The Network Stack (2)

Lecture 6, Part 1: TCP
Prof. Robert N. M. Watson
2021-2022

The Network Stack (2)

* The Transmission Control Protocol (TCP)
* The TCP state machine
e TCP congestion control
 TCP implementations and performance
* The evolving TCP stack
* Lab3 onTCP

* Wrapping up the Advanced Operating
Systems lecture series

Lecture 6, Part 1

Lecture 6, Part 2

Lecture 6, Part 3

The Transmission Control Protocol (TCP)

T e VL Cerf, K. Dalal, and C.

| e LERS Sunshine, Transmission

RS S N Control Protocol (version 1),
omm =771 1 INWG General Note #72,
o _______________ e December 1974.
— _____ E * In practice: J. Postel, Ed.,
T T e Transmission Control Protocol:
L ot F——law . Protocol Specification, RFC
T_i_fffffﬂ e r%:;;;;:; 793, September, 1981.

——————————————————————

Compare to Bishop, et al (2005)

What Is This?

TCP: an approximation to the real state diagram

LISTEN)2 NONEXIST

i

s | . olgeseeye-

Transition Rules

= ssriausn g 2

Wi

[

il

m zee -« 2
%v) - y

. Ve

http: / /www.cl.cam.ac.uk/ users/pes20/Netsem
March 18, 2005

Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith, and Keith Wansbrough. Rigorous

Specification and Conformance Testing Techniques for Network Protocols, as Applied to TCP, UDP, and Sockets.
Proceedings of SIGCOMM 2005, ACM, 2005.

4

TCP principles and properties

Node A Node B

3-way
handshake

CLOSED

CLOSED

SYN SENT

SYN RCVD

STeaoy—ACK —
state

— DATA/ack —,
— —DATA/Ack

FIN/ACK —)

FIN WAIT-1
- ACK -

FIN WAIT-2

/
<«—— FIN/ACK
—_ ACK LAST ACK
TIME WAIT D

CLOSED

2x half
Y close \J

CLOSED

Assumptions: Network may delay,
(reorder), drop, corrupt IP packets

TCP implements reliable, ordered,
stream transport protocol over IP

Three-way handshake:
SYN / SYN-ACK / ACK (mostly!)

Steady state
e Sequence numbers ACK’d

* Round-Trip Time (RTT) measured to
time out loss

e Data retransmitted on loss

* Flow control via advertised window
size in ACKs

* Congestion control (‘fairness’)
detects congestion via loss
(and, recently, via delay: BBR)

NB: “Half close” allows
communications in one direction to
end while the other continues

TCP congestion control and avoidance

Figure 4: Startup behavior of TCP with Slow-start

160

/

s

e

o

) 6\\9
&\
(\6

120 140
T I
Progress
&

100

/

¢
+" Discovered

i R bandwidth

Packet Sequence Number (KB)
60 80
T
-,

40
-

2 4 6 8 10
Send Time (sec)

Same conditions as the previous figure (same time of day, same Suns, same network path,
same buffer and window sizes), except the machines were running the 4.3*TCP with slow-
start. No bandwidth is wasted on retransmits but two seconds is spent on the slow-start
so the effective bandwidth of this part of the trace is 16 KBps — two times better than
figure 3. (This is slightly misleading: Unlike the previous figure, the slope of the trace is
20 KBps and the effect of the 2 second offset decreases as the trace lengthens. E.g., if this
trace had run a minute, the effective bandwidth would have been 19 KBps. The effective
bandwidth without slow-start stays at 7 KBps no matter how long the trace.)

* 1986 Internet CC collapse
* 32Kbps = 40bps

e Van Jacobson, SIGCOMM 1988
 Don’t send more data than the
network can handle!

* Conservation of packets via
ACK clocking

* Exponential retransmit timer,
slow start, aggressive receiver
ACK, dynamic window sizing on
congestion, and (later) ABC

* ECN SRFC 3168), ABC (RFC
3465), Compound (Tan, et al,
INFOCOM 2006), Cubic (Rhee
and Xu, ACM OSR 2008), BBR
(Cardwell, ACM Queue 2016)

Sequence numbers

TCP time/sequence graphs (Van Jacobson)

TCP advertised
window

I : Key:

Time _

TCP segments TCP ACKs

e Extracted from TCP packet traces
(e.g., via tcpdump)

* Visualize windows, congestion
response, buffering, RTT, etc:
e X: Time
* Y: Sequence number

* We can extract this data from the
network stack directly using DTrace

 Allows correlation/plotting with
respect to other variables / events

e E.g., TCP and socket-buffer state

* TCP time/sequence diagrams have
since been extended to represent
additional information

e E.g., SACK (selective
acknowledgement) blocks

