The Process Model (2)

Lecture 4, Part 3: More on VM
Prof. Robert N. M. Watson
2021-2022

Virtual memory (quick, painful)

Stack

Heap

Code Library

OO—_ —
o rw ' %
c
o) rx N
>z 5T data
data -
OO/ZJ- \\\ h \\
{) rw. (3 ZEEE \\‘v r
S WX
© e data
) r + cow N P 4+ r+cow
' i zero nl '
% r + cow A d t ---------------
(V) ata.._..._...__|. [TtttttTTTTTY
N A -
L rw ™ (superpage) T W...........
U ARttt et e R bt (superpage)
a) \\
© r + cow T data
% rx e data .
S data RN w
KN
o) r + cow | S . c(:joc;le D 4 rx
3 rx a8
@) ;N
rx R T P { rx
code nll
0% _ Y code -
Virtual address R code Virtual address
space 1 space 2

Physical
memory

So: back to Virtual Memory (VM)

* The process model’s isolation guarantees incur real expense

* The VM subsystem works quite hard to avoid expense
* Shared memory, copy-on-write, page flipping
e Background page zeroing
* Superpages to improve TLB efficiency

* VM avoids work, but also manages memory footprint
 Memory as a cache of secondary storage (files, swap)
* Demand paging vs. I/0 clustering
* LRU / preemptive swapping to maintain free-page pool
e Recently: memory compression and deduplication

 These ideas were known before Mach, but...
* Acetta, et al. impose principled design, turn them into an art form
* Provide a model beyond V->P mappings in page tables
* And ideas such as the message-passing—shared-memory duality

Kernel programmer view of VM

“vm_map_entry”

|

s

Read/write,

grows down,

anonymous
object

Stack

i

Read/write,
anonymous
object

Heap

Read/copy-on-
write, named
object

7|

“pmap”

physical
memory

N,

data

/

data

te/

te
p»

physical
map

Read/copy-on-
write, named
object

Code Library

7

“vmspace”,
“Vm_map”

“vm_object” “vm_pager”
& swap pager
Pad p pag
anonymous
swap-backed —[page page
VM object p?e page
“Vm_page”
swap pager
shadow ad pPa9
anonymous
swap-backed | page
VM object page
/ vhode pager
vhode
VM object —®1_Page
page
\ vnode
“/bin/dd”

Machine-independent virtual memory (VM)

pde

pde

data

pte
pte

/
N

-

page-table
directory

pde

A

Y

pte

pte

™

pte

=

page-table

entry

Machine-dependant physical map (PMAP)

Mach VM in other operating systems

* Mach: VM mappings, objects, pages, etc., are first-class kernel
services exposed via system calls

* In two directly derived systems, quite different stories:

Mac OS X Although not a microkernel, Mach’s VM/IPC Application
Programming Interfaces (APIs) are available to user programs,
and widely used for IPC, debugging, ...

FreeBSD Mach VM is used as a foundation for UNIX APlIs, but is
available for use only as a Kernel Programming Interface (KPI)

* In FreeBSD, Mach is used:
* To efficiently implement UNIX’s fork () and execve()
* For memory-management APIs—e.g., mmap () andmprotect()
* By VM-optimised IPC—e.g., pipe() and sendfile()
* By the filesystem to implement a merged VM-buffer cache

* By device drivers that manage memory in interesting ways
(e.g., GPU drivers mapping pages into user processes)

* By a set of VM worker threads, such as the page daemon, swapper,
syncer, and page-zeroing thread

For next time

* Review ideas from the first lab report / assignment

e Lab 2: IPC

e Explore Inter-Process Communication (IPC) performance

* Utilise DTrace and microarchitectural counters to explain
IPC performance

* Reading: Ellard and Seltzer 2003

