
The Process Model (2)
Lecture 4, Part 3: More on VM

Prof. Robert N. M. Watson
2021-2022



Virtual memory (quick, painful)

Virtual address 
space 1

Virtual address 
space 2Physical 

memory

data

zero

data

code

rwx

rx
rx

r + cow
rwH

ea
p

C
od

e
St

ac
k

0

∞/2

rwx

St
ac

k
H

ea
p

rx

C
od

e

code

data

r + cow

r + cow code
rw
rx

data

Li
br

ar
y

code

r + cow
rxLi

br
ar

y

data

data

code

data

rw
rx

∞

Ke
rn

el

rw
(superpage)

data
(superpage)

r + cow

Lecture 4 - The Process Model (2)



So: back to Virtual Memory (VM)
• The process model’s isolation guarantees incur real expense
• The VM subsystem works quite hard to avoid expense

• Shared memory, copy-on-write, page flipping
• Background page zeroing
• Superpages to improve TLB efficiency

• VM avoids work, but also manages memory footprint
• Memory as a cache of secondary storage (files, swap)
• Demand paging vs. I/O clustering
• LRU / preemptive swapping to maintain free-page pool
• Recently: memory compression and deduplication

• These ideas were known before Mach, but…
• Acetta, et al. impose principled design, turn them into an art form
• Provide a model beyond V→P mappings in page tables
• And ideas such as the message-passing—shared-memory duality

Lecture 4 - The Process Model (2)



Kernel programmer view of VM

Machine-independent virtual memory (VM) Machine-dependant physical map (PMAP)

page

Read/write, 
grows down, 
anonymous 

objectSt
ac

k

Read/write, 
anonymous 

objectH
ea

p
Li

br
ar

y Read/copy-on-
write, named 

object

C
od

e Read/copy-on-
write, named 

object

“vmspace”,
“vm_map”

“vm_map_entry”

anonymous
swap-backed

VM object

vnode
VM object

page

“vm_object”

shadow 
anonymous

swap-backed
VM object

page
page

“vm_page”

swap pager

page
page

swap pager

vnode pager

“vm_pager”

vnode
“/bin/dd”

page
page

pte

data

data

data

code

codepage-table
directory

page-table
entry

superpage
data

pte

pde

pte
pte
pte

pte
pte

pte

physical
map

pde

pde

“pmap”

physical
memory

Lecture 4 - The Process Model (2)



Mach VM in other operating systems
• Mach: VM mappings, objects, pages, etc., are first-class kernel 

services exposed via system calls
• In two directly derived systems, quite different stories:

• In FreeBSD, Mach is used:
• To efficiently implement UNIX’s fork() and execve()
• For memory-management APIs – e.g., mmap() and mprotect()
• By VM-optimised IPC – e.g., pipe() and sendfile()
• By the filesystem to implement a merged VM-buffer cache
• By device drivers that manage memory in interesting ways

(e.g., GPU drivers mapping pages into user processes)
• By a set of VM worker threads, such as the page daemon, swapper, 

syncer, and page-zeroing thread

Mac OS X Although not a microkernel, Mach’s VM/IPC Application 
Programming Interfaces (APIs) are available to user programs, 
and widely used for IPC, debugging, …

FreeBSD Mach VM is used as a foundation for UNIX APIs, but is 
available for use only as a Kernel Programming Interface (KPI)

Lecture 4 - The Process Model (2)



For next time
• Review ideas from the first lab report / assignment

• Lab 2: IPC
• Explore Inter-Process Communication (IPC) performance
• Utilise DTrace and microarchitectural counters to explain 

IPC performance

• Reading: Ellard and Seltzer 2003

Lecture 4 - The Process Model (2)


