
Advanced Operating Systems:
Lab 2- IPC

Lecturelet 2
Prof. Robert Watson

2021-2022

Lab 2 objectives

• Consolidate and extend skills developed in Lab 1
• Continue to gain experience tracing user-kernel

interactions via system calls and traps
• Explore the performance impact of VM optimisation

of the pipe IPC primitive
• Use DTrace and hardware performance counters

(HWPMC) to analyse these properties
• Generate data to complete the second lab assignment

• Overall: We can now focus more on data and root-
cause analysis, and take Lab 1 skills for granted

Advanced Operating Systems - Lab 2 - IPC

New documents
• Advanced Operating System: Hardware Performance

Counters (HWPMC)
• Introduction to performance counters in this lab
• You may wish to refer to the ARMv8-A and A72 manuals (or not)

• 3x lab documents:
• Advanced Operating Systems: Lab 2 – IPC – General information
• Advanced Operating Systems: Lab 2 – IPC – Part II assignment
• Advanced Operating Systems: Lab 2 – IPC – L41 assignment

• Important: The two assignments are substantially more
different than they were in Lab 1
• However, L41 students might find the Part II assignment

useful to think about potential analysis strategies

Advanced Operating Systems - Lab 2 - IPC

Rough framing

• Inter-Process Communication (IPC) is an essential component
to using the Process Model
• Isolated boxes that can’t talk to anyone aren’t very useful

• There are many design dimensions to an IPC primitive relating
to application semantics and performance
• Message passing vs shared memory?
• Stream vs datagram?
• Synchronous vs. asynchronous?
• Portability to other OSes, communication semantics?

• Performance and programmability are both essential, leading
to many years of research into two intertwined question:
• What is the best IPC API?
• How can we make it perform well?

• Use DTrace and hardware performance counters to explore
the performance impact of VM optimisation on UNIX pipe IPC

Advanced Operating Systems - Lab 2 - IPC

The benchmark

• Simple, bespoke IPC benchmark: pipes and sockets
• Adjust user and kernel buffer sizes

Advanced Operating Systems - Lab 2 - IPC

root@rpi4-000:/data # ipc/ipc-benchmark
ipc-benchmark [-Bgjqsv] [-b buffersize] [-i pipe|local|tcp] [-n iterations]

[-p tcp_port] [-P arch|dcache|instr|tlbmem] [-t totalsize] mode

Modes (pick one - default 1thread):
1thread IPC within a single thread
2thread IPC between two threads in one process
2proc IPC between two threads in two different processes
describe Describe the hardware, OS, and benchmark configurations

Optional flags:
-B Run in bare mode: no preparatory activities
-g Enable getrusage(2) collection
-i pipe|local|tcp Select pipe, local sockets, or TCP (default: pipe)
-j Output as JSON
-p tcp_port Set TCP port number (default: 10141)
-P arch|dcache|instr|tlbmem Enable hardware performance counters
-q Just run the benchmark, don't print stuff out
-s Set send/receive socket-buffer sizes to buffersize
-v Provide a verbose benchmark description
-b buffersize Specify the buffer size (default: 131072)
-n iterations Specify the number of times to run (default: 1)
-t totalsize Specify the total I/O size (default: 16777216)

The benchmark (2)

• Use only one of its operational modes:
2proc IPC between two processes

• Adjust IPC parameters:
-b buffersize Set user IPC buffer size
-i pipe Use pipe() IPC
-P mode Configure HWPMC

• Output flags:
-g Display getrusage(1) statistics
-j Output as JSON
-v Verbose output (more configuration detail)

Advanced Operating Systems - Lab 2 - IPC

Pipe VM optimisation

• Pipe API specifies copy semantics
• Once a write(2) call returns, changes to memory in the sender

do not affect data received in the recipient via read(2)
• Practical implementation – copy two times

1. From userspace sender buffer to kernel buffer (copyin(9))
2. From kernel buffer to userspace recipient buffer (copyout(9))

• But memory copying is known to be expensive with both historic
and contemporary microarchitectures

• In 1996, John Dyson implemented VM optimisations for
bulk pipe data transfer for FreeBSD

• Remove sender copy by “borrowing” pages for “large” sends
• kern.ipc.pipe_mindirect sysctl tunes definition of “large”:

Use 2x copies < pipe_mindirect, 1x copies >= pipe_mindirect
• Later also adopted in macOS

• Is this a good idea…? Answer this question in your lab.
Advanced Operating Systems - Lab 2 - IPC

Hardware performance counters (1/2)

• Seems simple enough:
• Source code compiles to instructions
• Instructions are executed by the processor

• But some instructions take longer than others:
• Register-register operations generally single-cycle (or less)
• Multiply and divide may depend on the specific numeric

values
• Floating point may take quite a while
• Loads/stores cost different amounts depending on

TLB/cache use

Advanced Operating Systems - Lab 2 - IPC

Hardware performance counters (2/2)

• Optimisation is therefore not just about reducing
instruction count
• Optimisation must take into account micro-architectural

effects
• TLB/cache effects tricky as they vary with memory footprint
• How can we tell when the cache overflows?

• Hardware performance counters let us directly
investigate architectural and micro-architectural
events
• #instructions, #memory accesses, #cache misses, DRAM

traffic...

Advanced Operating Systems - Lab 2 - IPC

Performance counter modes
• We have adapted the benchmark to use libpmc
• We use only counting mode, not sampling mode
• The A-72 supports up to six counters enabled at a time

• We always enable instruction and cycle counting
• The other 4 are used for specific groups of counters

• You will need to run the benchmark for each counter set
• … But it is reasonable to limit to one iteration each

• The probe effect affects hardware counters, too!

Advanced Operating Systems - Lab 2 - IPC

-P mode Category

arch Architectural (ISA-level) statistics (some speculative*)

dcache L1-D and L2 cache statistics

instr L1-I and branch-prediction statistics

tlbmem D-TLB / I-TLB and memory access/bus access statistics

*Non-speculative counters can be quite expensive in the microarchitecture for superscalar
processors, so Arm has chosen not to provide architectural counters

Advanced Operating Systems - Lab 2 - IPC

root@rpi4-046:/data # ipc/ipc-benchmark -g -i pipe -j -P arch -v 2proc
{"hardware_configuration": {

"hw.machine": "arm64",
"hw.model": "ARM Cortex-A72 r0p3",
"hw.ncpu": 4,
"hw.physmem": 8419033088,
"hw.pagesizes": [{"pagesize": 4096},

{"pagesize": 2097152}, {"pagesize": 1073741824}],
"hw.cpufreq.arm_freq": 600000000

}, "os_configuration": {
"kern.ostype": "FreeBSD",
"kern.osrelease": "13.0-STABLE",
"kern.ident": "ADVOPSYS",
"kern.hostname": "rpi4-046"

}, "network_ipc_configuration": {
"kern.ipc.pipe_mindirect": 8192,
"kern.ipc.maxsockbuf": 33554432,
"ifnet.name": "lo0",
"ifnet.mtu": 16384,
"net.inet.tcp.cc.algorithm": "newreno",
"net.isr.bindthreads": 1,
"net.isr.defaultqlimit": 256

},

Hardware configuration

OS configuration

Network/IPC configuration

Advanced Operating Systems - Lab 2 - IPC

"benchmark_configuration": {
"buffersize": 131072,
"totalsize": 16777216,
"msgcount": 128,
"mode": "2proc",
"ipctype": "pipe",
"pmctype": "arch",
"iterations": 1

},

Benchmark configuration

Advanced Operating Systems - Lab 2 - IPC

"benchmark_samples": [
{

"bandwidth": 609733.59,
"time": "0.026870752",
"stime": "0.023513",
"utime": "0.000165",
"msgsnd": 128,
"msgrcv": 256,
"nvcsw": 523,
"nivcsw": 0,
"INST_RETIRED": 7807526,
"CPU_CYCLES": 10659620,
"LD_SPEC": 2776279,
"ST_SPEC": 1675676,
"EXC_RETURN": 458,
"BR_RETURN_SPEC": 135871,
"CYCLES_PER_INSTRUCTION": 1.365301

}
]

}

Hardware performance counters
(and derived metrics)

Performance / wallclock time

Sampled execution time in userlevel/kernel

Getrusage(2) statistics

Sketch of ARM Cortex A-8 memory hierarchy
(This is not the CPU you are using, just an illustration!)

• Architectural refers to an ISA-level view of execution
• Micro-architectural refers to behaviours below the ISA

Advanced Operating Systems - Lab 2 - IPC

This is a very, very rough sketch indeed!

Reminder: High-density Cortex A-72 slide
(Some of this information will be useful only for later labs)

Per-Core:
L1 D-Cache: 32K

Per-Core:
L1 I-Cache: 48K

Per-Core:
MMU

I-TLB: 48, D-TLB: 32,
L2-TLB: 1024

Shared:
L2 Cache: 1M

* Our benchmarks use only the first core to simplify analysis
Advanced Operating Systems - Lab 2 - IPC

Optimisation using performance counters
• Recall:

• Architectural counters: What software asks the hardware to do
• Microarchitectural counters: How efficiently hardware does it

• Optimising software using performance counters is subtle
• Often counter use leads to important micro-optimisations

(e.g., “Cache lines are thrashing → lay out memory better”)
• But must consider whether algorithmic optimisation is preferable

to microarchitecture-centric tuning
• A few considerations:

• It may be preferable to ask the hardware to do less work,
“inefficiently”, than to do more work, “efficiently”

• It is hard to know whether a change is important (e.g., doubling
TLB misses might be critical .. Or irrelevant .. Context is required)

• Microarchitecturally-aware optimisations may tune well for one
specific microarchitecture, yet perform badly on another

• Microarchitecturally motivated optimisations must be
carefully evaluated, ideally across >1 microarchitectures

Advanced Operating Systems - Lab 2 - IPC

A few concluding thoughts
• You are now (fairly) familiar with:

• DTrace as an instrumentation tool
• JupyterLab as a data collection, analysis, presentation tool

• You will now pick up new skills:
• Further DTrace experience – e.g., perhaps the system-call

provider, scheduling provider, etc.
• Performance counter experience (can be hard to interpret…)

• When analysing data:
• Start with short runs (even –n 1) to allow quick iteration
• Plot data to understand its behaviour
• Pay attention to inflection points, regions of commonality
• Mark up graphs with key hardware, software thresholds
• Remember that the cache/TLB footprint of a workload will

(almost certainly) not be the benchmark buffer size
• We are now doing comparative analysis…

Advanced Operating Systems - Lab 2 - IPC

