The Process Model (2)
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Virtual memory (quick, painful)
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So: back to Virtual Memory (VM)

* The process model’s isolation guarantees incur real expense

* The VM subsystem works quite hard to avoid expense
* Shared memory, copy-on-write, page flipping
e Background page zeroing
* Superpages to improve TLB efficiency

* VM avoids work, but also manages memory footprint
 Memory as a cache of secondary storage (files, swap)
* Demand paging vs. I/0 clustering
* LRU / preemptive swapping to maintain free-page pool
e Recently: memory compression and deduplication

 These ideas were known before Mach, but...
* Acetta, et al. impose principled design, turn them into an art form
* Provide a model beyond V->P mappings in page tables
* And ideas such as the message-passing—shared-memory duality



Kernel programmer view of VM
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Machine-independent virtual memory (VM)
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Mach VM in other operating systems

* Mach: VM mappings, objects, pages, etc., are first-class kernel
services exposed via system calls

* In two directly derived systems, quite different stories:

Mac OS X  Although not a microkernel, Mach’s VM/IPC Application
Programming Interfaces (APIs) are available to user programs,
and widely used for IPC, debugging, ...

FreeBSD Mach VM is used as a foundation for UNIX APlIs, but is
available for use only as a Kernel Programming Interface (KPI)

* In FreeBSD, Mach is used:
* To efficiently implement UNIX’s fork () and execve()
* For memory-management APIs—e.g., mmap () andmprotect()
* By VM-optimised IPC—e.g., pipe() and sendfile()
* By the filesystem to implement a merged VM-buffer cache

* By device drivers that manage memory in interesting ways
(e.g., GPU drivers mapping pages into user processes)

* By a set of VM worker threads, such as the page daemon, swapper,
syncer, and page-zeroing thread



For next time

* Review ideas from the first lab report / assignment

e Lab 2: IPC

e Explore Inter-Process Communication (IPC) performance

* Utilise DTrace and microarchitectural counters to explain
IPC performance

* Reading: Ellard and Seltzer 2003



