
Advanced Operating Systems
Through tracing, analysis, and experimentation

ACS/Part III L41: Advanced Operating Systems
Part II: Advanced Operating Systems

Lecture 1, Part 1: What is an Operating System?
Prof. Robert N. M. Watson

2021-2022



MPhil/Part III L41 vs. Part II AdvOpSys
• These lectures are shared by two separate courses:

• ACS / Part III L41: Advanced Operating Systems
• Part II: Advanced Operating Systems (AdvOpSys)

• The two courses also share an online lab framework 
based on the RPi4, DTrace, and HWPMC

• But there are some important differences:
• Key difference 1: Assessed coursework

• L41 has 3x independently written lab reports
• Part II has 2x short answer lab assignments (+ 1x optional)

• Key difference 2: Assigned readings
• L41 assigns additional research readings

• Please be sure to use the right material for your course!
2



Getting started
• What is an operating system?

• About the module
• Systems research
• Lab assignments / reports
• Readings for next lecture

3

Lecture 1, Part 1

Lecture 1, Part 2



What is an operating system?

[An OS is] low-level software that supports
a computer’s basic functions, such as

scheduling tasks and controlling peripherals.
- Google hive mind

4



What is an operating system?

But that is basically the 1970s definition,
and not at all a contemporary one.

Today’s general-purpose operating systems consist of 
GB of binaries and hundreds of millions of LoC.

Further, when you select an operating system,
you select hardware and software ecosystems.

5



What is an operating system?

6

Local file 
systems?

Threads and 
processes?

Debug and 
trace?Networking 

and WiFi?
User

authentication?

Backup?

Window 
system?

Web 
browser?

Class 
libraries?

Shell and 
command-
line tools?

Remote 
access?

Distributed 
file-system 
clients and 

servers? Device 
drivers?

Virtual 
machines?

System 
libraries?

Run-time 
linker?

Access 
control? Software 

updates?

Remote 
management?

Application 
packaging?

Profiling and 
optimization?

Payment 
services?

Secure 
enclaves?

Crashdump
collection

Language 
runtimes?

Crypto 
libraries?

Kernel and 
userspace?

Multimedia?
.. And surely 

lots more



General-purpose operating systems
… are for general-purpose computers:
• Servers, workstations, mobile devices
• Run applications – i.e., software unknown at OS design time
• Abstract the hardware, provide services, ‘class libraries’
• E.g., Windows, Mac OS X, Android, iOS, Linux, BSD, …

Userspace Local and remote shells, GUI, management tools, daemons
Run-time linker, system libraries, logging and tracing facilities

– system-call layer –

Kernel System calls, hypercalls, remote procedure call (RPC)*
Processes, filesystems, IPC, sockets, management
Drivers, packets/blocks, protocols, tracing, virtualisation
VM, malloc, linker, scheduler, threads, timers, tasks, locks

* Continuing disagreement on whether distributed-filesystem
servers and window systems ‘belong’ in userspace or the kernel

7



Other kinds of operating systems (1/3)

Specialise the OS for a specific application or environment:
• Embedded, real-time operating systems

• Serve a single application in a specific context
• E.g., WiFi access points, medical devices, washing machines, cars

• Small code footprint, real-time scheduling
• Might have virtual memory / process model
• Microkernels or single-address space: VxWorks, RTEMS, L4
• Now also: Linux, BSD (sometimes over a real-time kernel), etc.

• Appliance operating systems
• Apply embedded model to higher-level devices/applications
• File storage appliances, routers, firewalls, ...

• E.g., Juniper JunOS, Cisco IOS, NetApp OnTap, EMC/Isilon
• Under the hood, almost always Linux, BSD, etc.

Key concept: Operating system as a reusable component

8



Other kinds of operating systems? (2/3)
What if we rearrange the boxes?
• Microkernels, library operating systems, unikernels

• Shift code from kernel into userspace to reduce Trusted Computing 
Base (TCB); improve robustness/flexibility; ‘bare-metal’ apps

• Early 1990s: Microkernels are king!
• Late 1990s: Microkernels are too slow!

• (But ideas about OS modularity dating from this period are widespread)
• 2000s/2010s: Microkernels are back! But now ‘hypervisors’
• Sometimes: programming-language runtime as OS

9

Kernel

P1 P2
…

VFS TCP/IP

Device 
driver

Microkernel

P1 P2 VFSTCP/IP …



Other kinds of operating systems? (3/3)

• Hypervisors
• Kernels host processes; hypervisors host virtual machines

• Type-1: Standalone hypervisors (e.g., Xen)
• Type-2: Integrated with OS kernel (e.g., KVM)

• Virtualised hardware interface rather than POSIX APIs
• Paravirtualisation reintroduces OS-like APIs for performance
• E.g., System/370, VMware, Xen, KVM, VirtualBox, bhyve, 

Hafnium, ...
• Many microkernel ideas have found a home here

• Containers
• Hosts multiple userspace instances over a common kernel
• Controlled namespaces prevent inappropriate accesses
• Really more about code/ABI (Application Binary Interface) 

distribution and maintenance
10



What does an operating system do?

• Key hardware-software surface (w/compiler toolchain)
• Low-level abstractions and services

• Operational model: bootstrap, shutdown, watchdogs
• Process model, IPC: processes, threads, IPC, program model
• Resource sharing: scheduling, multiplexing, virtualisation
• I/O: drivers, local/distributed filesystems, network stack
• Security: authentication, encryption, ACLs, MAC, audit
• Local or remote access: console, window system, SSH
• Libraries: math, protocols, RPC, crypto, UI, multimedia
• Monitoring/debugging: logs, profiling, tracing, debugging

Compiler? Text editor? E-mail package? Web browser? 
Can an operating system be “distributed”?

11


