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MPhil/Part III L41 vs. Part II AdvOpSys
• These lectures are shared by two separate courses:

• ACS / Part III L41: Advanced Operating Systems
• Part II: Advanced Operating Systems (AdvOpSys)

• The two courses also share an online lab framework 
based on the RPi4, DTrace, and HWPMC

• But there are some important differences:
• Key difference 1: Assessed coursework

• L41 has 3x independently written lab reports
• Part II has 2x short answer lab assignments (+ 1x optional)

• Key difference 2: Assigned readings
• L41 assigns additional research readings

• Please be sure to use the right material for your course!
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Getting started
• What is an operating system?

• About the module
• Systems research
• Lab assignments / reports
• Readings for next lecture
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Lecture 1, Part 1

Lecture 1, Part 2



What is an operating system?

[An OS is] low-level software that supports
a computer’s basic functions, such as

scheduling tasks and controlling peripherals.
- Google hive mind
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What is an operating system?

But that is basically the 1970s definition,
and not at all a contemporary one.

Today’s general-purpose operating systems consist of 
GB of binaries and hundreds of millions of LoC.

Further, when you select an operating system,
you select hardware and software ecosystems.

5



What is an operating system?
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General-purpose operating systems
… are for general-purpose computers:
• Servers, workstations, mobile devices
• Run applications – i.e., software unknown at OS design time
• Abstract the hardware, provide services, ‘class libraries’
• E.g., Windows, Mac OS X, Android, iOS, Linux, BSD, …

Userspace Local and remote shells, GUI, management tools, daemons
Run-time linker, system libraries, logging and tracing facilities

– system-call layer –

Kernel System calls, hypercalls, remote procedure call (RPC)*
Processes, filesystems, IPC, sockets, management
Drivers, packets/blocks, protocols, tracing, virtualisation
VM, malloc, linker, scheduler, threads, timers, tasks, locks

* Continuing disagreement on whether distributed-filesystem
servers and window systems ‘belong’ in userspace or the kernel
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Other kinds of operating systems (1/3)

Specialise the OS for a specific application or environment:
• Embedded, real-time operating systems

• Serve a single application in a specific context
• E.g., WiFi access points, medical devices, washing machines, cars

• Small code footprint, real-time scheduling
• Might have virtual memory / process model
• Microkernels or single-address space: VxWorks, RTEMS, L4
• Now also: Linux, BSD (sometimes over a real-time kernel), etc.

• Appliance operating systems
• Apply embedded model to higher-level devices/applications
• File storage appliances, routers, firewalls, ...

• E.g., Juniper JunOS, Cisco IOS, NetApp OnTap, EMC/Isilon
• Under the hood, almost always Linux, BSD, etc.

Key concept: Operating system as a reusable component
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Other kinds of operating systems? (2/3)
What if we rearrange the boxes?
• Microkernels, library operating systems, unikernels

• Shift code from kernel into userspace to reduce Trusted Computing 
Base (TCB); improve robustness/flexibility; ‘bare-metal’ apps

• Early 1990s: Microkernels are king!
• Late 1990s: Microkernels are too slow!

• (But ideas about OS modularity dating from this period are widespread)
• 2000s/2010s: Microkernels are back! But now ‘hypervisors’
• Sometimes: programming-language runtime as OS
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Other kinds of operating systems? (3/3)

• Hypervisors
• Kernels host processes; hypervisors host virtual machines

• Type-1: Standalone hypervisors (e.g., Xen)
• Type-2: Integrated with OS kernel (e.g., KVM)

• Virtualised hardware interface rather than POSIX APIs
• Paravirtualisation reintroduces OS-like APIs for performance
• E.g., System/370, VMware, Xen, KVM, VirtualBox, bhyve, 

Hafnium, ...
• Many microkernel ideas have found a home here

• Containers
• Hosts multiple userspace instances over a common kernel
• Controlled namespaces prevent inappropriate accesses
• Really more about code/ABI (Application Binary Interface) 

distribution and maintenance
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What does an operating system do?

• Key hardware-software surface (w/compiler toolchain)
• Low-level abstractions and services

• Operational model: bootstrap, shutdown, watchdogs
• Process model, IPC: processes, threads, IPC, program model
• Resource sharing: scheduling, multiplexing, virtualisation
• I/O: drivers, local/distributed filesystems, network stack
• Security: authentication, encryption, ACLs, MAC, audit
• Local or remote access: console, window system, SSH
• Libraries: math, protocols, RPC, crypto, UI, multimedia
• Monitoring/debugging: logs, profiling, tracing, debugging

Compiler? Text editor? E-mail package? Web browser? 
Can an operating system be “distributed”?
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