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Virtual memory (quick, painful)
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So: back to Virtual Memory (VM)
• The process model’s isolation guarantees incur real expense
• The VM subsystem works quite hard to avoid expense

• Shared memory, copy-on-write, page flipping
• Background page zeroing
• Superpages to improve TLB efficiency

• VM avoids work, but also manages memory footprint
• Memory as a cache of secondary storage (files, swap)
• Demand paging vs. I/O clustering
• LRU / preemptive swapping to maintain free-page pool
• Recently: memory compression and deduplication

• These ideas were known before Mach, but…
• Acetta, et al. impose principled design, turn them into an art form
• Provide a model beyond V→P mappings in page tables
• And ideas such as the message-passing—shared-memory duality
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Kernel programmer view of VM
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Mach VM in other operating systems
• Mach: VM mappings, objects, pages, etc., are first-class kernel 

services exposed via system calls
• In two directly derived systems, quite different stories:

• In FreeBSD, Mach is used:
• To efficiently implement UNIX’s fork() and execve()
• For memory-management APIs – e.g., mmap() and mprotect()
• By VM-optimised IPC – e.g., pipe() and sendfile()
• By the filesystem to implement a merged VM-buffer cache
• By device drivers that manage memory in interesting ways

(e.g., GPU drivers mapping pages into user processes)
• By a set of VM worker threads, such as the page daemon, swapper, 

syncer, and page-zeroing thread

Mac OS X Although not a microkernel, Mach’s VM/IPC Application 
Programming Interfaces (APIs) are available to user programs, 
and widely used for IPC, debugging, …

FreeBSD Mach VM is used as a foundation for UNIX APIs, but is 
available for use only as a Kernel Programming Interface (KPI)
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For next time
• Review ideas from the first lab report / assignment

• Lab 2: IPC
• Explore Inter-Process Communication (IPC) performance
• Utilise DTrace and microarchitectural counters to explain 

IPC performance

• Reading: Ellard and Seltzer 2003
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