
The Network Stack (1)
Lecture 5, Part 1: Network Stacks

Prof. Robert N. M. Watson
2021-2022



Introduction to Network Stacks

Rapid tour across hardware and software:
• Networking and the sockets API
• Network-stack design principles
• Memory flow across hardware + software
• Network-stack work flows
• Recent network-stack research

2

Lecture 5, Part 2

Lecture 5, Part 3

Lecture 5, Part 1



Networking: A key OS function (1)

• Communication between computer systems
• Local-Area Networks (LANs)
• Wide-Area Networks (WANs)
• Inter-VM communication on a single host

• A network stack provides:
• Sockets API and extensions
• Interoperable, feature-rich, high-performance protocol 

implementations (e.g., IPv4, IPv6, ICMP, UDP, TCP, SCTP, 
802.1, 802.11, …)
• Security functions (e.g., cryptographic tunneling, firewalls...)
• Device drivers for Network Interface Cards (NICs)
• Monitoring and management interfaces (BPF, ioctl)
• Plethora of support libraries (e.g., DNS)

3



Networking: A key OS function (2)

• Dramatic changes over 30 years:
1980s: Early packet-switched networks, UDP+TCP/IP, Ethernet
1990s: Large-scale migration to IP; Ethernet VLANs
2000s: 1-Gigabit, then 10-Gigabit Ethernet; 802.11; GSM data
2010s: Deployment of IPv6; 40/100-Gbps Ethernet; 3G to 5G; 

... billions → trillions of devices?

• Vanishing technologies
• UUCP, IPX/SPX, ATM, token ring, SLIP, ...

4



The Berkeley Sockets API (1983)
• The Design and Implementation of the 

4.3BSD Operating System
• (but APIs/code first appeared in 4.2BSD)

• Now universal TCP/IP (POSIX, Windows)
• Kernel-resident network stack serves 

networking applications via system calls
• Reuses file-descriptor abstraction

• Same API for local and distributed IPC
• Simple, synchronous, copying semantics
• Blocking/non-blocking I/O, select()

• Multi-protocol (e.g., IPv4, IPv6, ISO, …)
• TCP-focused but not TCP-specific
• Cross-protocol abstractions and libraries
• Protocol-specific implementations
• “Portable” applications

close()
read()
write()
...

accept()
bind()
connect()
getsockopt()
listen()
recv()
select()
send()
setsockopt()
socket()
...

5



BSD network-stack principles (1980s-1990s)

Multi-protocol, packet-oriented network research framework:
• Object-oriented: multiple protocols, socket types, but one API

• Protocol-independent: streams vs. datagrams, sockets, socket buffers, 
socket addresses, network interfaces, routing table, packets

• Protocol-specific: connection lists, address/routing specialization, 
routing, transport protocol itself – encapsulation, decapsulation, etc.

• Packet-oriented:
• Packets and packet queueing as fundamental primitives
• Best effort: If there is a failure (overload, corruption), drop the packet
• Work hard to maintain packet source ordering
• Differentiate ‘receive’ from ‘deliver’ and ‘send’ from ‘transmit’
• Heavy focus on TCP functionality and performance
• Middle-node (forwarding), not just edge-node (I/O), functionality
• High-performance packet capture: Berkeley Packet Filter (BPF)

6



FreeBSD network-stack principles (1990s-2010s)

All of the 1980s features and also …
• Hardware:

• Multi-processor scalability
• NIC offload features (checksums, TSO/LRO, full TCP)
• Multi-queue network cards with load balancing/flow direction
• Performance to 10s or 100s of Gigabit/s
• Wireless networking

• Protocols:
• Dual IPv4/IPv6
• Pluggable congestion control, delay-based congestion control (BBR)
• Security/privacy: firewalls, IPSec, ...

• Software model:
• Flexible memory model integrates with VM for zero-copy
• Fine-grained locking and lockless algorithms (e.g., RCU)
• Network-stack virtualisation
• Userspace networking via netmap

7


