
Rafał Mantiuk

Advanced Graphics & Image Processing

Computer Laboratory, University of Cambridge

Parallel programming in OpenCL

Part 1/3 – OpenCL framework

Single Program Multiple Data (SPMD)

� Consider the following vector addition example

for(i = 0:3) {
C[i] = A[i] + B[i]

}

for(i = 4:7) {
C[i] = A[i] + B[i]

}

for(i = 8:11) {
C[i] = A[i] + B[i]

}

A

B

C

||

+

A

B

C

||

+

for(i = 0:11) {
C[i] = A[i] + B[i]

}Serial program:
one program completes
the entire task

SPMD program:
multiple copies of the
same program run on

different chunks of the
data

Multiple copies of the same program execute on different data in parallel

2 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

Parallel Software – SPMD

� In the vector addition example, each chunk of data could
be executed as an independent thread

� On modern CPUs, the overhead of creating threads is so
high that the chunks need to be large

� In practice, usually a few threads (about as many as the number
of CPU cores) and each is given a large amount of work to do

� For GPU programming, there is low overhead for thread
creation, so we can create one thread per loop iteration

3 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

Parallel Software – SPMD

Single-threaded (CPU)

// there are N elements

for(i = 0; i < N; i++)

C[i] = A[i] + B[i]

Multi-threaded (CPU)

// tid is the thread id

// P is the number of cores

for(i = 0; i < tid*N/P; i++)

C[i] = A[i] + B[i]

Massively Multi-threaded (GPU)

// tid is the thread id

C[tid] = A[tid] + B[tid]

0 1 2 3 4 5 6 7 8 9 1510

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

1

2

3

15

= loop iteration

Time

T0

T0

T1

T2

T3

T0

T1

T2

T3

T15

4 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

Parallel programming frameworks

� These are some of more relevant frameworks for
creating parallelized code

CUDA

OpenCL

OpenACC
OpenMP

CPU GPU

Metal

OpenCL

� OpenCL is a framework for writing parallelized code for
CPUs, GPUs, DSPs, FPGAs and other processors

� Initially developed by Apple, now supported by AMD, IBM,
Qualcomm, Intel and Nvidia (reluctantly)

� Versions

� Latest: OpenCL 2.2

� OpenCL C++ kernel language

� SPIR-V as intermediate representation for kernels

 Vulcan uses the same Standard Portable Intermediate Representation

� AMD, Intel

� Mostly supported: OpenCL 1.2

� Nvidia, OSX

OpenCL platforms and drivers

� To run OpenCL code you need:

� Generic ICD loader

� Included in the OS

� Installable Client Driver

� From Nvidia, Intel, etc.

� This applies to Windows and Linux, only one platform on Mac

� To develop OpenCL code you need:

� OpenCL headers/libraries

� Included in the SDKs

 Nvidia – CUDA Toolkit

 Intel OpenCL SDK

� But lightweight options are also available

Programming OpenCL

� OpenCL natively offers C99 API

� But there is also a standard OpenCL C++ API wrapper

� Strongly recommended – reduces the amount of code

� Programming OpenCL is similar to programming shaders
in OpenGL

� Host code runs on CPU and invokes kernels

� Kernels are written in C-like programming language

� In many respects similar to GLSL

� Kernels are passed to API as strings and compiled at runtime

� Kernels are usually stored in text files

� Kernels can be precompiled into SPIR from OpenCL 2.1

Example: Step 1 - Select device

Get all
Platforms

Select
Platform

Get all
Devices

Select
Device

Example: Step 2 - Build program

Create
context

Load sources
(usually from files)

Create
Program

Build
Program

Example: Step 3 - Create Buffers and

copy memory

Create
Buffers

Create
Queue

Enqueue
Memory Copy

Example: Step 4 - Execute Kernel and

retrieve the results

Create
Kernel

Set Kernel
Arguments

Enqueue
Kernel

Enqueue
memory copy

Our Kernel was

OpenCL API Class Diagram

� Platform – Nvidia CUDA

� Device – GeForce 780

� Program – collection of
kernels

� Buffer / Image – device
memory

� Sampler – how to
interpolate values for
Image

� Command Queue – put a
sequence of operations
there

� Event – to notify that
something has been done

From: OpenCL API 1.2 Reference Card

Platform model

� The host is whatever the OpenCL library runs on

� Usually x86 CPUs for both NVIDIA and AMD

� Devices are processors that the library can talk to

� CPUs, GPUs, DSP,s and generic accelerators

� For AMD

� All CPUs are combined into a single device (each core is a compute unit
and processing element)

� Each GPU is a separate device

14

Execution model

� Each kernel executes on 1D, 2D or 3D array (NDRange)

� The array is split into work-groups

� Work items (threads) in each work-group share some local
memory

� Kernel can querry
� get_global_id(dim)

� get_group_id(dim)

� get_local_id(dim)

� Work items are not
bound to any memory
entity
(unlike GLSL shaders)

Memory model

� Host memory

� Usually CPU memory, device does
not have access to that memory

� Global memory [__global]

� Device memory, for storing large
data

� Constant memory [__constant]

� Local memory [__local]

� Fast, accessible to all work-items
(threads) within a workgroup

� Private memory [__private]

� Accessible to a single work-item
(thread)

Memory objects

� Buffer

� ArrayBuffer in OpenGL

� Accessed directly via C pointers

� Image

� Texture in OpenGL

� Access via texture look-up function

� Can interpolate values, clamp, etc.

cl::Memory

cl::Buffer

cl::BufferGL cl::BufferRenderGL

cl::Image

cl::Image1D cl::Image2D cl::Image2D

cl::Image1DBuffer

This diagram is incomplete – there are more memory objects

Programming model

� Data parallel programming

� Each NDRange element is assigned to a work-item (thread)

� Each kernel can use vector-types of the device (float4, etc.)

� Task-parallel programming

� Multiple different kernels can be executed in parallel

� Command queue

� Provides means to both synchronize kernels and execute them in parallel

clCreateCommandQueue(

cl_context context,

cl_device_id device,

cl_command_queue_properties properties,

cl_int* errcode_ret)

CL_ QUEUE_ OUT_ OF_ ORDER_ EXEC_ MODE_ ENABLE
Execute out-of-order if specified, in order otherwise

Big Picture

19

Rafał Mantiuk

Advanced Graphics & Image Processing

Computer Laboratory, University of Cambridge

Parallel programming in OpenCL

Part 2/3 – Thread mapping

Thread Mapping

� By using different mappings, the same thread can be
assigned to access different data elements

� The examples below show three different possible mappings of
threads to data (assuming the thread id is used to access an
element)

21

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Thread IDs

Mapping
int tid =

get_global_id(1) *

get_global_size(0) +

get_global_id(0);

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

int tid =

get_global_id(0) *

get_global_size(1) +

get_global_id(1);

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

int group_size =

get_local_size(0) *

get_local_size(1);

int tid =

get_group_id(1) *

get_num_groups(0) *

group_size +

get_group_id(0) *

group_size +

get_local_id(1) *

get_local_size(0) +

get_local_id(0)

*assuming 2x2 groupsFrom: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

Thread Mapping

� Consider a serial matrix multiplication algorithm

� This algorithm is suited for output data decomposition

� We will create N x M threads

� Effectively removing the outer two loops

� Each thread will perform P calculations

� The inner loop will remain as part of the kernel

� Should the index space be MxN or NxM?

22 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

Thread Mapping

� Thread mapping 1: with an MxN index space, the kernel would be:

� Thread mapping 2: with an NxM index space, the kernel would be:

� Both mappings produce functionally equivalent versions of the program

23

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

Mapping for C

Mapping for C

From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

Thread Mapping

� This figure shows the execution of the two thread mappings
on NVIDIA GeForce 285 and 8800 GPUs

� Notice that mapping 2 is far superior in performance for both
GPUs

24 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

Thread Mapping

� The discrepancy in execution times between the
mappings is due to data accesses on the global memory
bus

� Assuming row-major data, data in a row (i.e., elements in
adjacent columns) are stored sequentially in memory

� To ensure coalesced accesses, consecutive threads in the same
wavefront should be mapped to columns (the second
dimension) of the matrices

� This will give coalesced accesses in Matrices B and C

� For Matrix A, the iterator i3 determines the access pattern for row-
major data, so thread mapping does not affect it

25 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

Rafał Mantiuk

Advanced Graphics & Image Processing

Computer Laboratory, University of Cambridge

Parallel programming in OpenCL

Part 3/3 – Reduction

Reduction

� GPU offers very good
performance for tasks
in which the results are
stored independently

� Process N data items
and store in N memory
location

float reduce_sum(float* input, int length)

{

float accumulator = input[0];

for(int i = 1; i < length; i++)

accumulator += input[i];

return accumulator;

}

� But many common operations require reducing N values into 1 or few values

� sum, min, max, prod, min, histogram, …

� Those operations require an efficient implementation of reduction

� The following slides are based on AMD’s OpenCL™ Optimization Case Study: Simple Reductions

� http://developer.amd.com/resources/articles-whitepapers/opencl-optimization-case-study-simple-reductions/

Reduction tree for the min operation
� barrier ensures that all threads

(work units) in the local group
reach that point before execution
continue

� Each iteration of the for loop
computes next level of the
reduction pyramid

__kernel

void reduce_min(__global float* buffer,

__local float* scratch,

__const int length,

__global float* result) {

int global_index = get_global_id(0);

int local_index = get_local_id(0);

// Load data into local memory

if (global_index < length) {

scratch[local_index] = buffer[global_index];

} else {

scratch[local_index] = INFINITY;

}

barrier(CLK_LOCAL_MEM_FENCE);

for(int offset = get_local_size(0) / 2;

offset > 0; offset >>= 1) {

if (local_index < offset) {

float other = scratch[local_index + offset];

float mine = scratch[local_index];

scratch[local_index] = (mine < other) ? mine :

other;

}

barrier(CLK_LOCAL_MEM_FENCE);

}

if (local_index == 0) {

result[get_group_id(0)] = scratch[0];

}

}

Multistage reduction

� The local memory is usually
limited (e.g. 50kB), which
restricts the maximum size of
the array that can be processed

� Therefore, for large arrays need
to be processed in multiple
stages

� The result of a local memory
reduction is stored in the array
and then this array is reduced

Two-stage reduction

� First stage: serial reduction by
N concurrent threads

� Number of threads < data items

� Second stage: parallel reduction
in local memory

__kernel

void reduce(__global float* buffer,

__local float* scratch,

__const int length,

__global float* result) {

int global_index = get_global_id(0);

float accumulator = INFINITY;

// Loop sequentially over chunks of input

vector

while (global_index < length) {

float element = buffer[global_index];

accumulator = (accumulator < element) ?

accumulator : element;

global_index += get_global_size(0);

}

// Perform parallel reduction

[The same code as in the previous example]

}

Reduction performance CPU/GPU

� Different reduction algorithm may be optimal for CPU and GPU

� This can also vary from one GPU to another

� The results from: http://developer.amd.com/resources/articles-whitepapers/opencl-
optimization-case-study-simple-reductions/

Better way?

� Halide - a language for image processing and
computational photography

� http://halide-lang.org/

� Code written in a high-level language, then translated to
x86/SSE, ARM, CUDA, OpenCL

� The optimization strategy defined separately as a schedule

� Auto-tune software can test thousands of schedules and
choose the one that is the best for a particular platform

� (Semi-)automatically find the best
trade-offs for a particular platform

� Designed for image processing but
similar languages created for other
purposes

OpenCL resources

� https://www.khronos.org/registry/OpenCL/

� Reference cards

� Google: “OpenCL API Reference Card”

� AMD OpenCL Programming Guide
� http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OC

L_Programming_Guide-2013-06-21.pdf

