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Lab objectives

In the labs, you will:
• Utilise systems research methodology and practice
• Explore real-world systems artefacts through 

performance and functional evaluation/analysis
• Develop scientific writing skills (L41 only)
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Documents on the module/unit websites

• We have provided several documents you will need 
from the module website, which apply to all labs:
• Lab Setup Guide (Everyone)
• DTrace Quick Start (Everyone)
• Lab Reports (L41 only)

• These documents are specific to Lab 1:
• Lab 1 – I/O – General Information (Everyone)
• Lab 1 – I/O – Part II Assignment (Part II only)
• Lab 1 – I/O – L41 Assignment (L41 only)

• Please ensure that you are completing the correct 
assignment for your course – they are different!
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Lab 1 – I/O

• This lab represents only a small number of assessed 
marks – it is intended as a learning exercise before we 
hit more complex topics:
• Introduce our RPi4/FreeBSD environment
• Explore user-kernel interactions via syscalls and traps
• Engage with POSIX I/O and its implications
• Measure the probe effect
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Our lab platform: RPi4s + FreeBSD 13.x
• 50x Raspberry Pi 4 boards
• Broadcom BCM2711 SoC
• 4x 64-bit A72 ARMv8-A cores
• 8GB DRAM, 64G SD Card

• FreeBSD 13-STABLE
• DTrace tracing tool
• HWPMC counter framework
• Bespoke benchmarks motivating OS 

and microarchitectural analysis
• JupyterLab Notebook environment

• Access remotely via SSH + port 
forwarding for JupyterLab interface
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High-density Cortex A-72 slide
(Some of this information will be useful only for later labs)
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Per-Core:
L1 D-Cache: 32K

Per-Core:
L1 I-Cache: 48K

Per-Core:
MMU

I-TLB: 48, D-TLB: 32,
L2-TLB: 1024

Shared:
L2 Cache: 1M

* Our benchmarks use only the first core to simplify analysis



JupyterLab
• Web-based interactive 

Python(++) environment
• Runs on the RPi4, with UI 

reached via a web browser
• “Notebooks” contain code, 

text, data, and plots
• Part II: Submit generated 

PDFs of their notebooks
• L41: Use notebook output in 

Lab Reports; don’t submit
• Data analysis + plotting is 

best done within JupyterLab
• … but you might find the 

DTrace command-line client 
easier to work with while 
doing exploration 
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JupyterLab – the UI
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Connecting to your board

• You will be contacted regarding your board assignment 
and how to collect login credentials
• The RPi4 nodes are accessible via SSH from within the 

CUDN (Cambridge University Data Network)
• We expect this to apply to almost all students

• If you are not directly connected, you can:
• Use the UIS VPN
• Use the CL VPN (if you have a CL account)
• Hop using SSH via another system on the CUDN (e.g., ely)

• You will run all parts of the lab as the root user
• Exercise suitable care; we can re-image toasted boards, or assign 

you a spare, but data you may have on the board will be lost
• Please get in touch directly if you are having problems 

accessing your RPi4 board remotely
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Web access over SSH

• In addition to logging in via SSH, you will also use SSH 
to port forward the JupyterLab web interface; e.g.,

ssh –L8888:127.0.0.1:8888  root@rpi4-000.advopsys.cl.cam.ac.uk

• This command allows software on your 
notebook/workstation to connect to 127.0.0.1:8888 
and be transparently connected to the same port on 
the remote system
• I.e., by connecting to http://127.0.0.1:8888

• JupyterLab will print out the URL to use it starts
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Lab 1: Hypotheses

You will test and explore three hypotheses:
1. System-call overhead is substantial; structuring 

application requests to use larger buffer sizes will 
improve performance by amortizing that overhead.

2. Perform growth continues until we hit the system’s 
peak I/O throughput, at which point performance 
will stabilise.

3. DTrace’s probe effect associated is negligible.
These will be pursued differently in Part II and L41.
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io-benchmark – read a file in blocks
• Two operational modes used in this lab:
• Create (create) Create a new benchmark data file
• Read (read) Perform read()s against data file

• Adjust operational parameters:
• Block size (-b) Block size used for each I/O
• Total size (-t) Total size across all blocks (must be

an integer multiple of block size.)
• Iterations (-n) How many times to run
• getrusage() (-g) Report selected kernel statistics

• Output flags:
• JSON (-j) Generate machine-readable output
• Verbose (-v) Verbose output
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Notes on the execution environment

• /data is a suitable directory tree to store your data in
• /usr/src/sys contains synchronized kernel source code 
• You are running as root – please be careful not to hose 

the board you’ve been assigned
• We can remotely re-image, but your data will be lost

• DTrace can have a significant impact on performance 
for some scripts – e.g., instrumenting “:::” (all probes)
• Try not to render your board unresponsive, if possible
• We can remotely reset, but it risks data loss

• Please back up your data to your personal machine
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Plotting, exploring, and explaining graphs (1/2)
• Graphs are an essential part of your lab submissions
• Graphs make patterns in data accessible visually

• They represent hypotheses in data exploration
• They make arguments in data presentation and explanation

• When explaining graphs, focus on trends, inflection points, 
and surprising artifacts
• Partition graph into regions of similar behaviour
• Label and annotate inflection points
• Explain why different partitions behave the way they do

• Quality of presentation is really important
• Ensure that they are clearly labeled – axes, legend, etc.
• Think carefully about what axes and scales to use
• Visual comparison is key – present data on the same plot, or in 

stacked plots, if you want to invite comparison
• E.g., ensure that the reader can see the relationship in your plots 
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Plotting, exploring, and explaining graphs (2/2)
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How to contact us

• Preferred: Course slack
• advopsys.slack.com

• Also possible: Email to the lecturer
• robert.watson@cl.cam.ac.uk
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