realistic fakes?

random 
noise 𝑍

fake image
𝑋 = 𝑓𝜃(𝑍)

generator network, 
weights 𝜃

𝑋 is a random variable. Let its prob. mass func. be ℙ 𝑋 = 𝑥 = 𝑝𝜃(𝑥).

We’re given a dataset {𝑥1, 𝑥2, … , 𝑥𝑛} of faces, and we our generator’s output to 
match this dataset as closely as possible. We should find the 𝜃 that maximizes

𝑝𝜃 𝑥1 × 𝑝𝜃 𝑥2 ×⋯× 𝑝𝜃(𝑥𝑛)

Or, equivalently, let’s pick 𝜃 to maximize

𝒱 𝜃 ≔
1

𝑛
෍

𝑖=1

𝑛

log 𝑝𝜃(𝑥𝑖)

def gen_face(𝜃):
𝑍 = random.random()
𝑋 = 𝑓𝜃 𝑍
return 𝑋



TRAINING GOAL

pick 𝜃 to maximize 𝒱 𝜃 =
1

𝑛
෍

𝑖=1

𝑛

log 𝑝𝜃(𝑥𝑖)

EQUIVALENT TRAINING GOAL (YOU’LL NEVER BELIEVE THIS ONE WEIRD TRICK)

maximize σ𝑥 𝑞𝑥 log 𝑟𝑥
over 𝑟 ∈ ℝ𝒳 , 𝜃
such that 𝑟𝑥 = 𝑝𝜃(𝑥) for all 𝑥

LAGRANGIAN

ℒ 𝜃, 𝑟; 𝜆 = σ𝑥∈𝒳 𝑞𝑥 log 𝑟𝑥 − σ𝑥∈𝒳 𝜆𝑥 𝑟𝑥 − 𝑝𝜃 𝑥

LAGRANGIAN WEAK DUALITY

For any 𝜃 and any 𝜆,

𝒱 𝜃 = ℒ 𝜃, 𝑝𝜃; 𝜆

𝑞𝑥 = ൗ#times 𝑥 occurs
𝑛

𝒳 = set of all possible images=෍
𝑥∈𝒳

𝑞𝑥 log 𝑝𝜃(𝑥)

≤ max
𝑟∈ℝ𝒳

ℒ 𝜃, 𝑟; 𝜆
const −෍

𝑥
𝑞𝑥 log 𝜆𝑥 +෍

𝑥
𝑝𝜃 𝑥 𝜆𝑥 , if λ𝑥 > 0 for all 𝑥

= ቊ
∞, otherwise



TRAINING GOAL

pick 𝜃 to maximize 𝒱 𝜃 =
1

𝑛
෍

𝑖=1

𝑛

log 𝑝𝜃(𝑥𝑖)

discriminator
network

image
𝑥

realism score
𝜆(𝑥)

We aimed to train 
the discriminator 
so that 𝜆(𝑥) larger 
if 𝑥 is genuine, 
smaller if it’s faked.

𝑞𝑥 = ൗ#times 𝑥 occurs
𝑛

𝒳 = set of all possible images=෍
𝑥∈𝒳

𝑞𝑥 log 𝑝𝜃(𝑥)

LAGRANGIAN WEAK DUALITY

For any 𝜃 and any 𝜆,

𝒱 𝜃 = ℒ 𝜃, 𝑝𝜃; 𝜆 ≤ max
𝑟

ℒ 𝜃, 𝑟; 𝜆
const −෍

𝑥
𝑞𝑥 log 𝜆𝑥 +෍

𝑥
𝑝𝜃 𝑥 𝜆𝑥 , if λ𝑥 > 0 for all 𝑥

= ቊ
∞, otherwise



FURTHER DETAILS

The score

𝒱 𝜃 =
1

𝑛
෍

𝑖=1

𝑛

log𝑝𝜃(𝑥𝑖)

measures how well our generator performs. We have shown that for any 𝜃 and any 
𝜆 > 0

𝒱 𝜃 ≤ const −෍
𝑥
𝑞𝑥 log 𝜆𝑥 +෍

𝑥
𝑝𝜃 𝑥 𝜆𝑥 .

Let’s propose a discriminator neural network 𝑥 ↦ 𝑑𝜙 𝑥 > 0 for computing 𝜆𝑥 =
𝑑𝜙(𝑥), and try to find good neural network weights 𝜙. Since our Lagrangian bound 
is true for any 𝜃 and any 𝜆 > 0, it follows that

max
𝜃

𝒱 𝜃 ≤ const + max
𝜃

min
𝜙

−෍
𝑥
𝑞𝑥 log𝑑𝜙(𝑥) +෍

𝑥
𝑝𝜃 𝑥 𝑑𝜙(𝑥)

We can approximate the {⋅} term by

𝐿 𝜃, 𝜙 ≔ −
1

𝑛
෍

𝑖=1

𝑛

log 𝑑𝜙 𝑥𝑖 +
1

𝑛
෍

𝑖=1

𝑛

𝑑𝜙(𝑓𝜃 𝑧𝑖 )

where {𝑥1, … , 𝑥𝑛} are the images in the training dataset and {𝑧1, … , 𝑧𝑛} are 
randomly generated noise terms. Training consists in using gradient descent to 
compute

max
𝜃

min
𝜙

𝐿(𝜃, 𝜙) .

This doesn’t actually compute max
𝜃

𝒱(𝜃), it only computes an upper bound, but 

hopefully the upper bound is reasonably tight and we end up learning a generator 
with a good score.

random 
noise 𝑍

fake image
𝑋 = 𝑓𝜃(𝑍)

generator network
edge weights 𝜃

𝑓𝜃

discriminator network
edge weights 𝜙

image
𝑥

realism score
𝑑𝜙(𝑥)

𝑑𝜙



Other optimizations



Shortest path problem
Given a directed graph where the weight 
of edge 𝑣 → 𝑤 is 𝑐𝑣𝑤, find the minimum-
weight path from a start vertex 𝑠 to a 
destination vertex 𝑡

minimize σ𝑣→𝑤 𝑥𝑣𝑤 𝑐𝑣𝑤

over 𝑥 ∈ 0,1,2, … 𝐸

such that net flow out of 𝑠 is 1
and flow is conserved at all vertices in 𝑉\{𝑠, 𝑡}



Minimum spanning tree 
problem
Given an undirected graph where the 
weight of edge 𝑣 ↔ 𝑤 is 𝑐𝑣𝑤, find a 
spanning tree of minimum weight

minimize σ𝑣↔𝑤 𝑥𝑣𝑤 𝑐𝑣𝑤

over 𝑥 ∈ 0,1 𝐸

such that σ𝑣↔𝑤 𝑥𝑣𝑤 = 𝑉 − 1
and σ 𝑣↔𝑤:

𝑣∈𝑆,𝑤∈ ҧ𝑆

𝑥𝑣𝑤 ≥ 1 for all sets 𝑆 ⊂ 𝑉, S ≠ 𝑉, 𝑆 ≠ ∅



high similarity

low similarity

student 𝑖

student 𝑗

Similarity matrix of Tick 1 code

Challenge: find an ordering for all students so that students with similar 
Tick 1 code are close to each other



score on 
training data 
(2021 tick1)

score on 
holdout data 
(2022 tick1)

Tunan Shi (Sidney Sussex) 77.4 62.7

Kuba Bachurski (Trinity) 76.9 62.4

Mark Li (Corpus Christi) 76.6 61.8

Andy Zhou (Queens’) 73.0 60.2

Cheuk Kit Lee (Downing) 77.2 timeout

Jiayou Song (Robinson) 75.0 timeout



Software 1.0 is code we write. Software 2.0 is code written by the 

optimization based on an evaluation criterion (such as “classify this 

training data correctly”). It is likely that any setting where the 

program is not obvious but one can repeatedly evaluate the 

performance of it (e.g. — did you classify some images correctly? do 

you win games of Go?) will be subject to this transition, because the 

optimization can find much better code than what a human can 

write.

optimization based on an evaluation criterion



❖ Can I express my task as an 
optimization problem?

❖ … that can be solved with 
off-the-shelf optimizers?

❖ If I can’t, is there an 
adjacent problem that’s 
more amenable?


