
Advanced Graphics and Image Processing -
Lecture notes

Rafa l Mantiuk

Lent term 2018/19

1 Contrast- and gradient-based methods

Many problems in image processing are easier to solve or produce better
results if operations are not peformed directly on image pixel values but on
differences between pixels. Instead of altering pixels, we can transform an
image into gradient field and then edit the values in the gradient field. Once
we are done with editing, we need to reconstruct an image from the modified
gradient field.

A few examples of gradient-based methods are shown in Figures 1 and 2.
In one common case such differences between pixels represent gradients:

for image I, a gradient at a pixel location (x, y) is computed as:

∇Ix,y =

[
Ix+1,y − Ix,y
Ix,y+1 − Ix,y

]
. (1)

The equation above is obviously a discrete approximation of a gradient, as
we are dealing with discrete pixel values rather than a continous function.
This particular approximation is called forward difference, as we take the dif-
ference between the next and current pixel. Other choices include backward
differences (current minus previous pixel) or central differences (next minus
previous pixel).

Once a gradient field is computed, we can start modifying it. Usually
better effects are achieved if the magnitude of gradients is modified and the
orientation of each gradient remains unchanged. This can be achieved by

1

(a) Original image

(b) Details enhanced (c) Cartoonized image

Figure 1: Two examples of gradient-based processing. Texture details in the
original image were enhanced to produce the result shown in (b). Contrast
was removed everywhere except at the edges to produced a cartoonized image
in (c).

multiplying gradients by the gradient editing function f():

Gx,y = ∇Ix,y ·
f (||∇Ix,y||)
||∇Ix,y||

(2)

where || · || operator computes the magnitude (norm) of the gradient.
We try to reconstruct pixel values, which would result in a gradient field

that is the closest to our modifed gradient field G = [G(x) G(y)]′. In par-
ticular, we can try to minimize the squared differences between gradients in
actual image and modified gradients:

arg min
I

∑
x,y

[(
Ix+1,y − Ix,y −G(x)

x,y

)2
+
(
Ix,y+1 − Ix,y −G(y)

x,y

)2]
, (3)

2

(a) Naive image copy & paste (b) Gradient-domain copy & paste

Figure 2: Comparison of naive and gradient domain image copy & paste.

x,y x+1,yx-1,y

x,y-1

x,y+1

Figure 3: When using forward-differences, a pixel with the coordinates (x, y)
is referred to in at moost four partial derivates, two along x-axis and two
along y-axis.

where the summation is over the entire image. To minimize the function
above, we need to equate its partial derivatives to 0. As we optimze for pixel
values, we need to compute partial derivates with respect to Ix,y. Fortunately,
most terms in the sum will become 0 after differentiation, as they do not
contain the differentiated variable Ix,y. For a given pixel (x, y), we need
to consider only 4 partial derivates: two belonging to the pixel (x, y), x-
derivative for the pixel on the left (x− 1, y) and y-derivative for the pixel in
the top (x, y − 1), as shown in Figure 3. This gives us:

δF

δIx,y
=− 2(Ix+1,y − Ix,y −G(x)

x,y)− 2(Ix,y+1 − Ix,y −G(y)
x,y)+ (4)

2(Ix,y − Ix−1,y −G(x)
x−1,y) + 2(Ix,y − Ix,y−1 −G(y)

x,y−1) . (5)

3

After rearanging the terms and equating δF
δIx,y

to 0, we get:

Ix−1,y + Ix+1,y + Ix,y−1 + Ix,y+1 − 4Ix,y = G(x)
x,y −G

(x)
x−1,y +G(y)

x,y −G
(y)
x,y−1 . (6)

In these few steps we derived a discrete Poisson equation, which can be found
in many engineering problems. The Poisson equation is often written as:

∇2I = divG , (7)

where ∇2I is the discrete Laplace operator:

∇2Ix,y = Ix−1,y + Ix+1,y + Ix,y−1 + Ix,y+1 − 4Ix,y , (8)

and divG is the divergence of the vector field:

divGx,y = G(x)
x,y −G

(x)
x−1,y +G(y)

x,y −G
(y)
x,y−1 . (9)

We can also write the equation using discrete convolution operators:

I ∗

0 1 0
1 −4 1
0 1 0

 = G(x) ∗
[
−1 1 0

]
+G(y) ∗

−1
1
0

 . (10)

Note that the covolution flips the order of elements in the kernel, thus the
row and column vectors on the right hand side are also flipped.

When equation 6 is satisfied for every pixel, it forms a system of linear
equations:

A ·


I1,1
I2,1
...
IN,M

 = b (11)

Here we represent an image as a very large column vector, in which image
pixels are stacked column-after-column (in an equivalent manner they can be
stacked row-after-row). Every row of matrix A contains the Laplace operator
for a corresponding pixel. But the matrix also needs to account for the
boundary conditions, that is handle pixels that are at the image edge and
therefore do not contain neighbour on one of the sides. Matrix A for a tiny

4

3x3 image looks like this:

A =



−2 1 0 1 0 0 0 0 0
1 −3 1 0 1 0 0 0 0
0 1 −2 0 0 1 0 0 0
1 0 0 −3 1 0 1 0 0
0 1 0 1 −4 1 0 1 0
0 0 1 0 1 −3 0 0 1
0 0 0 1 0 0 −2 1 0
0 0 0 0 1 0 1 −3 1
0 0 0 0 0 1 0 1 −2


(12)

Obviously, the matrix is enormous for normal size images. However, most
matrix elements are 0, so it can be easily stored using a sparse matrix rep-
resentation. Note that only the pixel in the center of the image (5th row)
contains the full Laplace operator; all other pixels are missing neighbours so
the operator is adjusted accordingly. Accounting for all boundary cases is
probably the most difficult and error-prone part in formulating gradient-field
reconstruction problem. The column vector b corresponds to the right hand
side of equation 6.

2 Solving linear system

There is a large number of methods and software libraries, which can solve
a sparse linear problem given in Equation 11. The Poisson equation is typi-
cally solved using multi-grid methods, which iteratively update the solution
at different scales. Those, however, are rarther difficult to implement and tai-
lored to one particular shape of a matrix. Alternatively, the solution can be
readily found after transformation to the frequency domain (discrete cosine
transform). However, such a method does not allow introducing weights,
importance of which will be discussed in the next section. Finally, conju-
gate gradient and biconjugate gradient [1, sec. 2.7] methods provide a fast-
converging iterative method for solving sparse systems, which can be very
memory efficient. Those methods require providing only a way to compute
multiplication of the matrix A and its transpose with an arbitrary vector.
Such operation can be realized in an arbitrary way without the need to store
the sparse matrix (which can be very large even if it is sparse). The conjugate
gradient requires fewer operations than the biconjugate gradient method, but

5

(a) Uniform weights (b) Higher weights at low contrast

Figure 4: The solution of gradient field reconstruction often contain ”pinch-
ing” artefacts, such as shown in figure (a). The artefacts can be avoided if
small gradient magnitudes are weighted more than large magnitudes.

it should be used only with positive definite matrices. Matrix A is not posi-
tive definite so in principle the biconjugate gradient method should be used.
However, in practice, conjugate gradient method converges equally well.

3 Weighted reconstruction

An image resulting from solving Equation 11 often contains undesirable
”pinching” artefacts, such as those shown in Figure 4a. Those artefacts are
inherent to the nature of gradient field reconstruction — the solution is just
the best approximation of the desired gradient field but it hardly ever exactly
matches the desired gradient field. As we minimize squared differences, tiny
inaccuracies for many pixels introduce less error than large inaccuracies for
few pixels. This in turn introduces smooth gradients in the areas, where the
desired gradient field is inconsistent (cannot form an image). Such gradients
produce ”pinching” artefacts.

6

The problem is that the error in reconstructed gradients is penalized the
same regardless of whether the value of the gradient is small or large. This
is opposite to how the visual system perceives differences in color values:
we are more likely to spot tiny difference between two similar pixel values
than the same tiny difference between two very different pixel values. We
could account for that effect by introducing some form of non-linear metric,
however, that would make our problem non-linear and non-linear problems
are in general much slower to solve. However, the same can be achieved by
introducing weights to our objective function:

arg min
I

∑
x,y

[
w(x)
x,y

(
Ix+1,y − Ix,y −G(x)

x,y

)2
+ w(y)

x,y

(
Ix,y+1 − Ix,y −G(y)

x,y

)2]
,

(13)

where w
(x)
x,y and w

(y)
x,y are the weights or importance we assign to each gradi-

ent, for horizontal and vertical partial derivatives respectively. Usually the
weights are kept the same for both orientations, i.e. w

(x)
x,y = w

(y)
x,y. To account

for the contrast perception of the visual system, we need to assign a higher
weight to small gradient magnitudes. For example, we could use the weight:

w(x)
x,y = w(y)

x,y =
1

||Gx,y||+ ε
(14)

where ||Gx,y|| is the magnitude of the desired (target) gradient at pixel (x, y)
and ε is a small constant (0.0001), which prevents division by 0.

4 Matrix notation

We could follow the same procedure as in the previous section and differ-
entiate Equation 13 to find the linear system that minimizes our objective.
However, the process starts to be tedious and error-prone. As the objective
functions gets more and more complex, it is worth switching to the matrix
notation. Let us consider first our original problem without the weights wx,y,
which we will add later. Equation 3 in the matrix notation can be written
as:

arg min
I

∣∣∣∣∣∣∣∣[∇x

∇y

]
I −

[
G(x)

G(y)

]∣∣∣∣∣∣∣∣2 . (15)

In the equation I, G(x) and G(y) are stacked column vectors, representing
columns of the resulting image or desired gradient field. The square brackets

7

denote vertical concatenation of the matrices or vectors. Operator ||·||2 is
the L2-norm, which squares and sums the elements of the resulting column
vector. ∇x and ∇y are differential operators, which are represented as N×N
matrices, where N is the number of pixels. Each row of those sparse matrices
tells us which pixels need to be subtracted from one another to compute
forward gradients along horizontal and vertical directions. For a tiny 3×3
pixel image those operators are:

∇x =



−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(16)

∇y =



−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 0


(17)

Note that the rows contain all zeros for pixels on the boundary, for which no
gradient can be computed: the last column of pixels for ∇x and the last row
of pixels for ∇y.

Equation 15 is in the format ||Ax − b||2, which can be directly solved
by some sparse matrix libraries, such as SciPy.sparse or the ”\” operator
in matlab Matlab. However, to reduce the size of the sparse matrix and to
speed-up computation, it is worth taking one more step and transform the
least-square optimization into a linear problem. For overdetermined systems,
such as ours, the solution of the optimization problem:

arg min
x
||Ax− b||2 (18)

8

can be found by solving a linear system:

A′Ax = A′b . (19)

Note that ′ denotes a matrix transpose and A′A is a square matrix. If we
replace A and b with the corresponding operators and gradient values from
our problem, we get the following linear system:

[
∇′x ∇′y

] [∇x

∇y

]
I =

[
∇′x ∇′y

] [G(x)

G(y)

]
, (20)

which, after multiplying stacked matrices, gives us:(
∇′x∇x +∇′y∇y

)
I = ∇′xG(x) +∇′y G(y) . (21)

Weights can be added to such a system by inserting a sparse diagonal ma-
trix W . For simplicity we use the same weights for vertical and horizontal
derivatives: (

∇′xW ∇x +∇′yW ∇y

)
I = ∇′xW G(x) +∇′yW G(y) . (22)

The above operations can be performed using a sparse matrix library (or
SciPy/Matlab), thus saving us effort of computing operators by hand.

There is still one problem remaining: our equation does not have a unique
solution. This is because the target gradient field contains relative informa-
tion about differences between pixels, but it does not say what the absolute
value of the pixels should be. For that reason, we need to constrain the
absolute value, for example by ensuring that a value of a first reconstructed
pixel is the same as in the source image (Isrc):[

1 0 ... 0
]
I = Isrc(1, 1) . (23)

If we denote the vector on the left-hand side of the equation as C, the final
linear problem can be written as:(
∇′xW ∇x +∇′yW ∇y + C ′C

)
I = ∇′xW G(x) +∇′yW G(y) + C ′ Isrc(1, 1) .

(24)
The resulting equation can be solved using a sparse solver in Python or
Matlab.

9

References

[1] S. A. Teukolsky, B. P. Flannery, W. H. Press, and W. T. Vetterling.
Numerical recipes in C. Cambridge University Press, Cambridge, vol. 2
edition, 1992.

10

