Advanced Operating Systems:
Llab 1-1/0

Lecturelet 1
Prof. Robert N. M. Watson
2021-2022



Lab objectives

In the labs, you will:
 Utilise systems research methodology and practice

* Explore real-world systems artefacts through
performance and functional evaluation/analysis

* Develop scientific writing skills (L41 only)



Documents on the module/unit websites

* We have provided several documents you will need
from the module website, which apply to all labs:

* Lab Setup Guide (Everyone)
* DTrace Quick Start (Everyone)
* Lab Reports (L41 only)
* These documents are specific to Lab 1:
e Lab 1-1/0 — General Information (Everyone)
e Lab1-1/0 - Part Il Assignment (Part Il only)
e Lab1-1/0-L41 Assignment (L41 only)

* Please ensure that you are completing the correct
assignment for your course — they are different!



Lab 1 —1/0

* This lab represents only a small number of assessed
marks — it is intended as a learning exercise before we
hit more complex topics:

* Introduce our RPi4/FreeBSD environment

* Explore user-kernel interactions via syscalls and traps
* Engage with POSIX I/O and its implications

* Measure the probe effect



Our lab platform: RPi4s + FreeBSD 13.x

* 50x Raspberry Pi 4 boards
* Broadcom BCM2711 SoC
* 4x 64-bit A72 ARMvV8-A cores
 8GB DRAM, 64G SD Card

* FreeBSD 13-STABLE

* DTrace tracing tool
 HWPMC counter framework

* Bespoke benchmarks motivating OS
and microarchitectural analysis

* JupyterLab Notebook environment

=SS ¢ Access remotely via SSH + port
1 forwarding for JupyterlLab interface

5



High-density Cortex A-72 slide

(Some of this information will be useful only for later labs)

The L1 memory system consists of separate instruction and data caches.

Per-Core:

CI r m The L1 instruction memory system has the following features:

C O RT EX®'A7 2 e 48KB 3-way set-associative instruction cache. L 1 I 'Ca C h e : 48 K

e Fixed line length of 64 bytes.

e Parity protection per 16 bits.

Arm CoreSight™ multicore debug and trace

e Instruction cache that behaves as Physically-indexed and physically-tagged (PIPT).
e Least Recently Used (LRU) cache replacement policy.

Corel
e MBIST support.

NEON™
Armv8-A SIMD engine The L1 data memory system has the following features: P C
32b/64b CPU . = .
Flpatlng e 32KB 2-way set-associative data cache. e r O re .
point unit

o Fixed line length of 64 bytes. L1 D-Cache: 32K

48KkB I-cache with parity 32kB D-cache w/ECC e ECC protection per 32 bits.

e Datacache thatis PIPT.

e Out-of-order, speculative, non-blocking load requests to Normal memory and non-speculative, non-blocking
load requests to Device memory.

e | RU cache replacement policy.

ACP Nell) L2 cache w/ECC (512kB-4MB) e Hardware prefetcher that generates prefetches targeting both the L1 data cache and the L2 cache.
e MBIST support.
128-bit AMBA®4 ACE or AMBA 5 CHI coherent bus interface The features of the L2 memory system include: S h d .
ared:
e Configurable L2 cache size of 512KB, 1MB, 2MB and 4MB. L2 CaChe' 1M
—>| Branch e Fixed line length of 64 bytes. .
e Physically indexed and tagged cache.
e 16-way set-associative cache structure. P C
) The MMU has the following features: e r_ O re .
Decode,

Fetch gl Rename, >

Issue

EP/ASIMD 0 | e 48-entry fully-associative L1 instruction TLB. M M U

Dispatch —DI
_.| — | e 32-entry fully-associative L1 data TLB for data load and store pipeline| I-TLB: 48, D-TLB: 32,
e 4-way set-associative 1024-entry L2 TLB in each processor. L2-TLB: 1024
Load
_.| e Intermediate table walk caches.
> Store e The TLB entries contain a global indicator or an Address Space Identifier (ASID) to permit
context switches without TLB flushes.
IN ORDER OUT OF ORDER

e The TLB entries contain a Virtual Machine Identifier (VMID) to permit virtual machine 6
* Our benchmarks use only the first core to simplify analysis  switches without TLB flushes.



JupyterLab

Web-based interactive

L]
) o : I t On +- e“V|rO“|“ent
File Edit View Run Kernel Tabs Settings Help
» - B * C 2020-2021-141-labl.ipynb X % o .
a B rxEE ey e s e Runs on the RPi4, with Ul
-/ . . . .
- L41: Lab 1 - Getting started with kernel tracing - 1/O
= e reached via a web browser
- o 3 days ago This Jypterlab Notebook is intended to get you started with:
O 2020-202... 3 days ago
LA = 2020-20: e 1. Building and running the benchmark o ) .
o oo py— 2. Extracting and plotting data collected by the benchmark tsel (6., execution time) Y N Ote O O S C O N t a N CO e
3. Extracting data collected externally by DTrace )
This file is not intended to be a template for your solutions; we recommend that you create a new Notebook,
placing your wor the, copying and pasting template cod from s Netabook as seer usefu, t e Xt a t a. an p Ot S
You can add new cells to your notebook using the '+ button on the panel above. You can change whether a ’ ’
cell is treated as Python or Markdown using the selector above (it defaults to ‘Code").
Make sure to run cells in the right order (pressing Ctrl-Enter when in the cell) so that dependencies are L
execd 1 h it xdrFo sxample, Pyha s mut e efre g th remainder of e ° a rt Subm |t enera te
code, and data must be collected before it can be plotted. If you restart Jupyterlab, the Python kernel will .
restart, and one-time Python intialisation must be performed again (e.g., imports and data collection).
L]
Note: When you execute a cell in Jupyterlab, the bracketed number to the left (e.g., [1] ) will temporarily
changetoa [¥] toindicate that it has not yet completed. Running benchmarks or longer forms of data
analysis or plotting may take a considerable time on our RPi4 boards, so do exercise patience.
1. Building and running the benchmark ° I :I 1 . l ' t I I t t .
Building the benchmark
L]
First, we need to build the benchmark using make (no text output is expected from a successful build): | a b Re O rt S ° d O n ’ t S ' l b m I t
imake ~C io p )
The benchmark command line . . .
!io/io-benchmark
L] L]
Run a quick test of the benchmark using small parameters so that we can see the JSON format of the
output, which you will need to know in order to extract various results of interest:
Create the benchmark data file . .
Mo st sl o 10 et s T s b e Th o e _ but you mig ht find the
parameters are fine:
. o
DTrace command-line client
Example benchmark run . t k -t . |
o b 5 25184 - ) 02 e easier to work with while
Simple 0 B 1 & Python3|lidle

. .
Saving completed Mode: Command @ Ln1, Col1 2020-2021-I41-labl.ipynb d O I n g eX p | O rat I O n



JupyterLab — the Ul

Buffer size: 4194304
Buffer size: 8388608
Buffer size: 16777216
‘Benchmark run completed'

Executed cell
Plot the collected data

(number) —
Finally, we generate a plot using matplotlib , consisting of medians and error bars based on IQR:
[3]:

figl, ax = plt.subplots()
ax.set_title("buffer size vs. bandwidth")

x_coords

Current cell e

high_errs = []

for x in [2xxv for v in range(25)]:
x_coords.append(x)
y_coords.append(medians [x])
low_errs.append(qls [x])
high_errs.append(q3s[x])

ax.set_xscale("log")
ax.errorbar(x_coords, y_coords, [low_errs, high_errs])
plt.show()

166 buffer size vs. bandwidth

08

06

04

02

10° 10! 10? 10° 10* 10° 10° 107

Create an annotated plot

In analysing this plot, it is worth considering key inflection points: Points on the plot where there are behavioural changes, and what they
reflect. We can directly annotate those points on the plot using avxline .

U n exe C u te d ce I | In the next plot, we've manually placed several vertical lines at points where the data you collect is likely to experience inflection points.
If they don't line up, check that you are collecting data as expected.

( ) \ Be sure to take note of the linear Y axis and exponential X axis, and consider its implications for data analysis.

### This content the same as the above cell
figl, ax = plt.subplots()
ax.set_title("buffer size vs. bandwidth")

Markdown cell

Code cell

Cell output

ool ——— : Ctrl-Enter in a cell executes it
In execution cells show [*]



Connecting to your board

* You will be contacted regarding your board assignment
and how to collect login credentials

 The RPi4 nodes are accessible via SSH from within the
CUDN (Cambridge University Data Network)

* We expect this to apply to almost all students

* |f you are not directly connected, you can:
e Use the UIS VPN
e Use the CL VPN (if you have a CL account)
* Hop using SSH via another system on the CUDN (e.g., ely)

* You will run all parts of the lab as the root user
e Exercise suitable care; we can re-image toasted boards, or assign
you a spare, but data you may have on the board will be lost

* Please get in touch directly if you are having problems
accessing your RPi4 board remotely



Web access over SSH

* In addition to logging in via SSH, you will also use SSH
to port forward the JupyterLab web interface; e.g.,

ssh —1.8888:127.0.0.1:8888 root@rpi4-000.advopsys.cl.cam.ac.uk

* This command allows software on your
notebook/workstation to connect to 127.0.0.1:8888
and be transparently connected to the same port on
the remote system

* |.e., by connecting to http://127.0.0.1:8888
* JupyterLab will print out the URL to use it starts



Lab 1: Hypotheses

You will test and explore three hypotheses:

1. System-call overhead is substantial; structuring
application requests to use larger buffer sizes will
improve performance by amortizing that overhead.

2. Perform growth continues until we hit the system’s

peak 1I/0 throughput, at which point performance
will stabilise.

3. DTrace’s probe effect associated is negligible.
These will be pursued differently in Part Il and L41.



io-benchmark — read a file in blocks

* Two operational modes used in this lab:

* Create (create) Create a new benchmark data file
 Read (read) Perform read () s against data file

* Adjust operational parameters:

* Block size (-b) Block size used for each I/0O

e Total size (—t) Total size across all blocks (must be
an integer multiple of block size.)

* |terations (—n) How many times to run

* getrusage() (-9g) Report selected kernel statistics

e Qutput flags:
* JSON (-7) Generate machine-readable output
* Verbose (-v) Verbose output

12



Notes on the execution environment

 /data is a suitable directory tree to store your data in
* /usr/src/sys contains synchronized kernel source code

* You are running as root — please be careful not to hose
the board you’ve been assigned
* We can remotely re-image, but your data will be lost

e DTrace can have a significant impact on performance
for some scripts — e.g., instrumenting “:::” (all probes)
* Try not to render your board unresponsive, if possible
* We can remotely reset, but it risks data loss

* Please back up your data to your personal machine



Plotting, exploring, and explaining graphs (1/2)

* Graphs are an essential part of your lab submissions

* Graphs make patterns in data accessible visually

* They represent hypotheses in data exploration
* They make arguments in data presentation and explanation

* When explaining graphs, focus on trends, inflection points,
and surprising artifacts
* Partition graph into regions of similar behaviour
* Label and annotate inflection points
* Explain why different partitions behave the way they do

* Quality of presentation is really important
* Ensure that they are clearly labeled — axes, legend, etc.
e Think carefully about what axes and scales to use

* Visual comparison is key — present data on the same plot, or in
stacked plots, if you want to invite comparison
* E.g., ensure that the reader can see the relationship in your plots



Bandwidth (KiB/s)

Plotting, exploring, and explaining graphs (2/2)

100

(linear scale)

(A) parch
parameter
exceeded? Why does (1) rise in the
way that it does?
What happens at (A)?
(B) Dominant
factor changes? Why does (2) sink in the
way that it does?
(C) shift in OS
. , optimization ) What happens at (B)?
(1) (2) approach? Why does (3) rise in the
way that it does?
What happens at (C)?
50 120 200

|/O buffer size (log scale)

15



How to contact us

e Preferred: Course slack
e advopsys.slack.com

* Also possible: Email to the lecturer
* robert.watson@cl.cam.ac.uk

16



