
Advanced Operating Systems:
Lab 1 - I/O

Lecturelet 1
Prof. Robert N. M. Watson

2021-2022

Lab objectives

In the labs, you will:
• Utilise systems research methodology and practice
• Explore real-world systems artefacts through

performance and functional evaluation/analysis
• Develop scientific writing skills (L41 only)

2

Documents on the module/unit websites

• We have provided several documents you will need
from the module website, which apply to all labs:
• Lab Setup Guide (Everyone)
• DTrace Quick Start (Everyone)
• Lab Reports (L41 only)

• These documents are specific to Lab 1:
• Lab 1 – I/O – General Information (Everyone)
• Lab 1 – I/O – Part II Assignment (Part II only)
• Lab 1 – I/O – L41 Assignment (L41 only)

• Please ensure that you are completing the correct
assignment for your course – they are different!

3

Lab 1 – I/O

• This lab represents only a small number of assessed
marks – it is intended as a learning exercise before we
hit more complex topics:
• Introduce our RPi4/FreeBSD environment
• Explore user-kernel interactions via syscalls and traps
• Engage with POSIX I/O and its implications
• Measure the probe effect

4

Our lab platform: RPi4s + FreeBSD 13.x
• 50x Raspberry Pi 4 boards
• Broadcom BCM2711 SoC
• 4x 64-bit A72 ARMv8-A cores
• 8GB DRAM, 64G SD Card

• FreeBSD 13-STABLE
• DTrace tracing tool
• HWPMC counter framework
• Bespoke benchmarks motivating OS

and microarchitectural analysis
• JupyterLab Notebook environment

• Access remotely via SSH + port
forwarding for JupyterLab interface

5

High-density Cortex A-72 slide
(Some of this information will be useful only for later labs)

6

Per-Core:
L1 D-Cache: 32K

Per-Core:
L1 I-Cache: 48K

Per-Core:
MMU

I-TLB: 48, D-TLB: 32,
L2-TLB: 1024

Shared:
L2 Cache: 1M

* Our benchmarks use only the first core to simplify analysis

JupyterLab
• Web-based interactive

Python(++) environment
• Runs on the RPi4, with UI

reached via a web browser
• “Notebooks” contain code,

text, data, and plots
• Part II: Submit generated

PDFs of their notebooks
• L41: Use notebook output in

Lab Reports; don’t submit
• Data analysis + plotting is

best done within JupyterLab
• … but you might find the

DTrace command-line client
easier to work with while
doing exploration

7

JupyterLab – the UI

8

Markdown cell

Code cell

Cell output

Unexecuted cell
(no number)

Current cell

Executed cell
(number)

Ctrl-Enter in a cell executes it
In execution cells show [*]

Connecting to your board

• You will be contacted regarding your board assignment
and how to collect login credentials
• The RPi4 nodes are accessible via SSH from within the

CUDN (Cambridge University Data Network)
• We expect this to apply to almost all students

• If you are not directly connected, you can:
• Use the UIS VPN
• Use the CL VPN (if you have a CL account)
• Hop using SSH via another system on the CUDN (e.g., ely)

• You will run all parts of the lab as the root user
• Exercise suitable care; we can re-image toasted boards, or assign

you a spare, but data you may have on the board will be lost
• Please get in touch directly if you are having problems

accessing your RPi4 board remotely
9

Web access over SSH

• In addition to logging in via SSH, you will also use SSH
to port forward the JupyterLab web interface; e.g.,

ssh –L8888:127.0.0.1:8888 root@rpi4-000.advopsys.cl.cam.ac.uk

• This command allows software on your
notebook/workstation to connect to 127.0.0.1:8888
and be transparently connected to the same port on
the remote system
• I.e., by connecting to http://127.0.0.1:8888

• JupyterLab will print out the URL to use it starts

10

Lab 1: Hypotheses

You will test and explore three hypotheses:
1. System-call overhead is substantial; structuring

application requests to use larger buffer sizes will
improve performance by amortizing that overhead.

2. Perform growth continues until we hit the system’s
peak I/O throughput, at which point performance
will stabilise.

3. DTrace’s probe effect associated is negligible.
These will be pursued differently in Part II and L41.

11

io-benchmark – read a file in blocks
• Two operational modes used in this lab:
• Create (create) Create a new benchmark data file
• Read (read) Perform read()s against data file

• Adjust operational parameters:
• Block size (-b) Block size used for each I/O
• Total size (-t) Total size across all blocks (must be

an integer multiple of block size.)
• Iterations (-n) How many times to run
• getrusage() (-g) Report selected kernel statistics

• Output flags:
• JSON (-j) Generate machine-readable output
• Verbose (-v) Verbose output

12

Notes on the execution environment

• /data is a suitable directory tree to store your data in
• /usr/src/sys contains synchronized kernel source code
• You are running as root – please be careful not to hose

the board you’ve been assigned
• We can remotely re-image, but your data will be lost

• DTrace can have a significant impact on performance
for some scripts – e.g., instrumenting “:::” (all probes)
• Try not to render your board unresponsive, if possible
• We can remotely reset, but it risks data loss

• Please back up your data to your personal machine

13

Plotting, exploring, and explaining graphs (1/2)
• Graphs are an essential part of your lab submissions
• Graphs make patterns in data accessible visually

• They represent hypotheses in data exploration
• They make arguments in data presentation and explanation

• When explaining graphs, focus on trends, inflection points,
and surprising artifacts
• Partition graph into regions of similar behaviour
• Label and annotate inflection points
• Explain why different partitions behave the way they do

• Quality of presentation is really important
• Ensure that they are clearly labeled – axes, legend, etc.
• Think carefully about what axes and scales to use
• Visual comparison is key – present data on the same plot, or in

stacked plots, if you want to invite comparison
• E.g., ensure that the reader can see the relationship in your plots

14

Plotting, exploring, and explaining graphs (2/2)

15

Ba
nd

w
id

th
 (K

iB
/s

)
(li

ne
ar

 sc
al

e)

I/O buffer size (log scale)

(1) (2) (3)

0
0

100

50 200

(C) Shift in OS
optimization
approach?

(A) µarch
parameter
exceeded?

120

Why does (1) rise in the
way that it does?

What happens at (A)?

Why does (2) sink in the
way that it does?

What happens at (B)?

Why does (3) rise in the
way that it does?

What happens at (C)?

(B) Dominant
factor changes?

How to contact us

• Preferred: Course slack
• advopsys.slack.com

• Also possible: Email to the lecturer
• robert.watson@cl.cam.ac.uk

16

