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What are Computer Graphics &
Image Processing?

Scene
description

Digital
image

Computer
graphics

Image analysis &
computer vision

Image processing

Image
capture

Image
display
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Where are graphics and image 
processing heading?

Scene
description

Light field

Computer
graphics

Image analysis &
computer vision

Advanced
image processing

Computational
photography

Computational
displays

Visual
Perception



What is a (computer) image?
 A digital photograph? (“JPEG”)
 A snapshot of real-world lighting?

Image

2D array of pixels 2D function

From computing 
perspective
(discrete)

From mathematical
perspective
(continuous)

•To represent images in 
memory

•To create image processing 
software

•To express image processing 
as a mathematical problem

•To develop (and understand) 
algorithms
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Image
 2D array of pixels

 In most cases, each pixel takes 3 bytes: one for each red, green and blue
 But how to store a 2D array in memory?
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Stride
 Calculating the pixel component index in memory

 For row-major order (grayscale)

 For column-major order (grayscale)

 For interleaved row-major (colour)

 General case

where , and are the strides for the x, y and colour 
dimensions
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Padded images and stride
 Sometimes it is desirable to “pad” image with extra pixels 

 for example when using operators that need to access pixels outside the 
image border

 Or to define a region of interest (ROI)

 How to address pixels for such an image and the ROI?

Allocated memory space
Image

Region of Interest
(ROI)
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Padded images and stride

 For row-major, interleaved 
 ௫
 ௬
 ௖

Allocated memory space
Image

Region of Interest
(ROI)
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Pixel (PIcture ELement)
 Each pixel (usually) consist of three values describing the 

color
(red, green, blue)

 For example
 (255, 255, 255) for white
 (0, 0, 0) for black
 (255, 0, 0) for red

 Why are the values in the 0-255 range?
 Why red, green and blue? (and not cyan, magenta, yellow)
 How many bytes are needed to store 5MPixel image? 

(uncompressed)
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Pixel formats, bits per pixel, bit-depth
 Grayscale – single color channel, 8 bits (1 byte)
 Highcolor – 216=65,536 colors (2 bytes)

 Truecolor – 224 = 16,8 million colors (3 bytes)
 Deepcolor – even more colors (>= 4 bytes)

 But why?
10



Color banding
 If there are not 

enough bits to 
represent color

 Looks worse 
because of the 
Mach band illusion

 Dithering (added 
noise) can reduce 
banding
 Printers
 Many LCD displays 

do it too

M
ac

h 
ba

nd
s

Intensity profile
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What is a (computer) image?
 A digital photograph? (“JPEG”)
 A snapshot of real-world lighting?

Image

2D array of pixels 2D function

From computing 
perspective
(discrete)

From mathematical
perspective
(continuous)

•To represent images in 
memory

•To create image processing 
software

•To express image processing 
as a mathematical problem

•To develop (and understand) 
algorithms
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Image – 2D function
 Image can be seen as a function I(x,y), that gives intensity 

value for any given coordinate (x,y)
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Sampling an image
 The image can be sampled on a rectangular sampling grid 

to yield a set of samples. These samples are pixels. 
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What is a pixel? (math)
 A pixel is not 

 a box
 a disk
 a teeny light

 A pixel is a point
 it has no dimension
 it occupies no area
 it cannot be seen
 it has coordinates

 A pixel is a sample
From: http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture05/lecture05.pdf
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Sampling and quantization
 Physical world is described in terms of continuous quantities
 But computers work only with discrete numbers
 Sampling – process of mapping continuous function to a 

discrete one
 Quantization – process of mapping continuous variable to a 

discrete one

16



Resampling
 Some image processing operations require to know the 

colors that are in-between the original pixels

 What are those operations?
 How to find these resampled pixel values?  

Pixel

17



Example of resampling: magnification

Input image

Output image
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Example of resampling: 
scaling and rotation
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How to resample?
 In 1D: how to find the most likely resampled pixel value 

knowing its two neighbors? 

pixel position x

pi
xe

l v
al

ue
 v

?
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(Bi)Linear interpolation (resampling)
 Linear – 1D
 Bilinear – 2D 

pixel position

pi
xe

l v
al

ue
 v

x1 x2

y1

y2

y

x

Sampling
kernel
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(Bi)cubic interpolation (resampling)

pixel position x

pi
xe

l v
al

ue
 v Sampling

kernel
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Bi-linear interpolation

A B

C D

I(x, y) = ?

I(x1, y1)= A
I(x2, y1)= B
I(x1, y2 )=C
I(x2, y2 )= D

Given the pixel values:

Calculate the value of a pixel                          using bi-linear interpolation.

Hint: Interpolate first between A and B, and between C and D, then interpolate 
between these two computed values. 

23
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Po
in

t 
op

er
at

or
s 

an
d 

fil
te

rs

Original 

Blurred

Sharpenned

Edge-preserving filter
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Point operators
 Modify each pixel independent from one another
 The simplest case: multiplication and addition

Resulting pixel 
value

Input pixel 
value

Gain Bias

Pixel position 
x=(x,y)
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Pixel precision for image processing
 Given an RGB image, 8-bit per color channel (uchar)

 What happens if the value of 10 is subtracted from the pixel 
value of 5 ?

 250 + 10 = ?
 How to multiply pixel values by 1.5 ?

 a) Using floating point numbers
 b) While avoiding floating point numbers

27



Image blending
 Cross-dissolve between two images

 where α is between 0 and 1

Resulting pixel 
value

Pixel from 
image 1

Pixel from 
image 2

Blending 
parameter

28



Image matting and compositing

 Matting – the process of extracting an object from the 
original image

 Compositing – the process of inserting the object into a 
different image

 It is convenient to represent the extracted object as an 
RGBA image

29



Transparency, alpha channel
 RGBA – red, green, blue, alpha

 alpha = 0 – transparent pixel
 alpha = 1 – opaque pixel

 Compositing
 Final pixel value:

 Multiple layers:

30



Image histogram

 histogram / total pixels = probability mass function
 what probability does it represent?

Pixel value

N
um

be
r o

f p
ix

el
s
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Histogram equalization
 Pixels are non-uniformly distributed across the range of 

values

 Would the image look better if we uniformly distribute 
pixel values (make the histogram more uniform)?

 How can this be done?

32



Histogram equalization
 Step 1: Compute image histogram

 Step 2: Compute a normalized
cumulative histogram

 Step 3: Use the cumulative
histogram to map pixels to 
the new values (as a look-up table)

Yout = c(Yin )

Yin

Y o
ut

33
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 Output pixel value is a weighted sum of neighboring 
pixels

Linear filtering (revision)

Resulting pixel 
value

Input pixel 
value

Kernel (filter)

Sum over neighboring 
pixels, e.g. k=-1,0,1, j=-1,0,1 

for 3x3 neighborhood

compact notation:

Convolution 
operation
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Linear filter: example

Why is the matrix g smaller than f ?
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Paddin
g an

 im
age

Padded imagePadded and 
blurred image36

Im
age edge



What is the computational cost of the 
convolution?

 How many multiplications do we need to do to convolve 
100x100 image with 9x9 kernel ?
 The image is padded, but we do not compute the values for 

the padded pixels

37



Separable kernels
 Convolution operation can be made much faster if split 

into two separate steps:
 1) convolve all rows in the image with a 1D filter
 2) convolve columns in the result of 1) with another 1D filter

 But to do this, the kernel must be separable

38



Examples of separable filters
 Box filter:

 Gaussian filter:

 What are the corresponding 1D components of this separable 
filter (u(x) and v(y))?





























=























3
1

3
1

3
1

3
1
3
1
3
1

9
1

9
1

9
1

9
1

9
1

9
1

9
1

9
1

9
1

G(x,y) = u(x) v(y)
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Unsharp masking
 How to use blurring to sharpen an image ?

original image high-pass image blurry imageresults

40



Why “linear” filters ?
 Linear functions have two properties:

 Additivity:   
 Homogenity:  (where “ ” is a linear function)

 Why is it important?
 Linear operations can be performed in an arbitrary order

 Linearity of the Gaussian filter could be used to improve the 
performance of your image processing operation

 This is also how the separable filters work:

The components 
of a separable 

kernel An image

Matrix multiplication Convolution

41



Operations on binary images
 Essential for many computer vision tasks

 Binary image can be constructed by thresholding a 
grayscale image

42



Morphological filters: dilation

 Set the pixel to the maximum value of the neighboring 
pixels within the structuring element

 What could it be useful for ?
43



Morphological filters: erosion

 Set the value to the minimum value of all the neighboring 
pixels within the structuring element

 What could it be useful for ?
44



Morphological filters: opening

 Erosion followed by dilation
 What could it be useful for?
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Morphological filters: closing

 Dilation followed by erosion
 What could it be useful for ?
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Binary morphological filters: formal 
definition Binary image

Structuring 
element

Number of 1s inside 
the region restricted 

by the structuring 
element

S – size of structuring element (number of 1s in the SI)

Correlation
(similar to 

convolution)

q(c,1)

47



Multi-scale image processing (pyramids)
 Multi-scale processing operates on 

an image represented at several 
sizes (scales)
 Fine level for operating on small 

details
 Coarse level for operating on large 

features

 Example:
 Motion estimation

 Use fine scales for objects moving slowly
 Use coarse scale for objects moving fast

 Blending (to avoid sharp boundaries)

48



Two types of pyramids
Gaussian 
pyramid

Laplacian
pyramid

(a.k.a DoG
Diffence of
Gaussians)

Level 1

Level 2

Level 3
Level 4

Level 1

Level 2

Level 3
Level 4 (base band)

49
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Laplacian Pyramid as a Compact 
Image Code. IEEE Transactions 
on Communications 31, 4, 532–
540.



Gaussian Pyramid

reduce

reduce

reduce

Blur the image and downsample
(take every 2nd pixel)

Why is blurring needed?

50



Laplacian Pyramid - decomposition

expand

expand

expand

51



Laplacian Pyramid - synthesis

expand

+

expand

+

expand

+
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Reduce and expand

53

Filter rows

Subsample rows

Filter columns

Subsample rows

Reduce

்
Upsample rows

Filter rows

Upsample columns

Filter columns

Expand

Padding

்

Frequency response of 
Laplacian pyramid bands



Example: stitching and blending

54

Combine two images:

Image-space
blending

Laplacian pyramid 
blending

+
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Edge stopping filters

2

Original Edge-aware smoothing Detail enhancement

Stylization Recoloring Pencil drawing Depth-of-field

Examples from [Gastal & Oliveira 2011]



Nonlinear filters: Bilateral filter
 Goal: Smooth out the image without blurring edges

Gaussian 
filter

Bilateral
filter

3

Unsharp masking



Bilateral filter

= *

=

.
“Kernel” changes 
from one pixel to 

another
Kernel for this pixel
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Bilateral filter

pixel position

pi
xe

l v
al

ue

distance in 
the spatial position (x,y)

distance (difference) in 
pixel values

5

𝒒∈ஐ𝒒∈ஐ

௦ ଶ௦ଶ

௦ ௥

Input image

Pixel 
coordinates

Neighborhood of the 
pixel p

௥ ଶ
௦ଶ

s

s

r

r



How to make the bilateral filter fast?
 A number of approximations have been proposed

 Combination of linear filters [Durand & Dorsey 2002, Yang et 
al. 2009]

 Bilateral grid [Chen et al. 2007]
 Permutohedral lattice [Adams et al. 2010]
 Domain transform [Gastal & Oliveira 2011]

6



Joint-bilateral filter (a.k.a guided/cross b.f.)

 The “range” term does not need to operate in the same 
domain as the filter output
 Example: 

7

Stereo image pair

Estimated left-to-right disparity

Joint bilateral 
filter

A simplified 
algorithm from 
[Mueller et al. 2010]

Filtered disparity

The “range” 
term operates 
on the colour
image

The “spatial” 
term operates 
on disparities



Joint bilateral filter: Flash / no-flash

 Preserve colour and illumination from 
the no-flash image

 Use flash image to remove noise and 
add details

 [Petshnigg et al. 2004]

8

Flash No-flash

D
etail transfer w

ith denoising



Example of edge preserving filtering
 Domain Transform for Edge-Aware Image and Video 

Processing
 Video:

 https://youtu.be/Ul1xh1IQrTY?t=4m10s
 From: http://inf.ufrgs.br/~eslgastal/DomainTransform/
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Optimization-based methods

11

Poisson image editing [Perez et al. 2003]



Gradient Domain compositing
 Compositing [Wang et al. 2004]

images from [Drori at al. 2004]12



 Operate on pixel gradients instead of pixel values

Gradient domain methods

Convert to 
Gradients Process Convert to 

Color

Gradients

Pixels

13



Forward Transformation
 Forward Transformation

 Compute gradients as differences between a pixel and its two 
neighboors

 Result: 2D gradient map (2 x more values then the number of 
pixels)

14



 Usually gradient magnitudes are modified while gradient 
direction (angle) remains the same

 Examples of gradient editing functions:

Processing gradient field

15

Gradient editing 
function



Inverse transform: the difficult part
 There is no strightforward transformation from gradients to 

luminance 

Convert to 
Gradients Process Convert to 

Color

 Instead, a minimization problem is solved:

Image Pixels Desired gradients

16



Inverse transformation
 Convert modified gradients to 

pixel values
 Not trivial!
 Most gradient fields are 

inconsistent - do not produce 
valid images

 If no accurate solution is 
available, take the best possible 
solution

 Analogy: system of springs

2

1 -1

-1

10 12

11 ?
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Gradient field reconstruction: derivation
 The minimization problem is given by:

 After equating derivatives over pixel values to 0 we get:
 Derivation done in the lecture

 In matrix notation:

Laplace operator 
(NxN matrix)

Divergence of a vector
field (Nx1 vector)

Image as 
a column

vector

18



Laplace operator for 3x3 image

19



Solving sparse linear systems
 Just use “\” operator in Matlab / Octave:

 x = A \ b;

 Great “cookbook”:
 TEUKOLSKY, S.A., FLANNERY, B.P., PRESS, W.H., ANDVETTERLING, W.T. 1992. 

Numerical recipes in C. Cambridge University Press, Cambridge.

 Some general methods
 Cosine-transform – fast but cannot work with weights (next slides) and 

may suffer from floating point precision errors
 Multi-grid – fast, difficult to implement, not very flexible
 Conjugate gradient / bi-conjugate gradient – general, memory efficient, 

iterative but fast converging
 Cholesky decomposition – effective when working on sparse matrices

20



Pinching artefacts
 A common problem of 

gradient-based methods 
is that they may result in 
“pinching” artefacts (left 
image)

 Such artefacts can be 
avoided by introducing 
weights to the 
optimization problem 

21



Weighted gradients
 The new objective function is:

 so that higher weights are assigned to low gradient 
magnitudes (in the original image).

 The linear system can be derived again
 but this is a lot of work and is error-prone

22



Weighted gradients - matrix notation (1)
 The objective function:

 In the matrix notation (without weights for now):

 Gradient operators (for 3x3 pixel image):

23



Weighted gradients - matrix notation (2)
 The objective function again:

 Such over-determined least-square problem can be solved 
using pseudo-inverse:

 Or simply:

 With weights:

24



WLS filter: Edge stopping filter by 
optimization
 Weighted-least-squares optimization

 [Farbman, Z., Fattal, R., Lischinski, D., & Szeliski, R. (2008). Edge-preserving decompositions for 
multi-scale tone and detail manipulation. ACM SIGGRAPH 2008, 1–10. ]

Make reconstructed image u
possibly close to input g

Smooth out the image by making 
partial derivatives close to 0

Spatially varying smoothing – less 
smoothing near the edges

25
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Poisson image editing

 Reconstruct unknown values f given a source guidance 
gradient field v and the boundary conditions

 [Pérez, P., Michel Gangnet, & Blake, A. (2003). Poisson Image Editing. ACM Transactions 
on Graphics, 3(22), 313–318. https://doi.org/10.1145/882262.882269]



26
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Color 2 Gray
 Transform color images 

to gray scale
 Preserve color saliency

 When gradient in 
luminance close to 0

 Replace it with gradient in 
chrominance

 Reconstruct an image 
from gradients

 Gooch, A. A., Olsen, S. C., Tumblin, J., & 
Gooch, B. (2005). Color2Gray. ACM 
Transactions on Graphics, 24(3), 634. 
https://doi.org/10.1145/1073204.1073241

27



Gradient Domain: applications
 More applications:

 Lightness perception (Retinex)  [Horn 1974]
 Matting [Sun et al. 2004]
 Color to gray mapping [Gooch et al. 2005]
 Video Editing [Perez at al. 2003, Agarwala et al. 2004]
 Photoshop’s Healing Brush [Georgiev 2005]

28
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Single Program Multiple Data (SPMD)

� Consider the following vector addition example

for( i = 0:3 ) {
C[ i ] = A[ i ] + B[ i ]

}

for( i = 4:7 ) {
C[ i ] = A[ i ] + B[ i ]

}

for( i = 8:11 ) {
C[ i ] = A[ i ] + B[ i ]

}

A

B

C

||

+

A

B

C

||

+

for( i = 0:11 ) {
C[ i ] = A[ i ] + B[ i ]

}Serial program:
one program completes 
the entire task

SPMD program:
multiple copies of the
same program run on 

different chunks of the 
data

Multiple copies of the same program execute on different data in parallel

2 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/



Parallel Software – SPMD

� In the vector addition example, each chunk of data could 
be executed as an independent thread

� On modern CPUs, the overhead of creating threads is so 
high that the chunks need to be large

� In practice, usually a few threads (about as many as the number 
of CPU cores) and each is given a large amount of work to do

� For GPU programming, there is low overhead for thread 
creation, so we can create one thread per loop iteration

3 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/



Parallel Software – SPMD

Single-threaded (CPU)

// there are N elements

for(i = 0; i < N; i++)

C[i] = A[i] + B[i]

Multi-threaded (CPU)

// tid is the thread id

// P is the number of cores

for(i = 0; i < tid*N/P; i++)

C[i] = A[i] + B[i]

Massively Multi-threaded (GPU)

// tid is the thread id

C[tid] = A[tid] + B[tid]

0 1 2 3 4 5 6 7 8 9 1510

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

1

2

3

15

= loop iteration

Time

T0

T0

T1

T2

T3

T0

T1

T2

T3

T15

4 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/



Parallel programming frameworks

� These are some of more relevant frameworks for 
creating parallelized code

CUDA

OpenCL

OpenACC
OpenMP

CPU GPU

Metal



OpenCL

� OpenCL is a framework for writing parallelized code for 
CPUs, GPUs, DSPs, FPGAs and other processors

� Initially developed by Apple, now supported by AMD, IBM, 
Qualcomm, Intel and Nvidia (reluctantly)

� Versions

� Latest: OpenCL 2.2

� OpenCL C++ kernel language

� SPIR-V as intermediate representation for kernels

 Vulcan uses the same Standard Portable Intermediate Representation

� AMD, Intel

� Mostly supported: OpenCL 1.2

� Nvidia, OSX



OpenCL platforms and drivers

� To run OpenCL code you need:

� Generic ICD loader

� Included in the OS

� Installable Client Driver

� From Nvidia, Intel, etc.

� This applies to Windows and Linux, only one platform on Mac

� To develop OpenCL code you need:

� OpenCL headers/libraries

� Included in the SDKs

 Nvidia – CUDA Toolkit

 Intel OpenCL SDK

� But lightweight options are also available



Programming OpenCL

� OpenCL natively offers C99 API

� But there is also a standard OpenCL C++ API wrapper

� Strongly recommended – reduces the amount of code

� Programming OpenCL is similar to programming shaders
in OpenGL 

� Host code runs on CPU and invokes kernels

� Kernels are written in C-like programming language 

� In many respects similar to GLSL

� Kernels are passed to API as strings and compiled at runtime

� Kernels are usually stored in text files

� Kernels can be precompiled into SPIR from OpenCL 2.1



Example: Step 1 - Select device

Get all 
Platforms

Select 
Platform

Get all 
Devices

Select 
Device



Example: Step 2 - Build program

Create 
context

Load sources 
(usually from files)

Create 
Program

Build 
Program



Example: Step 3 - Create Buffers and 

copy memory 

Create 
Buffers

Create 
Queue

Enqueue
Memory Copy



Example: Step 4 - Execute Kernel and 

retrieve the results

Create 
Kernel

Set Kernel 
Arguments

Enqueue
Kernel

Enqueue
memory copy

Our Kernel was



OpenCL API Class Diagram

� Platform – Nvidia CUDA

� Device – GeForce 780

� Program – collection of 
kernels

� Buffer / Image – device 
memory

� Sampler – how to 
interpolate values for 
Image

� Command Queue – put a 
sequence of operations 
there

� Event – to notify that 
something has been done

From: OpenCL API 1.2 Reference Card



Platform model

� The host is whatever the OpenCL library runs on  

� Usually x86 CPUs for both NVIDIA and AMD

� Devices are processors that the library can talk to 

� CPUs, GPUs, DSP,s and generic accelerators

� For AMD 

� All CPUs are combined into a single device (each core is a compute unit 
and processing element)

� Each GPU is a separate device

14



Execution model

� Each kernel executes on 1D, 2D or 3D array (NDRange)

� The array is split into work-groups

� Work items (threads) in each work-group share some local 
memory

� Kernel can querry
� get_global_id(dim)

� get_group_id(dim)

� get_local_id(dim)

� Work items are not 
bound to any memory
entity 
(unlike GLSL shaders)



Memory model

� Host memory 

� Usually CPU memory, device does 
not have access to that memory

� Global memory [__global]

� Device memory, for storing large 
data

� Constant memory [__constant]

� Local memory [__local]

� Fast, accessible to all work-items 
(threads) within a workgroup

� Private memory [__private]

� Accessible to a single work-item 
(thread)



Memory objects

� Buffer

� ArrayBuffer in OpenGL

� Accessed directly via C pointers

� Image

� Texture in OpenGL

� Access via texture look-up function

� Can interpolate values, clamp, etc.

cl::Memory

cl::Buffer

cl::BufferGL cl::BufferRenderGL

cl::Image

cl::Image1D cl::Image2D cl::Image2D

cl::Image1DBuffer

This diagram is incomplete – there are more memory objects



Programming model

� Data parallel programming

� Each NDRange element is assigned to a work-item (thread)

� Each kernel can use vector-types of the device (float4, etc.)

� Task-parallel programming

� Multiple different kernels can be executed in parallel

� Command queue

� Provides means to both synchronize kernels and execute them in parallel

clCreateCommandQueue(

cl_context context,

cl_device_id device,

cl_command_queue_properties properties,

cl_int* errcode_ret)

CL_ QUEUE_ OUT_ OF_ ORDER_ EXEC_ MODE_ ENABLE
Execute out-of-order if specified, in order otherwise



Big Picture

19
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Thread Mapping

� By using different mappings, the same thread can be 
assigned to access different data elements

� The examples below show three different possible mappings of 
threads to data (assuming the thread id is used to access an 
element)

21

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Thread IDs

Mapping
int tid = 

get_global_id(1) * 

get_global_size(0) + 

get_global_id(0);

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

int tid = 

get_global_id(0) * 

get_global_size(1) + 

get_global_id(1);

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

int group_size = 

get_local_size(0) *

get_local_size(1);

int tid = 

get_group_id(1) * 

get_num_groups(0) *

group_size +

get_group_id(0) *

group_size + 

get_local_id(1) *

get_local_size(0) +  

get_local_id(0)

*assuming 2x2 groupsFrom: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/



Thread Mapping

� Consider a serial matrix multiplication algorithm

� This algorithm is suited for output data decomposition

� We will create N x M threads 

� Effectively removing the outer two loops

� Each thread will perform P calculations

� The inner loop will remain as part of the kernel

� Should the index space be MxN or NxM?

22 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/



Thread Mapping

� Thread mapping 1: with an MxN index space, the kernel would be:

� Thread mapping 2: with an NxM index space, the kernel would be:

� Both mappings produce functionally equivalent versions of the program

23

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

Mapping for C

Mapping for C

From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/



Thread Mapping

� This figure shows the execution of the two thread mappings 
on NVIDIA GeForce 285 and 8800 GPUs

� Notice that mapping 2 is far superior in performance for both 
GPUs

24 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/



Thread Mapping

� The discrepancy in execution times between the 
mappings is due to data accesses on the global memory 
bus

� Assuming row-major data, data in a row (i.e., elements in 
adjacent columns) are stored sequentially in memory

� To ensure coalesced accesses, consecutive threads in the same 
wavefront should be mapped to columns (the second 
dimension) of the matrices

� This will give coalesced accesses in Matrices B and C

� For Matrix A, the iterator i3 determines the access pattern for row-
major data, so thread mapping does not affect it

25 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/
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Reduction

� GPU offers very good 
performance for tasks 
in which the results are 
stored independently

� Process N data items 
and store in N memory 
location

float reduce_sum(float* input, int length) 

{

float accumulator = input[0];

for(int i = 1; i < length; i++) 

accumulator += input[i];

return accumulator;

}

� But many common operations require reducing N values into 1 or few values

� sum, min, max, prod, min, histogram, …

� Those operations require an efficient implementation of reduction

� The following slides are based on AMD’s OpenCL™ Optimization Case Study: Simple Reductions

� http://developer.amd.com/resources/articles-whitepapers/opencl-optimization-case-study-simple-reductions/



Reduction tree for the min operation
� barrier ensures that all threads 

(work units) in the local group 
reach that point before execution 
continue 

� Each iteration of the for loop 
computes next level of the 
reduction pyramid

__kernel

void reduce_min(__global float* buffer,

__local float* scratch,

__const int length,

__global float* result) {

int global_index = get_global_id(0);

int local_index = get_local_id(0);

// Load data into local memory

if (global_index < length) {

scratch[local_index] = buffer[global_index];

} else {

scratch[local_index] = INFINITY;

}

barrier(CLK_LOCAL_MEM_FENCE);

for(int offset = get_local_size(0) / 2;

offset > 0; offset >>= 1) {

if (local_index < offset) {

float other = scratch[local_index + offset];

float mine = scratch[local_index];

scratch[local_index] = (mine < other) ? mine : 

other;

}

barrier(CLK_LOCAL_MEM_FENCE);

} 

if (local_index == 0) {

result[get_group_id(0)] = scratch[0];

}

}



Multistage reduction

� The local memory is usually 
limited (e.g. 50kB), which 
restricts the maximum size of 
the array that can be processed

� Therefore, for large arrays need 
to be processed in multiple 
stages

� The result of a local memory 
reduction is stored in the array 
and then this array is reduced



Two-stage reduction

� First stage: serial reduction by 
N concurrent threads

� Number of threads < data items

� Second stage: parallel reduction 
in local memory

__kernel

void reduce(__global float* buffer,

__local float* scratch,

__const int length,

__global float* result) {

int global_index = get_global_id(0);

float accumulator = INFINITY;

// Loop sequentially over chunks of input 

vector

while (global_index < length) {

float element = buffer[global_index];

accumulator = (accumulator < element) ? 

accumulator : element;

global_index += get_global_size(0);

}

// Perform parallel reduction

[The same code as in the previous example]

}



Reduction performance CPU/GPU

� Different reduction algorithm may be optimal for CPU and GPU

� This can also vary from one GPU to another

� The results from: http://developer.amd.com/resources/articles-whitepapers/opencl-
optimization-case-study-simple-reductions/



Better way?

� Halide - a language for image processing and 
computational photography

� http://halide-lang.org/

� Code written in a high-level language, then translated to 
x86/SSE,  ARM, CUDA, OpenCL

� The optimization strategy defined separately as a schedule

� Auto-tune software can test thousands of schedules and 
choose the one that is the best for a particular platform

� (Semi-)automatically find the best 
trade-offs for a particular platform

� Designed for image processing but 
similar languages created for other 
purposes



OpenCL resources

� https://www.khronos.org/registry/OpenCL/

� Reference cards

� Google: “OpenCL API Reference Card”

� AMD OpenCL Programming Guide
� http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OC

L_Programming_Guide-2013-06-21.pdf
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Motivation: 3DoF vs 6DoF in VR
3DoF 6DoF
 Tracking with inexpensive 

Inertial Measurements Units
 Content: 

 Geometry-based graphics
 Omnidirectional stereo video

 May induce cyber-sickness due
due to the lack of
motion depth cues

 Requires internal (inside-
out) or external tracking

 Content:
 Geometry-based graphics
 Point-cloud rendering
 Image-based rendering

 View interpolation
 Light fields
 …

2 Source for the images: https://www.qualcomm.com/media/documents/files/on-device-motion-tracking-for-immersive-vr.pdf



3D computer graphics
 We need:

 Geometry + materials + 
textures

 Lights
 Camera

 Full control of illumination, 
realistic material appearance

 Graphics assets are 
expensive to create

 Rendering is expensive
 Shading tends to takes most of 

the computation

3

Cyberpunk 2077 (C) 2020 by CD Projekt RED



Baked / precomputed illumination
 We need:

 Geometry + textures + 
(light maps)

 Camera

 No need to 
scan/model materials

 Much faster rendering 
– simplified shading

4

Google Earth

Precomputed light maps (from Wikipedia)



Billboards / Sprites
 We need:

 Simplified geometry + textures 
(with alpha)

 Lights
 Camera

 Much faster to render than 
objects with 1000s of 
triangles

 Used for distant objects
 or a small rendering budget

 Can be pre-computed from 
complex geometry

5

A tree rendered from a set of billboards
From: 
https://docs.unity3d.com/ScriptReference/Bil
lboardAsset.html



Light fields + depth
 We need:

 Depth map
 Images of the object/scene
 Camera

 We can use camera-captured 
images

 View-dependent shading
 Depth-map can be computed 

using multi-view stereo 
techniques
 CV methods can be unreliable

 No relighting

6

A depth map is approximated by triangle 
mesh and rasterized. From: Overbeck et al. 
TOG 2018, 
https://doi.org/10.1145/3272127.3275031.

Demo: 
https://augmentedperception.github.io/welco
me-to-lightfields/



Light fields
 We need:

 Images of the scene
 Or a microlens image

 Camera

 As light fields +depth but
 No geometry, no need for 

any 3D reconstruction
 Photographs are rep-

projected on the plane
 Requires massive number of 

images for good quality

7



From a plenoptic function to a light field
 Plenoptic function – describes all possible rays in a 3D 

space
 Function of position 

and ray direction 
 But also wavelength and time 
 Between 5 and 7 dimensions

 But the number of dimensions can be reduced if
 The camera stays outside the convex hull of the object
 The light travels in uniform medium 
 Then, radiance remains the same along the ray (until the ray 

hits an object)
 This way we obtain a 4D light field or lumigraph

8



Planar 4D light field

9



Refocusing and view point adjustment 

Screen capture from http://www.lytro.com/10



Depth estimation from light field
 Passive sensing of depth
 Light field captures multiple 

depth cues
 Correspondance (disparity) 

between the views
 Defocus
 Occlusions

11

Central view
Reconstructed 
depth

From: Ting-Chun Wang, Alexei A. Efros, Ravi 
Ramamoorthi; The IEEE International Conference 
on Computer Vision (ICCV), 2015, pp. 3487-3495



Two methods to capture light fields

Micro-lens array Camera array

 Small baseline
 Good for digital refocusing
 Limited resolution

 Large baseline
 High resolution
 Rendering often requires 

approximate depth 

12



Light field image – with microlens array

13



Digital Refocusing using 
Light Field Camera

125μ square-sided microlenses [Ng et al 2005]
14

Lenslet
array



Lytro-cameras
 First commercial light-field cameras
 Lytro illum camera

 40 Mega-rays
 2D resolution: 2450 x 1634 (4 MPixels)

15



Raytrix camera
 Similar technology to Lytro
 But profiled for 

computer vision applications

16



Stanford camera array

96 cameras

Application: Reconstruction of 
occluded surfaces

17



PiCam camera array module
 Array of 4 x 4 cameras on a 

single chip
 Each camera has its own lens 

and senses only one spectral 
colour band
 Optics can be optimized for 

that band

 The algorithm needs to 
reconstruct depth

18
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Imaging – without lens

Every point in the scene illuminates every point 
(pixel) on a sensor. Everything overlaps - no useful 
image.

20



Imaging – pinhole camera

Pinhole masks all but only tiny beams of light. The light 
from different points is separated and the image is 
formed.

But very little light reaches the sensor.

21

A

B

A’

B’



Imaging – lens

Lens can focus a beam of light on a sensor (focal plane). 

Much more light-efficient than the pinhole.

22



Imaging – lens

But it the light beams coming from different distances are 
not focused on the same plane.
These points will appear blurry in the resulting image.

Camera needs to move lens to focus an image on the 
sensor. 

23



Depth of field

 Depth of field – range of depths that provides sufficient 
focus

24



Defocus blur is often desirable

25

Defocus blur is a strong depth cueTo separate the object of 
interest from background



Imaging – aperture

Aperture (introduced behind the lens) reduces the 
amount of light reaching sensor, but it also reduces 
blurriness from defocus (increases depth-of-field).

26



Imaging – lens

Focal length – length between the sensor and the lens that is 
needed to focus light coming from an infinite distance.

Larger focal length of a lens – more or less magnification?

27
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Light fields: two parametrisations
(shown in 2D)

s - slope

x - position

Ray

29

s - position

u - position

Position and slope 
(slope - tangent of the angle) Two planes



Lightfield - example

30



Lightfield - example

31



Lightfield - example

32



Lightfield - example

Image on the retina

33
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Light field rendering (1/3)

35

We want to render a scene (Blender monkey) as seen 
by camera K. We have a light field captured by a 
camera array. Each camera in the array has its aperture 
on plane C.



Light field rendering (2/3)

36

Each camera in the 
array provides 
accurate light 
measurements only for
the rays originating 
from its pinhole 
aperture. 

The missing rays can 
be either interpolated 
(reconstructed) or 
ignored. 

From the view point of 
camera K



Light field rendering (3/3)

37

The rays from the camera need to be projected on the focal 
plane F. The objects on the focal plane will be sharp, and 
the objects in front or behind that plane will be blurry
(ghosted), as in a traditional camera.

If we have a proxy geometry, we can 
project on that geometry instead – the 
rendered image will be less 
ghosted/blurry



Intuition behind light field rendering
 For large virtual aperture (use all cameras in the array) 

 Each camera in the array captures the scene
 Then, each camera projects its image on the focal plane F
 The virual camera K captures the projection 

 For small virtual aperture (pinhole)
 For each ray from the virtual camera

 interpolate rays from 4 nearest camera images

 Or use the nearest-neighbour ray

38



LF rendering – focal plane
 For a point on the focal 

plane, all cameras capture 
the same point on the 3D 
object

 They also capture 
approximately the same 
colour (for diffuse objects)

 Averaged colour will be 
the colour of the point on 
the surface

39



LF rendering – focal plane
 If the 3D object does not 

lie on the focal plane, all 
camaras capture different 
points on the object

 Averaging colour values 
will produce a „ghosted” 
image 

 If we had unlimited 
number of cameras, this 
would produce a depth-
of-field effect

40



Finding homographic transformation 1/3

 For the pixel coordinates of 
the virtual camera K, we want to 
find the corresponding 
coordinates in the camera array 
image

 Given the world 3D coordinates 
of a point :

41

View 
matrix

Projection 
matrix

Intrinsic 
camera matrix



Finding homographic transformation 2/3

 A homography between two views is usually found as:

hence

 But, is not a square matrix and cannot be 
inverted
 To find the correspondence, we need to constrain 3D 

coordinates to lie on the plane: 

42

or



Finding homographic transformation 3/3

 Then, we add the plane equation to the projection matrix

 Where is the distance to the plane (set to 0)
 Hence

43

The plane in 
the camera coordinates 
(not world coordinates)
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Electromagnetic
spectrum
 Visible light

 Electromagnetic waves of wavelength 
in the range 380nm to 730nm

 Earth’s atmosphere lets through a lot 
of light in this wavelength band

 Higher in energy than thermal 
infrared, so heat does not interfere 
with vision

3



Colour
 There is no physical definition of colour – colour is the result 

of our perception

 For reflective displays / objects

colour = perception( illumination reflectance )

 For emissive objects or displays

colour = perception( emission )

4



Black body radiation
 Electromagnetic radiation emitted by a perfect absorber at a 

given temperature
 Graphite is a good approximation of a black body

5



Correlated colour temperature
 The temperature of a black body radiator that produces light 

most closely matching the particular source
 Examples:

 Typical north-sky light: 7500 K
 Typical average daylight: 6500 K
 Domestic tungsten lamp (100 to 200 W): 2800 K
 Domestic tungsten lamp (40 to 60 W): 2700 K
 Sunlight at sunset: 2000 K

 Useful to describe colour of the illumination (source of 
light)

6



Standard illuminant D65
 Mid-day sun in Western Europe / Northern Europe
 Colour temperature approx. 6500 K

7



Reflectance
 Most of the light we see is reflected from objects
 These objects absorb a certain part of the light spectrum

Spectral reflectance of ceramic tiles

Why not 
red?

8



Reflected light

 Reflected light = illumination reflectance

The same object may appear to have 
different color under different 
illumination.

9
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Fluorescence

From: http://en.wikipedia.org/wiki/Fluorescence

10
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Colour perception
 Di-chromaticity (dogs, cats)

 Yellow & blue-violet
 Green, orange, red indistinguishable

 Tri-chromaticity (humans, monkeys)
 Red-ish, green-isn, blue-ish
 Colour-deficiency

 Most often men, green-red colour-deficiency 

www.lam.mus.ca.us/cats/color/

www.colorcube.com/illusions/clrblnd.html

12



Colour vision
 Cones are the photreceptors

responsible for colour vision
 Only daylight, we see no colours

when there is not enough light

 Three types of cones
 S – sensitive to short  

wavelengths
 M – sensitive to medium 

wavelengths
 L – sensitive to long  

wavelengths

Sensitivity curves – probability that a 
photon of that wavelengths will be 
absorbed by a photoreceptor. S,M 
and L curves are normalized in this 
plot.

13



Perceived light
 cone response = sum( sensitivity reflected light )

Although there is an infinite number of 
wavelengths, we have only three 
photoreceptor types to sense 
differences between light spectra  

730

380

)()(  dLSR SS

Formally

14 Index S for S-cones



Metamers
 Even if two light spectra are different, they may appear to have 

the same colour
 The light spectra that appear to have the same colour are 

called metamers
 Example:

*

*

= [L1, M1, S1]

= [L2, M2, S2]

=

15



Practical application of metamerism
 Displays do not emit the same light spectra as real-world 

objects
 Yet, the colours on a display look almost identical

On the display

In real world

*

*

=

= [L1, M1, S1]

= [L2, M2, S2]

16



 Observation
 Any colour can be matched 

using three linear independent 
reference colours

 May require “negative” 
contribution to test colour

 Matching curves describe the 
value for matching mono-
chromatic spectral colours of 
equal intensity
 With respect to a certain 

set of primary colours

17

Tristimulus Colour Representation



Standard Colour Space CIE-XYZ
 CIE Experiments [Guild and Wright, 1931]

 Colour matching experiments
 Group ~12 people with „normal“ colour vision
 2 degree visual field (fovea only)

 CIE 2006 XYZ
 Derived from LMS colour matching functions by Stockman & Sharpe
 S-cone response differs the most from CIE 1931

 CIE-XYZ Colour Space
 Goals

 Abstract from concrete primaries used in an experiment
 All matching functions are positive
 Primary „Y” is roughly proportionally to achromatic response (luminance)

18



Standard Colour Space CIE-XYZ
 Standardized imaginary primaries CIE 

XYZ (1931)
 Could match all physically realizable colour 

stimuli
 Cone sensitivity curves can be obtained by 

a linear transformation of CIE XYZ

19



CIE chromaticity diagram
 chromaticity values are defined in terms of x, y, z

 ignores luminance
 can be plotted as a 2D function

 pure colours (single wavelength)
lie along the outer curve

 all other colours are a mix of
pure colours and hence lie
inside the curve

 points outside the curve do not
exist as colours

20
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Achromatic/chromatic vision 
mechanisms

22

Light spectra



Achromatic/chromatic vision 
mechanisms

23

Light spectra

Sensitivity of 
the achromatic 
mechanism

Luminance does 
NOT explain the 
brightness of light! 
[Koenderink et al. 
Vision Research 
2016]



Achromatic/chromatic vision 
mechanisms

24

Light spectra



Achromatic/chromatic vision 
mechanisms

25

Light spectra



Achromatic/chromatic vision 
mechanisms

26

Light spectra

Rods

Cao et al. (2008). Vision 
Research, 48(26), 2586–92. 



Luminous efficiency function 
(weighting)

Light spectrum (radiance)

Luminance
 Luminance – measure of light weighted by the response of the 

achromatic mechanism. Units: cd/m2

Luminance

27
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 All physically possible and visible 
colours form a solid in the XYZ space

 Each display device can reproduce a 
subspace of that space

 A chromacity diagram is a projection 
of a slice taken from a 3D solid in 
XYZ space

 Colour Gamut – the solid in a colour 
space
 Usually defined in XYZ to be device-

independent

29

Visible vs. displayable colours



 HDR cameras/formats/displays attempt 
capture/represent/reproduce (almost) 
all visible colours
 They represent scene colours and 

therefore we often call this representation 
scene-referred

 SDR cameras/formats/devices attempt 
to capture/represent/reproduce only 
colours of a standard sRGB colour 
gamut, mimicking the capabilities of 
CRTs monitors
 They represent display colours and 

therefore we often call this representation 
display-referred

 30

Standard vs. High Dynamic Range



From rendering to display

31



From rendering to display
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From rendering to display
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Display encoding for SDR: gamma
 Gamma correction is often used to encode luminance or tri-

stimulus color values (RGB) in imaging systems (displays, 
printers, cameras, etc.)

Luma
Digital signal (0-1)

(relative) Luminance
Physical signal

Gamma 
(usually =2.2)

Gain

Inverse:

Colour: the same equation 
applied to red, green and blue 
colour channels. 

34



Why is gamma needed?

 Gamma-corrected pixel values give a scale of brightness levels 
that is more perceptually uniform 

 At least 12 bits (instead of 8) would be needed to encode 
each color channel without gamma correction

 And accidentally it was also the response of the CRT gun

<- Pixel value (luma)
<- Luminance

35



Luma – gray-scale pixel value
 Luma - pixel “brightness” in gamma corrected units

 , are gamma-corrected colour values
 Prime symbol denotes gamma corrected
 Used in image/video coding

 Note that relative luminance if often approximated with

 , and are linear colour values
 Luma and luminace are different quantities despite similar formulas

36



Standards for display encoding
Display type Colour space EOTF Bit depth

Standard Dynamic Range ITU-R 709 2.2 gamma / sRGB 8 to 10

High Dynamic Range ITU-R 2020 ITU-R 2100 (PQ/HLG) 10 to 12

37

Colour space
What is the XYZ of “pure” red, 

green and blue

Electro-Optical Transfer Function
How to efficiently encode each primary 

colour



How to transform between linear 
RGB colour spaces?

 From ITU-R 709 RGB to XYZ:

38

RGB
ITU-R 709

RGB
ITU-R 2020

XYZ

SDR HDRDevice-independent

Relative XYZ 
of the red 
primary

Relative XYZ 
of the green 

primary

Relative XYZ 
of the blue 

primary

Relative RGB 
(0-1) in the 
R709 space



How to transform between 
RGB colour spaces?
 From ITU-R 709 RGB to ITU-R 2020 RGB:

 From ITU-R 2020 RGB to ITU-R 709 RGB:

 Where:

and 

and 
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Representing colour
 We need a way to represent colour in the computer by some 

set of numbers
 A) preferably a small set of numbers which can be quantised to a fairly 

small number of bits each
 Gamma corrected RGB, sRGB and CMYK for printers

 B) a set of numbers that are easy to interpret 
 Munsell’s artists’ scheme
 HSV, HLS

 C) a set of numbers in a 3D space so that the (Euclidean) distance in 
that space corresponds to approximately perceptually uniform colour 
differences
 CIE Lab, CIE Luv

41



RGB spaces
 Most display devices that output light mix red, green and blue 

lights to make colour
 televisions, CRT monitors, LCD screens

 RGB colour space
 Can be linear (RGB) or display-encoded (R’G’B’)
 Can be scene-referred (HDR) or display-referred (SDR)

 There are multiple RGB colour spaces
 ITU-R 709 (sRGB), ITU-R 2020,  Adobe RGB, DCI-P3

 Each using different primary colours

 And different OETFs (gamma, PQ, etc.)

 Nominally, RGB space is a cube

42



RGB in CIE XYZ space
 Linear RGB colour values can be 

transformed into CIE XYZ
 by matrix multiplication
 because it is a rigid transformation

the colour gamut in CIE XYZ is 
a rotate and skewed cube

 Transformation into Yxy
 is non-linear (non-rigid)
 colour gamut is more complicated

43
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CMY space
 printers make colour by mixing coloured inks
 the important difference between inks (CMY) and lights (RGB) 

is that, while lights emit light, inks absorb light
 cyan absorbs red, reflects blue and green
 magenta absorbs green, reflects red and blue
 yellow absorbs blue, reflects green and red

 CMY is, at its simplest, the inverse of RGB
 CMY space is nominally a cube

44
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CMYK space

 in real printing we use black (key) 
as well as CMY

 why use black?
 inks are not perfect absorbers
 mixing C + M + Y gives a muddy grey, 

not black
 lots of text is printed in black: trying to 

align C, M and Y perfectly for black text 
would be a nightmare
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Munsell’s colour classification system
 three axes

 hue  the dominant colour
 value  bright colours/dark colours
 chroma  vivid colours/dull colours

 can represent this as a 3D graph
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Munsell’s colour classification system
 any two adjacent colours are a standard “perceptual” distance 

apart
 worked out by testing it on people
 a highly irregular space

 e.g. vivid yellow is much brighter than vivid blue

invented by Albert H. Munsell, an American artist, in 1905 in an attempt to systematically classify colours
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Colour spaces for user-interfaces
 RGB and CMY are based on the physical devices which 

produce the coloured output
 RGB and CMY are difficult for humans to use for selecting 

colours
 Munsell’s colour system is much more intuitive:

 hue — what is the principal colour?
 value — how light or dark is it?
 chroma — how vivid or dull is it?

 computer interface designers have developed basic 
transformations of RGB which resemble Munsell’s human-
friendly system
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HSV: hue saturation value
 three axes, as with Munsell

 hue and value have same meaning
 the term “saturation” replaces the 

term “chroma”
 simple conversion from gamma-

corrected RGB to HSV

 designed by Alvy Ray Smith in 1978
 algorithm to convert HSV to RGB and 

back can be found in Foley et al., 
Figs 13.33 and 13.34
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HLS: hue lightness saturation
a simple variation of HSV

 hue and saturation have same 
meaning

 the term “lightness” replaces the 
term “value”

designed to address the 
complaint that HSV has all pure 
colours having the same 
lightness/value as white
 designed by Metrick in 1979
 algorithm to convert HLS to RGB

and back can be found in Foley et 
al., Figs 13.36 and 13.37



Perceptual uniformity
 MacAdam ellipses & visually indistinguishable colours

51

In CIE xy chromatic coordinates In CIE u’v’ chromatic coordinates



CIE L*u*v* and u’v’

52

sRGB in CIE L*u*v*

 Approximately perceptually uniform
 u’v’ chromacity

 CIE LUV

 Hue and chroma

Lightness

Chromacity
coordinates

Colours less 
distinguishable 

when dark



CIE L*a*b* colour space
 Another approximately perceptually 

uniform colour space

 Chroma and hue

53

Trichromatic 
values of the 

white point, e.g. 
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Lab space

 this visualization shows those 
colours in Lab space which a 
human can perceive

 again we see that human 
perception of colour is not 
uniform
 perception of colour diminishes at 

the white and black ends of the L
axis

 the maximum perceivable chroma 
differs for different hues



Colour - references
 Chapters „Light” and „Colour” in

 Shirley, P. & Marschner, S., Fundamentals of Computer Graphics

 Textbook on colour appearance
 Fairchild, M. D. (2005). Color Appearance Models (second.). John Wiley & 

Sons. 

 Comprehensive review of colour research
 Wyszecki, G., & Stiles, W. S. (2000). Color science: concepts and methods, 

quantitative data, and formulae (Second ed.). John Wiley & Sons. 
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Many graphics/display solutions are 
motivated by visual perception

*

…
Halftonning

Image & video 
compression

Display spectral emission - metamerism

Display’s subpixels

Camera’s 
Bayer pattern

Color wheel in DLPs
2



Luminous efficiency function 
(weighting)

Light spectrum (radiance)

Luminance (again)
 Luminance – measure of light weighted by the response 

of the achromatic mechanism. Units: cd/m2

Luminance

3
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Steven’s power law for brightness
 Stevens (1906-1973) measured the perceived magnitude 

of physical stimuli
 Loudness of sound, tastes, smell, warmth, electric shock and 

brightness
 Using the magnitude estimation methods

 Ask to rate loudness on a scale with a known reference

 All measured stimuli followed the power law:

 For brightness (5 deg target in dark), a = 0.3

j(I ) = kI aPerceived 
magnitude

Physical 
stimulus

Exponent

Constant

4



Steven’s law for brightness
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6 Gamma function
Gamma = 2.2
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Detection thresholds

 The smallest detectable difference between 
 the luminance of the object and
 the luminance of the background

8



Threshold versus intensity (t.v.i.) 
function
 The smallest detectable difference in luminance for a 

given background luminance

L

ΔL

L

L+ΔL

9



t.v.i. measurements – Blackwell 1946
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Psychophysics
Threshold experiments 

L

L+ΔL

Luminance difference ΔL

P=0.75

Detection 
threshold

11



t.v.i function / c.v.i. function / Sensitivity
 The same data, different representation

t.v.i. c.v.i.
S

Contrast vs. intensityThreshold vs. intensity Sensitivity

backgrounddisk LLL =

12



Sensitivity to luminance
 Weber-law – the just-noticeable difference 

is proportional to the magnitude of a 
stimulus

The smallest 
detectable 
luminance 
difference

Background 
(adapting) 
luminance

Constant

L
ΔLTypical stimuli:

Ernst Heinrich Weber
[From wikipedia]

13

 



Consequence of the Weber-law
 Smallest detectable difference in luminance

 Adding or subtracting luminance will have different visual 
impact depending on the background luminance

 Unlike LDR luma values, luminance values are not
perceptually uniform!

L ΔL

100 cd/m2 1 cd/m2

1 cd/m2 0.01 cd/m2

14

For k=1% 



How to make luminance (more) 
perceptually uniform?

 Using “Fechnerian” integration

luminance - L

re
sp

on
se

 -
R

1

ΔL

dR
dl

(L) = 1
L(L)

Derivative of 
response

Detection 
threshold

15

Luminance 
transducer: ೘೔೙



Assuming the Weber law

 and given the luminance transducer

 the response of the visual system to light is:

16

 



Fechner law

 Response of the visual system to luminance 
is approximately logarithmic

Gustav Fechner
[From Wikipedia]

R(L) = a ln(L)

17



But…the Fechner law does not hold for 
the full luminance range

 Because the Weber law does not hold either
 Threshold vs. intensity function:

L

ΔL

The Weber law 
region

18



Weber-law revisited
 If we allow detection threshold to vary with luminance 

according to the t.v.i. function:

 we can get a more accurate estimate of the “response”:

R(L) = 1
tvi(l)

dl
0

Lò

L

ΔL tvi(L)

19



Fechnerian integration and Stevens’ law

20

R(L) - function 
derived from the 

t.v.i. function

R(L) = 1
tvi(l)

dl
0

Lò



Applications of JND encoding – R(L)
 DICOM grayscale function

 Function used to encode signal for medial 
monitors

 10-bit JND-scaled (just noticeable 
difference)

 Equal visibility of gray levels

 HDMI 2.0a (HDR10)
 PQ (Perceptual Quantizer) encoding
 Dolby Vision
 To encode pixels for high dynamic range 

images and video 

21
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Resolution and sampling rate
 Pixels per inch [ppi]

 Does not account for vision

 The visual resolution depends on
 screen size
 screen resolution
 viewing distance

 The right measure
 Pixels per visual degree [ppd]
 In frequency space

 Cycles per visual degree [cpd]

24



Fourier analysis
 Every N-dimensional function (including images) can be 

represented as a sum of sinusoidal waves of different 
frequency and phase

 Think of “equalizer” in audio software, which manipulates 
each frequency

=å

25



Spatial frequency in images
 Image space units: cycles per sample (or cycles per pixel)

 What are the screen-space frequencies of the red and green 
sinusoid?

 The visual system units: cycles per degree
 If the angular resolution of the viewed image is 55 pixels per 

degree, what is the frequency of the sinusoids in cycles per 
degree?

26



Nyquist frequency
 Sampling density restricts the highest spatial frequency 

signal that can be (uniquely) reconstructed
 Sampling density – how many pixels per image/visual angle/…

 Any number of sinusoids can be fitted to this set of samples
 It is possible to fit an infinite number of sinusoids if we allow 

infinitely high frequency

27



Nyquist frequency
 Sampling density restricts the highest spatial frequency 

signal that can be (uniquely) reconstructed
 Sampling density – how many pixels per image/visual angle/…

 Any number of sinusoids can be fitted to this set of samples
 It is possible to fit an infinite number of sinusoids if we allow 

infinitely high frequency
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Nyquist frequency
 Sampling density restricts the highest spatial frequency 

signal that can be (uniquely) reconstructed
 Sampling density – how many pixels per image/visual angle/…

 Any number of sinusoids can be fitted to this set of samples
 It is possible to fit an infinite number of sinusoids if we allow 

infinitely high frequency
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Nyquist frequency
 Sampling density restricts the highest spatial frequency 

signal that can be (uniquely) reconstructed
 Sampling density – how many pixels per image/visual angle/…

 Any number of sinusoids can be fitted to this set of samples
 It is possible to fit an infinite number of sinusoids if we allow 

infinitely high frequency

30



Nyquist frequency / aliasing
 Nuquist frequency is the highest frequency that can be 

represented by a discrete set of uniform samples (pixels)
 Nuquist frequency = 0.5 sampling rate

 For audio
 If the sampling rate is 44100 samples per second (audio CD), then the 

Nyquist frequency is 22050 Hz

 For images (visual degrees)
 If the sampling rate is 60 pixels per degree, then the Nyquist 

frequency is 30 cycles per degree

 When resampling an image to lower resolution, the 
frequency content above the Nyquist frequency needs to 
be removed (reduced in practice)
 Otherwise aliasing is visible

31



Modeling contrast detection

32

LGN
Visual

Cortex

PhotoreceptorsLens

Retinal ganglion cells
Cornea

Adaptation
Spectral sensitivity Spatial- / orientation- / temporal-

Selective channels

Luminance masking
Defocus &
Aberrations Glare

Colour opponency
P & M visual pathways Contrast masking

Integration

Detection

Contrast Sensitivity Function



Spatial frequency  [cycles per degree]
C

on
tra

st

Campbell & Robson contrast sensitivity chart
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Contrast sensitivity function

CSF = S(r,q,w, l,i2,d,e)

Spatial frequency

Orientation

Temporal frequency

Adapting luminance

Stimulus size

Viewing distance

Eccentricity

35



CSF as a function of spatial frequency

36



CSF as a function of background 
luminance
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CSF as a function of spatial frequency 
and background luminance
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Contrast constancy
Match?Experiment: Adjust the 

amplitude of one sinusoidal 
grating until it matches the 
perceived magnitude of 
another sinusoidal grating.

From: Georgeson and Sullivan. 1975. J. Phsysio.39

ReferenceTest



Contrast constancy
No CSF above the detection threshold

40



CSF and the resolution
 CSF plotted as the 

detection contrast

 The contrast below each 
line is invisible

 Maximum perceivable 
resolution depends on 
luminance

41

iPhone 4
Retina display

HTC Vive Pro

CSF models:
Barten, P. G. J. (2004). 
https://doi.org/10.1117/12.537476

Expected 
contrast in 

natural images



Spatio-chromatic CSF

42



Spatio-chromatic contrast sensitivity

 CSF as a function of luminance and frequency

Rafał Mantiuk, University of Cambridge43

Black-White Red-Green Violet-Yellow

http://dx.doi.org/10.2352/issn.
2169-2629.2020.28.1



CSF and colour 
ellipses

Rafał Mantiuk, University of Cambridge44

 Colour discrimination as a function of
– Background colour and luminance 

[LMS]
– Spatial frequency [cpd]
– Size [deg]



Visibility of blur

 The same amount of blur was introduced into light-dark, 
red-green and blue-yellow colour opponent channels

 The blur is only visible in light-dark channel
 This property is used in image and video compression

 Sub-sampling of colour channels (4:2:1)
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Mach Bands – evidence for band-pass 
visual processing

• “Overshooting“ along edges
– Extra-bright rims on bright sides
– Extra-dark rims on dark sides

• Due to “Lateral Inhibition“

47



Centre-surround (Lateral Inhibition)
 “Pre-processing” step within the retina

 Surrounding brightness level weighted negatively
 A: high stimulus, maximal bright inhibition
 B: high stimulus, reduced inhibition & stronger response
 D: low stimulus, maximal inhibition
 C: low stimulus, increased inhibition &

weaker response

Center-surround 
receptive fields

(groups of 
photoreceptors)

48



Centre-surround: Hermann Grid
• Dark dots at crossings
• Explanation

– Crossings (A)
• More surround stimulation 

(more bright area)
 Less inhibition
 Weaker response

– Streets (B)
• Less surround stimulation
 More inhibition
 Greater response

• Simulation
– Darker at crossings, brighter in streets
– Appears more steady
– What if reversed ?

A B

Sim
ulation

49



Psychedelic

some further weirdness
50



Spatial-frequency selective channels
 The visual information is 

decomposed in the visual cortex 
into multiple channels
 The channels are selective to spatial 

frequency, temporal frequency and 
orientation

 Each channel is affected by different 
„noise” level

 The CSF is the net result of 
information being passed in noise-
affected visual channels

From: Wandell, 1995
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Multi-scale decomposition

Steerable pyramid
decomposition

52



Multi-resolution visual model
 Convolution kernels 

are band-pass, 
orientation selective 
filters

 The filters have the 
shape of an oriented 
Gabor function

From: Wandell, 1995
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Predicting visible differences with CSF
 We can use CSF to find the probability of spotting a 

difference beween a pair of images and :

54

Wavelet
decomposition /

Compute
contrast

௕
Background
luminance

-1

Wavelet
reconstruction

Psychometric
function

X

Δ𝐿𝐿௕ 𝐿௕Δ𝐿௧௛௥

(simplified) Visual Difference Predictor Daly, S. (1993). 

The percept 
of image X



Applications of multi-scale models
 JPEG2000

 Wavelet decomposition

 JPEG / MPEG
 Frequency transforms

 Image pyramids
 Blending & stitching
 Hybrid images

Hybrid Images by Aude Oliva
http://cvcl.mit.edu/hybrid_gallery
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Light and dark adaptation

 Light adaptation: from dark to bright
 Dark adaptation: from bright to dark (much slower)

57



Time-course of 
adaptation

Bright -> Dark Dark -> Bright

58



Temporal adaptation mechanisms
 Bleaching & recovery of photopigment

 Slow assymetric (light -> dark, dark -> light) 
 Reaction times (1-1000 sec)
 Separate time-course for rods and cones

 Neural adaptation
 Fast
 Approx. symmetric reaction times (10-3000 ms)

 Pupil
 Diameter varies between 3 and 8 mm
 About 1:7 variation in retinal illumunation

59



Night and daylight vision

Luminous efficiency
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Simultaneous contrast

62



High-Level Contrast Processing

63



High-Level Contrast Processing

64



Shape Perception

http://www.panoptikum.net/optischetaeuschungen/index.html

• Depends on surrounding primitives
– Directional emphasis
– Size emphasis

65



Shape Processing: Geometrical Clues

http://www.panoptikum.net/optischetaeuschungen/index.html

• Automatic geometrical interpretation
– 3D perspective
– Implicit scene depth

66



Impossible Scenes

http://www.panoptikum.net/optischetaeuschungen/index.html

• Escher et.al.
– Confuse HVS by presenting 

contradicting visual clues
– Local vs. global processing

67



Virtual Movement

caused by saccades, motion from dark to bright areas 
68



Law of closure

69
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Cornell Box: need for tone-mapping in 
graphics

Rendering Photograph

2



Real-world scenes are more challenging
 The match could not be 

achieved if the light source in 
the top of the box was visible

 The display could not 
reproduce the right level of 
brightness

3



Dynamic range

max  L
min L

(for SNR>3)

Luminance



Dynamic range (contrast)
 As ratio:

 Usually written as C:1, for example 1000:1.

 As “orders of magnitude” 
or log10 units:

 As stops:

C =
Lmax

Lmin

C10 = log10
Lmax

Lmin

C2 = log2
Lmax

Lmin

One  stop is doubling
of halving the amount of light

5



High dynamic range (HDR)

Luminance [cd/m2]

10-6 10-4 10-2 100 102 104 106 108 Dynamic
Range

1000:1

1500:1

30:1
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Tone-mapping problem

luminance range [cd/m2]

conventional display

simultaneouslyhuman vision
adapted

Tone mapping

7



Why do we need tone mapping?
 To reduce dynamic range
 To customize the look 

 colour grading

 To simulate human vision 
 for example night vision

 To adapt displayed images to a display and viewing 
conditions

 To make rendered images look more realistic
 To map from scene- to display-referred colours

 Different tone mapping operators achieve different goals
8



From scene- to display-referred colours
 The primary purpose of tone mapping is to transform an 

image from scene-referred to display-referred colours

9



Tone-mapping in rendering
 Any physically-based 

rendering requires tone-
mapping

 “HDR rendering” in games is 
pseudo-physically-based 
rendering 

 Goal: to simulate a camera or 
the eye

 Greatly enhances realism

10

LDR illumination 
No tone-mapping

HDR illumination 
Tone-mapping

Half-Life 2: Lost coast

Rendering 
engine

Simulate             or

Linear 
RGB Display 

encoding
Tone 

mapping

Linear 
RGB

SDR: Gamma-encoded
HDR: PQ-encoded



Basic tone-mapping and display coding
 The simplest form of tone-mapping is the 

exposure/brightness adjustment:

 R for red, the same for green and blue
 No contrast compression, only for a moderate dynamic range

 The simplest form of display coding is the “gamma”

 For SDR displays only

Prime (‘) denotes a 
gamma-corrected value Typically =2.2 

11

Display-referred red value

Scene-referred

Scene-referred 
luminance of white
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Techniques
 Arithmetic of HDR images
 Display model
 Tone-curve
 Color transfer
 Base-detail separation
 Glare

13



Arithmetic of HDR images
 How do the basic arithmetic operations

 Addition
 Multiplication
 Power function

affect the appearance of an HDR image?
 We work in the luminance space (NOT luma)
 The same operations can be applied to linear RGB 

 Or only to luminance and the colour can be transferred 

14



Multiplication – brightness change

 Multiplication makes the 
image brighter or darker

 It does not change the 
dynamic range!

Resulting 
luminance

Input 
luminance

Brightness change 
parameter

15



Power function – contrast change
 Power function stretches or 

shrinks image dynamic 
range

 It is usually performed 
relative to a reference white
colour/luminance

 Apparent brightness 
changes is the side effect of 
pushing tones towards or 
away from the white point

 Slope on a log-log plot 
explains contrast change

Contrast change 
(gamma)

Luminance of 
white

16



Addition – black level
 Addition elevates black 

level, adds „fog” to an 
image

 It affects mostly darker 
tones

 It reduces image dynamic 
range

17

Black level 
(flare, fog)



Techniques
 Arithmetic of HDR images
 Display model
 Tone-curve
 Color transfer
 Base-detail separation
 Glare
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Display-adaptive tone mapping
 Tone-mapping can account for the physical model of a 

display
 How a display transforms pixel values into emitted light
 Useful for ambient light compensation

19
Has a similar role as display encoding, but 

can account for viewing conditions



(Forward) Display model
 GOG: Gain-Gamma-Offset

Luminance Gamma

Gain OffsetPixel value
0-1

Peak 
luminance

Display 
black level

Screen 
reflections

Ambient illumination 
(in lux)

Reflectance 
factor (0.01)

20



Inverse display model
Symbols are the same as for the forward display model

Note:  This display model does not address any colour
issues. The same equation is applied to red, green and blue 
color channels. The assumption is that the display 
primaries are the same as for the sRGB color space.

21



Display adaptive TMONon-adaptive TMO

10 300 10 000
lux

Ambient illumination compensation

22



Display adaptive TMONon-adaptive TMO

10 300 10 000
lux

Ambient illumination compensation

23



Example: Ambient light compensation
 We are looking at the screen in bright light

 We assume that the dynamic of the input is 2.6 (≈400:1)

 First, we need to compress contrast to fit the available 
dynamic range, then compensate for ambient light

24

௣௘௔௞ ିଶ Modern screens have  
reflectivity of around 0.5%௕௟௔௖௞ ିଶ

௔௠௕ ௥௘௙௟ ିଶ

௜௡ ௢௨௧ ଵ଴ ௣௘௔௞௕௟௔௖௞ ௥௘௙௟

௢௨௧ ௜௡௪௣
௥೚ೠ೟௥೔೙ ௥௘௙௟ The resulting value is in luminance, 

must be mapped to display luma / 
gamma corrected values 

(display encoded)
Simplest, but not the 
best tone mapping
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Tone-curve

Image histogram

Best tone-
mapping is the 

one which does 
not do anything, 
i.e. slope of the 
tone-mapping 
curves is equal 

to 1. 

26



Tone-curve

But in practice 
contrast (slope) 
must be limited 
due to display 

limitations.

27



Tone-curve

Global tone-
mapping is a 
compromise 

between clipping 
and contrast 
compression.

28



Sigmoidal tone-curves
 Very common in 

digital cameras
 Mimic the response 

of analog film
 Analog film has been

engineered over many
years to produce 
good tone-reproduction

 Fast to compute

29



Sigmoidal tone mapping
 Simple formula for a sigmoidal tone-curve:௕

௠ ௕ ௕
where is the geometric mean (or mean of logarithms):

௠ (௫,௬)
and is the luminance of the pixel .

30



Sigmoidal tone mapping example

a=0.25

a=1

a=4

b=0.5 b=1 b=2
31



Histogram equalization
 1. Compute normalized cummulative image histogram

 For HDR, operate in the log domain

 2. Use the cummulative histogram as a tone-mapping function

 For HDR, map the log-10 values 
to the [-drout ; 0] range
 where drout is the target dynamic 

range (of a display)

)( inout YcY =

32



Histogram equalization
 Steepest slope for strongly 

represented bins
 If many pixels have the same 

value - enhance contrast
 Reduce contrast, if few pixels

 Histogram Equalization 
distributes contrast 
distortions relative to the 
“importance” of a 
brightness level

33



Histogram adjustment with a linear ceiling
 [Larson et al. 1997, IEEE TVCG]

Linear mapping Histogram equalization
Histogram equalization

with a ceiling

34



Histogram adjustment with a linear ceiling

 Truncate the bins that exceed the ceiling;
 Distribute the removed counts to all bins;
 Repeat until converges

Ceiling, based on 
the maxiumum 
permissibble 

contrast

35



Histogram adjustment with a linear ceiling

 Truncate the bins that exceed the ceiling;
 Distribute the removed counts to all bins;
 Repeat until converges

Ceiling, based on 
the maxiumum 
permissibble 

contrast
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Histogram adjustment with a linear ceiling

 Truncate the bins that exceed the ceiling;
 Distribute the removed counts to all bins;
 Repeat until converges

Ceiling, based on 
the maxiumum 
permissibble 

contrast

37



Techniques
 Arithmetic of HDR images
 Display model
 Tone-curve
 Color transfer
 Base-detail separation
 Glare

38



Colour transfer in tone-mapping
 Many tone-mapping operators work on luminance, mean or 

maximum colour channel value 
 For speed
 To avoid colour artefacts

 Colours must be transferred later form the original image
 Colour transfer in the linear RGB colour space:

 The same formula applies to green (G) and blue (B) linear 
colour values

39

out

s

in

in
out L

L
RR 








=

Output color 
channel (red)

Saturation 
parameter

Resulting 
luminance



Colour transfer: out-of-gamut problem

40

Original image Contrast reduced (s=1)

Saturation reduced (s=0.6)Red channel

Lu
m

in
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Sa
m
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e 

of
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el

s

Colours before/after processing

 Colours often 
fall outside the 
colour gamut 
when contrast 
is compressed

 Reduction in 
saturation is 
needed to 
bring the 
colors into 
gamut

Gamut boundary



Colour transfer: alternative method
 Colour transfer in linear RGB will alter resulting 

luminance 
 Colours can be also transferred and saturation adjusted 

using CIE u’v’ chromatic coordinates

 To correct saturation:

41

HDR 
Linear RGB

RGB -> Yu’v’ Yu’v’-> RGB Tone-mapped 
Linear RGB

Tone mapping
Y

u’v’
Desaturate

Luminance

Colour

௢௨௧ᇱ ௜௡ᇱ ௪ᇱ ௪ᇱ௢௨௧ᇱ ௜௡ᇱ ௪ᇱ ௪ᇱ ௪ᇱ௪ᇱ
Chroma of the white
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Illumination & 
reflectance separation

Input

Illumination

Reflectance
43

Y = I R
Image

Illumination Reflectance



Illumination and reflectance

Reflectance Illumination

 White ≈ 90%
 Black ≈ 3%

 Dynamic range < 100:1

 Reflectance critical for 
object & shape detection

 Sun ≈ 109 cd/m2

 Lowest perceivable 
luminance ≈ 10-6 cd/m2

 Dynamic range 10,000:1 or 
more

 Visual system partially 
discounts illumination

44



Reflectance & Illumination TMO
 Hypothesis: Distortions in reflectance are more apparent 

than the distortions in illumination
 Tone mapping could preserve reflectance but compress 

illumination

 for example:

Tone-mapped image

Reflectance

Illumination

Tone-mapping

white
c

whited LLIRL = )/(
45



How to separate the two?
 (Incoming) illumination – slowly changing

 except very abrupt transitions on shadow boundaries

 Reflectance – low contrast and high frequency variations

46



Gaussian filter
 First order approximation

 Blurs sharp boundaries
 Causes halos

Tone mapping
result

47



Bilateral filter
 Better preserves sharp edges

 Still some blurring on the
edges

 Reflectance is not perfectly
separated from illumination
near edges

Tone mapping result

[Durand & Dorsey, SIGGRAPH 2002]48



Weighted-least-squares (WLS) filter
 Stronger smoothing and still distinct edges

 Can produce stronger effects
with fewer artifacts

 See „Advanced image processing”
lecture

Tone mapping result

49

[Farbman et al., SIGGRAPH 2008]



Retinex
 Retinex algorithm was initially intended to separate 

reflectance from illumination [Land 1964]
 There are many variations of Retinex, but the general principle 

is to eliminate from an image small gradients, which are 
attributed to the illumination

1 step: compute 
gradients in log domain

2nd step: set to 0 
gradients less than the 
threshold

t

G in

G out

3rd step: reconstruct an 
image from the vector 
field

For example by solving the 
Poisson equation

50



Retinex examples

51

From: http://dragon.larc.nasa.gov/retinex/757/

Original After Retinex

From:http://www.ipol.im/pub/algo/lmps_retinex_poisson_equation/#ref_1



Gradient domain HDR compression

 Similarly to Retinex, it operates on log-gradients
 But the function amplifies small contrast instead of removing it

52

[Fattal et al., 
SIGGRAPH 2002]
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Glare

“Alan Wake” © Remedy Entertainment
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Glare Illusion

55

PaintingPhotography

Computer Graphics
HDR rendering in games



Scattering of the light in the eye

From: Sekuler, R., and Blake, R. Perception, second ed. McGraw- Hill, New York, 1990 
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Ciliary corona and lenticular halo

*

=

=+ From: Spencer, G. et al. 
1995. Proc. of 
SIGGRAPH. (1995) 
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Examples of simulated glare

[From Ritschel et al, Eurographics 2009]
58



Temporal glare

59 [From Ritschel et al, Eurographics 2009]



Point Spread Function of the eye
 What portion of 

the light is 
scattered 
towards a certain 
visual angle

 To simulate:
 construct a 

digital filter
 convolve the 

image with that 
filter

Green – daytime (photopic)
Red – night time (scotopic)

From: Spencer, G. et al. 1995. 
Proc. of SIGGRAPH. (1995) 60



Selective application of glare
 A) Glare applied to the 

entire image௚
 Reduces image 

contrast and sharpness

B) Glare applied only to 
the clipped pixels௚ ௖௟௜௣௘ௗ ௖௟௜௣௘ௗ
where ௖௟௜௣௘ௗ
Better image quality

Glare kernel 
(PSF)

61



Selective application of glare

Original image

A) Glare applied to 
the entire image

B) Glare applied to 
clipped pixels only

62



Glare (or bloom) in games
 Convolution with large, non-separable filters is too slow
 The effect is approximated by a combination of Gaussian 

filters 
 Each filter with different “sigma”

 The effect is meant to look good, not be be accurate 
model of light scattering

 Some games simulate
camera rather than the eye

63



Does the exact shape of the PSF 
matter?
 The illusion of increased 

brightness works even if 
the PSF is very different 
from the PSF of the eye

red - Gaussian green - accurate

[Yoshida et al., APGV 2008] 
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HDR rendering – motion blur

65
From LDR pixels From HDR pixels



References
 Comprehensive book on HDR Imaging

 E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High 
Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting, 2nd editio. Morgan 
Kaufmann, 2010.

 Overview of HDR imaging & tone-mapping
 http://www.cl.cam.ac.uk/~rkm38/hdri_book.html

 Review of recent video tone-mapping
 A comparative review of tone-mapping algorithms for high dynamic range video

Gabriel Eilertsen, Rafal K. Mantiuk, Jonas Unger, Eurographics State-of-The-Art Report 2017.

 Selected papers on tone-mapping:
 G. W. Larson, H. Rushmeier, and C. Piatko, “A visibility matching tone reproduction operator for high dynamic range 

scenes,” IEEE Trans. Vis. Comput. Graph., vol. 3, no. 4, pp. 291–306, 1997.

 R. Wanat and R. K. Mantiuk, “Simulating and compensating changes in appearance between day and night vision,” ACM 
Trans. Graph. (Proc. SIGGRAPH), vol. 33, no. 4, p. 147, 2014.

 Spencer, G. et al. 1995. Physically-Based Glare Effects for Digital Images. Proceedings of SIGGRAPH. (1995), 325–334

 Ritschel, T. et al. 2009. Temporal Glare: Real-Time Dynamic Simulation of the Scattering in the Human Eye. Computer 
Graphics Forum. 28, 2 (Apr. 2009), 183–192

 ...

66



Rafał Mantiuk
Dept. of Computer Science and Technology, University of Cambridge

Virtual and Augmented Reality
Part 1/2 – virtual reality

The slides used in this lecture are the courtesy of Gordon Wetzstein. 
From Virtual Reality course: http://stanford.edu/class/ee267/

Advanced Graphics & Image Processing



vir·tu·al re·al·i·ty
vərCH(əw)əl rē‘alədē

the computer-generated simulation of a three-dimensional image or environment that 
can be interacted with in a seemingly real or physical way by a person using special 
electronic equipment, such as a helmet with a screen inside or gloves fitted with 
sensors.

2



vpl research



remote control of vehicles, e.g. drones

architecture walkthroughs

virtual traveleducation a trip down the rabbit hole

4



Vision treatment in VR

 Treatment of amblyopia
 Training the brain to use the

“lazy” eye

Images courtesy of 



• sensors & imaging

• computer vision

• scene understanding

• photonics / waveguides

• human perception 

• displays: visual, auditory, vestibular, 
haptic, …• VR cameras

• cloud computing

• shared experiences

• HCI

• applications

• compression, 
streaming

• CPU, GPU

• IPU, DPU?
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Exciting Engineering Aspects of VR/AR
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image by ray ban

Where We Want It To Be
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Personal Computer
e.g. Commodore PET 1983

Laptop
e.g. Apple MacBook

Smartphone
e.g. Google Pixel

AR/VR
e.g. Microsoft Hololens

???

8



1838 1968 2012-2018

Stereoscopes
Wheatstone, Brewster, …

VR & AR 
Ivan Sutherland

VR explosion
Oculus, Sony, HTC, MS, …

Nintendo
Virtual Boy

1995

???

A Brief History of Virtual Reality

9



• optical see-through AR, including:

• displays (2x 1” CRTs)

• rendering

• head tracking

• interaction

• model generation

• computer graphics

• human-computer interaction

I. Sutherland “A head-mounted three-dimensional display”, Fall Joint Computer Conference 1968

Ivan Sutherland’s HMD

10



• computer graphics & GPUs were not ready yet!

Game: Red Alarm

Nintendo Virtual Boy

11



IFIXIT teardown

Where we are now

12



Virtual Image

1
d
+
1
d '
=
1
f

d

d’
f

Problems: 

• fixed focal plane

• no focus cues 

• cannot drive 
accommodation 
with rendering!

• limited resolution

13



A dual-resolution display

 High resolution image in the 
centre, low resolution fills 
wide field-of-view

 Two displays combined using a 
beam-splitter

 Image from: https://varjo.com/bionic-display/

14
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Pepper’s Ghost 1862

16



Google Glass

17



Google Glass

18



• Larger field of view (90 deg) than Glass

• Also larger device form factor 

Meta 2

19



Microsoft HoloLens

20



• diffraction grating

• small FOV (30x17), but 
good image quality

Microsoft HoloLens

21



Microsoft HoloLens 2
 Wider field of view (52 deg)
 High resolution (47 pix per deg)
 Improved ergonomics
 Better hand tracking



• great device form factor
• polycarbonate light guide – easy to manufacture and robust
• smaller field of view (17 deg)

Zeiss Smart Optics

23



• also great form factor
• small FOV (9x6 deg)
• monochrome

Sony IMX-001

24



Video AR: ARCore, ARKit, ARToolKit, …

25



VR/AR challenges
 Latency (next lecture) 
 Tracking
 3D Image quality and resolution 
 Reproduction of depth cues (last lecture)
 Rendering & bandwidth
 Simulation/cyber sickness 
 Content creation

 Game engines
 Image-Based-Rendering

26



Simulation sickness
 Conflict between vestibular 

and visual systems
 When camera motion 

inconsistent with head motion
 Frame of reference (e.g. 

cockpit) helps
 Worse with larger FOV
 Worse with high luminance 

and flicker

27
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Overview
 Temporal aspects

 Latency in VR
 Eye-movement
 Hold-type blur

 2D displays
 2D spatial light modulators
 High dynamic range displays

2



Latency in VR
 Sources of latency in VR

 IMU ~1 ms
 sensor fusion, data transfer
 rendering: depends on complexity of 

scene & GPU – a few ms
 data transfer again
 Display

 60 Hz = 16.6 ms; 
 70 Hz = 11.1 ms;
 120 Hz = 8.3 ms.

 Target latency
 Maximum acceptable: 20ms
 Much smaller (5ms) desired 

for interactive applications

 Example
 16 ms (display) + 16 ms

(rendering) + 4 ms
(orientation tracking) = 36 
ms latency total

 At 60 deg/s head motion, 
1Kx1K, 100deg fov display: 
 19 pixels error
 Too much

3



Post-rendering image warp (time warp)
 To minimize end-to-end latency
 The method:

 get current camera pose
 render into a larger raster than the 

screen buffer
 get new camera pose
 warp rendered image using the latest 

pose, send to the display
 2D image translation 
 2D image warp 
 3D image warp

 Original paper from Mark et al. 
1997, also Darsa et al. 1997

4



Eye movement - basics

5

Fixation

Drift: 0.15-0.8 deg/s



Eye movement - basics

6

Saccade

160-300 deg/s



Eye movement - basics

7

Smooth Pursuit Eye Motion (SPEM)

Up to 80 deg/s
The gaze tends to be 5-20% slower than the object



Retinal velocity
 The eye tracks moving 

objects
 Smooth Pursuit Eye Motion 

(SPEM) stabilizes images on the 
retina

 But SPEM is imperfect

 Loss of sensitivity mostly 
caused by imperfect SPEM
 SPEM worse at high velocities

8

Spatio-velocity contrast sensitivity

Kelly’s model [1979]
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Motion sharpening 
 The visual system “sharpens” objects moving at speeds of 6 

deg/s or more

 Potentially a reason why VR appears sharper than it actually is

9



Hold-type blur
 The eye smoothly follows a moving object
 But the image on the display is “frozen” for 1/60th of a second

10
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Hold-type blur
 The eye smoothly follows a moving object
 But the image on the display is “frozen” for 1/60th of a second

11

60
 H

z 
di

sp
la

y

Physical image + eye motion + temporal integration



Original scene With hold-type blur



Hold-type blur
 The eye smoothly follows a moving object
 But the image on the display is “frozen” for 1/60th of a second
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Low persistence displays
 Most VR displays flash an 

image for a fraction of 
frame duration

 This reduces hold-type 
blur

 And also reduces the 
perceived lag of the 
rendering

14
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Black frame insertion
 Which invader appears sharper?

 A similar idea to low-persistence displays in VR
 Reduces hold-type blur

15



Flicker
 Critical Flicker Frequency

 The lowest frequency at which 
flickering stimulus appears as a 
steady field

 Measured for full-on / off 
presentation

 Strongly depends on luminance 
– big issue for HDR VR headsets

 Increases with eccentricity
 and stimulus size
 It is possible to detect flicker 

even at 2kHz
 For saccadic eye motion

16

[Hartmann et al. 1979]



Overview
 Temporal aspects

 Latency in VR
 Eye-movement
 Hold-type blur

 2D displays
 2D spatial light modulators
 High dynamic range displays
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Cathode Ray Tube

[from wikipedia]
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Spectral Composition 
 three different phosphors

 saturated and natural colors
 inexpensive
 high contrast and brightness

[from wikipedia]
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Liquid Chrystal Displays (LCD)

From: http://computer.howstuffworks.com/monitor5.htm20



Twisted neumatic LC cell

Figure from: High Dynamic Range Imaging by E. Reinhard et al.

Polarization 
filter

Liquid 
crystal 
(LC)

21



In-plane switching cell (IPS)

Figure from: High Dynamic Range Imaging by E. Reinhard et al.
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LCD

 color may change with the viewing angle
 contrast up to 3000:1
 higher resolution results in smaller fill-factor
 color LCD transmits only up to 8% (more often close to 4-

5%) light when set to full white

TN LCD

23



LCD temporal response
 Experiment on an IPS LCD screen

 We rapidly switched between two 
intensity levels at 120Hz

 Measured luminance integrated 
over 1s

 The top plot shows the difference 
between expected (ூ೟షభାூ೟ଶ ) and 
measured luminance

 The bottom plot: intensity 
measurement for the full 
brightness and half-brightness 
display settings

24



Digital Micromirror Devices 
(DMDs/DLP)

 2-D array of mirrors 
 Truly digital pixels 

 Grey levels via Pulse-Width Modulation
26



Liquid Crystal on Silicon (LCoS)
 basically a reflective LCD

 standard component in 
projectors and head mounted 
displays

 used e.g. in google glass

27



Scanning Laser Projector
 maximum contrast
 scanning rays

 very high power 
lasers needed for 
high brightness

http://elm-chan.org/works/vlp/report_e.html

28



3-chip vs. Color Wheel Display

 color wheel
 cheap
 time sequenced colors
 color fringes with motion/video

 3-chip
 complicated setup
 no color fringes

29



Virtual Retinal Display
 projection onto the retina
 challenge – small viewing box From: 

http://www.engadget.com/2010/09/17/brothers-
airscouter-floats-a-16-inch-display-onto-your-eye-
bisc/

Google – project Glass
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OLED
 based on 

electrophosphorescence
 large viewing angle
 the power consumption varies 

with the brightness of the 
image

 fast (< 1 microsec)
 arbitrary sizes

 life-span can be short
 Worst for blue OLEDs

31



Active matrix OLED
 Commonly used in mobile 

phones (AMOLED)
 Very good contrast

 But the screen more 
affected by glare than LCD 

 But limited brightness
 The brighter is OLED, the 

shorter is its live-span

32



Temporal characteristic

From: http://en.wikipedia.org/wiki/Comparison_of_display_technology33



Electronic Paper
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Prototype HDR display (2004)

35

From [Seetzen et al. SIGGRAPH 2004]



Cambridge experimental HDR display
 35,000 cd/m2 peak luminance 

 0.01 cd/m2 black level 

 LCD resolution: 2048x1536

 Backlight (DLP) resolution: 
1024x768

 Geometric-calibration with a 
DSLR camera

 Display uniformity compensation

 Bit-depth of DLP and LCD 
extended to 10 bits using spatio-
temporal dithering

36



High resolution 
Colour Image

High Dynamic 
Range Display

Modern HDR displays

• Modulated LED array
• Conventional LCD
• Image compensation Low resolution  

LED Array x =

37



HDR Display
 Two spatial modulators

 1st modulator contrast 1000:1
 2nd modulator contrast 1000:1
 Combined contrast 1000,000:1

 Idea: Replace constant backlight of LCD panels with an array of 
LEDs
 Very few (about 1000) LEDs sufficient
 Every LED intensity can be set individually
 Very flat form factor (fits in standard LCD housing)

 Issue:
 LEDs larger than LCD pixels
 This limits maximum local contrast

38



Receive Image

Drive LED

Divide Image by
LED light field to 
obtain LCD values 

Output Luminance
is the product of 
LED light field and
LCD transmission
(modest error)

Veiling Luminance

39



Receive Image

Drive LED

Divide Image by
LED light field to 
obtain LCD values 

Output Luminance
is the product of 
LED light field and
LCD transmission
(Problematic error)

Oops

Veiling Luminance

40



Veiling Luminance
 Maximum perceivable contrast

 Globally very high (5-6 orders of magnitude)
 That is why we create these displays!

 Locally can be low: 150:1

 Point-spread function of
human eye
 Refer to „HDR and

tone mapping” lecture
 Consequence: high

contrast edges 
cannot be perceived
at full contrast

41



Veiling Glare (Camera)

42



Veiling Luminance 
masks imperfection

Veiling Luminance

43



HDR rendering algorithm - high level

Desired 
image

LCD imageDLP image

DLP blur 
(PSF)

Subject to:

44
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Simplified HDR rendering algorithm
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Rendering Algorithm
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Depth perception

Stereoscopic depth cues:
binocular disparity

We see depth due to depth cues.

The  slides in this section are the courtesy of 
Piotr Didyk (http://people.mpi-inf.mpg.de/~pdidyk/)



Depth perception

Ocular depth cues:
accommodation, vergence

We see depth due to depth cues.

Vergence

Stereoscopic depth cues:
binocular disparity



Depth perception

Pictorial depth cues:
occlusion, size, shadows…

We see depth due to depth cues.

Ocular depth cues:
accommodation, vergence

Stereoscopic depth cues:
binocular disparity



Cues sensitivity
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“Perceiving layout and knowing  distances: The integration, relative potency, 
and contextual use of different information about depth” 

by Cutting and Vishton [1995]



Depth perception

Challenge:
Consistency is 

required! 
Pictorial depth cues:

occlusion, size, shadows…

We see depth due to depth cues.

Ocular depth cues:
accommodation, vergence

Stereoscopic depth cues:
binocular disparity



Simple conflict example

• Size
• Shadows
• Perspective

• Occlusion

Present cues:



Disparity & occlusion conflict

Objects in front



Disparity & occlusion conflict

Disparity & occlusion
conflict



Depth perception

Pictorial depth cues:
occlusion, size, shadows…

We see depth due to depth cues.

Ocular depth cues:
accommodation, vergence

Stereoscopic depth cues:
binocular disparity

Reproducible on a flat displays

Require 3D space
We cheat our Visual System!



Cheating our HVS

Comfort zone

Screen

Object in left eye

Object in right eye

Object perceived in 3D

Pixel disparityVergence

Depth
Vi

ew
in

g 
di

sc
om

fo
rt

Accommodation
(focal plane)



Single Image Random Dot Stereograms

 Fight the vergence vs. accommodation conflict to see the 
hidden image

12



Viewing discomfort



Comfort zones

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001

Comfort zone size depends on:
• Presented content
• Viewing condition

2 – 20 m0.3 – 0.5 m

Simple scene

70 cm



Comfort zones

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001

Comfort zone size depends on:
• Presented content
• Viewing condition

0.5 – 2 m0.2 – 0.3 m

Simple scene, user allowed to look away 
from screen

70 cm



Comfort zones

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001

Comfort zone size depends on:
• Presented content
• Viewing condition

8 – 15 cm10 – 30 cm

Difficult scene

70 cm



Comfort zones

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001

Comfort zone size depends on:
• Presented content
• Viewing condition

6 – 15 cm11 cm

Difficult scene, user allowed to look away from screen

70 cm



Comfort zones

Comfort zone size 
depends on:

• Presented content
• Viewing condition
• Screen distance

“The zone of comfort: Predicting visual discomfort with stereo displays” by Shibata et al. 2011

Other factors:
• Distance between eyes
• Depth of field
• Temporal coherence

Reproduced depth



Depth manipulation

Comfort zone

Viewing discomfort Viewing comfortScene manipulation
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Stereoscopic displays
 Stereoscopic (with glasses)

 Anaglyps (red & cyan glasses)
 Shutter glasses: most TV sets
 Circular polarization: RealD 3D  cinema,  3D displays from LG
 Interference filters: Dolby 3D cinema

 How do they work?
 Which method suffers from:

 reduced brightness;
 distorted colours;
 cross-talk between the eyes;
 cost (to manufacture)?



Stereoscopic displays
 Auto-stereoscopic (without glasses)

 Parallax barrier
 Example: Nintendo 3DS, some laptops

and mobile phones
 Switchable 2D/3D

 Lenticular lens
 Better efficiency
 Non-switchable



Light field Displays
 integral photography, e. g. [Okano98]
 micro lens-array in front of screen 
 screen at focal distance of micro lenses 

 Parallel rays for each pixel
 Each eye sees a different pixel



Light field Displays

integral photograph close-up one particular view

฀ need high resolution images
฀ taken with micro lens array
฀ screen is auto-stereoscopic 

 no glasses, multiple users
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2. Polarization

3. Shutter Glasses

4. Chromatic Filters (Dolby)

Put on Your 3D Glasses Now!

The slides used in this section are the courtesy of Gordon Wetzstein. 
From Virtual Reality course: http://stanford.edu/class/ee267/



Glasses-based Stereo
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Anaglyph Stereo - Monochrome

• render L & R images, convert to grayscale

• merge into red-cyan anaglyph by assigning I(r)=L, I(g,b)=R (I is anaglyph)

from movie “Bick Buck Bunny”





Anaglyph Stereo – Full Color

• render L & R images, do not convert to grayscale

• merge into red-cyan anaglyph by assigning I(r)=L(r), I(g,b)=R(g,b) (I is anaglyph)

from movie “Bick Buck Bunny”





http://bbb3d.renderfarming.net/download.html

Open Source Movie: Big Buck Bunny

Rendered with Blender (Open Source 3D Modeling Program)



Glasses-based Stereo



case 1 case 2 case 3

http://paulbourke.net/stereographics/stereorender/

Parallax
 Parallax is the relative distance of a 3D point projected 

into the 2 stereo images



Toe-in = incorrect! Off-axis = correct!

Parallax
 visual system only uses horizontal parallax, no vertical 

parallax!
 naïve toe-in method creates vertical parallax and visual 

discomfort

http://paulbourke.net/stereographics/stereorender/



Parallax – well done



Parallax – well done

1862
“Tending wounded Union soldiers at 
Savage's Station, Virginia, during the 

Peninsular Campaign”,
Library of Congress Prints and 

Photographs Division



Parallax – not well done (vertical parallax = unnatural)



References
 LaValle "Virtual Reality", Cambridge University Press, 

2016
 Chapter 6
 http://vr.cs.uiuc.edu/
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1 Contrast- and gradient-based methods

Many problems in image processing are easier to solve or produce better
results if operations are not peformed directly on image pixel values but on
differences between pixels. Instead of altering pixels, we can transform an
image into gradient field and then edit the values in the gradient field. Once
we are done with editing, we need to reconstruct an image from the modified
gradient field.

A few examples of gradient-based methods are shown in Figures 1 and 2.
In one common case such differences between pixels represent gradients:

for image I, a gradient at a pixel location (x, y) is computed as:

∇Ix,y =

[

Ix+1,y − Ix,y
Ix,y+1 − Ix,y

]

. (1)

The equation above is obviously a discrete approximation of a gradient, as
we are dealing with discrete pixel values rather than a continous function.
This particular approximation is called forward difference, as we take the dif-
ference between the next and current pixel. Other choices include backward
differences (current minus previous pixel) or central differences (next minus
previous pixel).

Once a gradient field is computed, we can start modifying it. Usually
better effects are achieved if the magnitude of gradients is modified and the
orientation of each gradient remains unchanged. This can be achieved by

1



(a) Original image

(b) Details enhanced (c) Cartoonized image

Figure 1: Two examples of gradient-based processing. Texture details in the
original image were enhanced to produce the result shown in (b). Contrast
was removed everywhere except at the edges to produced a cartoonized image
in (c).

multiplying gradients by the gradient editing function f():

Gx,y = ∇Ix,y ·
f (||∇Ix,y||)

||∇Ix,y||
(2)

where || · || operator computes the magnitude (norm) of the gradient.
We try to reconstruct pixel values, which would result in a gradient field

that is the closest to our modifed gradient field G = [G(x) G(y)]′. In par-
ticular, we can try to minimize the squared differences between gradients in
actual image and modified gradients:

arg min
I

∑

x,y

[

(

Ix+1,y − Ix,y −G(x)
x,y

)2
+
(

Ix,y+1 − Ix,y −G(y)
x,y

)2
]

, (3)

2



(a) Naive image copy & paste (b) Gradient-domain copy & paste

Figure 2: Comparison of naive and gradient domain image copy & paste.

x,y x+1,yx-1,y

x,y-1

x,y+1

Figure 3: When using forward-differences, a pixel with the coordinates (x, y)
is referred to in at moost four partial derivates, two along x-axis and two
along y-axis.

where the summation is over the entire image. To minimize the function
above, we need to equate its partial derivatives to 0. As we optimze for pixel
values, we need to compute partial derivates with respect to Ix,y. Fortunately,
most terms in the sum will become 0 after differentiation, as they do not
contain the differentiated variable Ix,y. For a given pixel (x, y), we need
to consider only 4 partial derivates: two belonging to the pixel (x, y), x-
derivative for the pixel on the left (x− 1, y) and y-derivative for the pixel in
the top (x, y − 1), as shown in Figure 3. This gives us:

δF

δIx,y
= − 2(Ix+1,y − Ix,y −G(x)

x,y) − 2(Ix,y+1 − Ix,y −G(y)
x,y)+ (4)

2(Ix,y − Ix−1,y −G
(x)
x−1,y) + 2(Ix,y − Ix,y−1 −G

(y)
x,y−1) . (5)
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After rearanging the terms and equating δF
δIx,y

to 0, we get:

Ix−1,y + Ix+1,y + Ix,y−1 + Ix,y+1 − 4Ix,y = G(x)
x,y −G

(x)
x−1,y + G(y)

x,y −G
(y)
x,y−1 . (6)

In these few steps we derived a discrete Poisson equation, which can be found
in many engineering problems. The Poisson equation is often written as:

∇2I = divG , (7)

where ∇2I is the discrete Laplace operator:

∇2Ix,y = Ix−1,y + Ix+1,y + Ix,y−1 + Ix,y+1 − 4Ix,y , (8)

and divG is the divergence of the vector field:

divGx,y = G(x)
x,y −G

(x)
x−1,y + G(y)

x,y −G
(y)
x,y−1 . (9)

We can also write the equation using discrete convolution operators:

I ∗





0 1 0
1 −4 1
0 1 0



 = G(x) ∗
[

−1 1 0
]

+ G(y) ∗





−1
1
0



 . (10)

Note that the covolution flips the order of elements in the kernel, thus the
row and column vectors on the right hand side are also flipped.

When equation 6 is satisfied for every pixel, it forms a system of linear
equations:

A ·









I1,1
I2,1
...

IN,M









= b (11)

Here we represent an image as a very large column vector, in which image
pixels are stacked column-after-column (in an equivalent manner they can be
stacked row-after-row). Every row of matrix A contains the Laplace operator
for a corresponding pixel. But the matrix also needs to account for the
boundary conditions, that is handle pixels that are at the image edge and
therefore do not contain neighbour on one of the sides. Matrix A for a tiny

4



3x3 image looks like this:

A =





























−2 1 0 1 0 0 0 0 0
1 −3 1 0 1 0 0 0 0
0 1 −2 0 0 1 0 0 0
1 0 0 −3 1 0 1 0 0
0 1 0 1 −4 1 0 1 0
0 0 1 0 1 −3 0 0 1
0 0 0 1 0 0 −2 1 0
0 0 0 0 1 0 1 −3 1
0 0 0 0 0 1 0 1 −2





























(12)

Obviously, the matrix is enormous for normal size images. However, most
matrix elements are 0, so it can be easily stored using a sparse matrix rep-
resentation. Note that only the pixel in the center of the image (5th row)
contains the full Laplace operator; all other pixels are missing neighbours so
the operator is adjusted accordingly. Accounting for all boundary cases is
probably the most difficult and error-prone part in formulating gradient-field
reconstruction problem. The column vector b corresponds to the right hand
side of equation 6.

2 Solving linear system

There is a large number of methods and software libraries, which can solve
a sparse linear problem given in Equation 11. The Poisson equation is typi-
cally solved using multi-grid methods, which iteratively update the solution
at different scales. Those, however, are rarther difficult to implement and tai-
lored to one particular shape of a matrix. Alternatively, the solution can be
readily found after transformation to the frequency domain (discrete cosine
transform). However, such a method does not allow introducing weights,
importance of which will be discussed in the next section. Finally, conju-
gate gradient and biconjugate gradient [1, sec. 2.7] methods provide a fast-
converging iterative method for solving sparse systems, which can be very
memory efficient. Those methods require providing only a way to compute
multiplication of the matrix A and its transpose with an arbitrary vector.
Such operation can be realized in an arbitrary way without the need to store
the sparse matrix (which can be very large even if it is sparse). The conjugate
gradient requires fewer operations than the biconjugate gradient method, but

5



(a) Uniform weights (b) Higher weights at low contrast

Figure 4: The solution of gradient field reconstruction often contain ”pinch-
ing” artefacts, such as shown in figure (a). The artefacts can be avoided if
small gradient magnitudes are weighted more than large magnitudes.

it should be used only with positive definite matrices. Matrix A is not posi-
tive definite so in principle the biconjugate gradient method should be used.
However, in practice, conjugate gradient method converges equally well.

3 Weighted reconstruction

An image resulting from solving Equation 11 often contains undesirable
”pinching” artefacts, such as those shown in Figure 4a. Those artefacts are
inherent to the nature of gradient field reconstruction — the solution is just
the best approximation of the desired gradient field but it hardly ever exactly
matches the desired gradient field. As we minimize squared differences, tiny
inaccuracies for many pixels introduce less error than large inaccuracies for
few pixels. This in turn introduces smooth gradients in the areas, where the
desired gradient field is inconsistent (cannot form an image). Such gradients
produce ”pinching” artefacts.
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The problem is that the error in reconstructed gradients is penalized the
same regardless of whether the value of the gradient is small or large. This
is opposite to how the visual system perceives differences in color values:
we are more likely to spot tiny difference between two similar pixel values
than the same tiny difference between two very different pixel values. We
could account for that effect by introducing some form of non-linear metric,
however, that would make our problem non-linear and non-linear problems
are in general much slower to solve. However, the same can be achieved by
introducing weights to our objective function:

arg min
I

∑

x,y

[

w(x)
x,y

(

Ix+1,y − Ix,y −G(x)
x,y

)2
+ w(y)

x,y

(

Ix,y+1 − Ix,y −G(y)
x,y

)2
]

,

(13)

where w
(x)
x,y and w

(y)
x,y are the weights or importance we assign to each gradi-

ent, for horizontal and vertical partial derivatives respectively. Usually the
weights are kept the same for both orientations, i.e. w

(x)
x,y = w

(y)
x,y. To account

for the contrast perception of the visual system, we need to assign a higher
weight to small gradient magnitudes. For example, we could use the weight:

w(x)
x,y = w(y)

x,y =
1

||Gx,y|| + ǫ
(14)

where ||Gx,y|| is the magnitude of the desired (target) gradient at pixel (x, y)
and ǫ is a small constant (0.0001), which prevents division by 0.

4 Matrix notation

We could follow the same procedure as in the previous section and differ-
entiate Equation 13 to find the linear system that minimizes our objective.
However, the process starts to be tedious and error-prone. As the objective
functions gets more and more complex, it is worth switching to the matrix
notation. Let us consider first our original problem without the weights wx,y,
which we will add later. Equation 3 in the matrix notation can be written
as:

arg min
I

∣

∣

∣

∣

∣

∣

∣

∣

[

∇x

∇y

]

I −

[

G(x)

G(y)

]∣

∣

∣

∣

∣

∣

∣

∣

2

. (15)

In the equation I, G(x) and G(y) are stacked column vectors, representing
columns of the resulting image or desired gradient field. The square brackets

7



denote vertical concatenation of the matrices or vectors. Operator ||·||2 is
the L2-norm, which squares and sums the elements of the resulting column
vector. ∇x and ∇y are differential operators, which are represented as N×N

matrices, where N is the number of pixels. Each row of those sparse matrices
tells us which pixels need to be subtracted from one another to compute
forward gradients along horizontal and vertical directions. For a tiny 3×3
pixel image those operators are:

∇x =





























−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0





























(16)

∇y =





























−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 0





























(17)

Note that the rows contain all zeros for pixels on the boundary, for which no
gradient can be computed: the last column of pixels for ∇x and the last row
of pixels for ∇y.

Equation 15 is in the format ||Ax − b||2, which can be directly solved
by some sparse matrix libraries, such as SciPy.sparse or the ”\” operator
in matlab Matlab. However, to reduce the size of the sparse matrix and to
speed-up computation, it is worth taking one more step and transform the
least-square optimization into a linear problem. For overdetermined systems,
such as ours, the solution of the optimization problem:

arg min
x

||Ax− b||2 (18)

8



can be found by solving a linear system:

A′Ax = A′b . (19)

Note that ′ denotes a matrix transpose and A′A is a square matrix. If we
replace A and b with the corresponding operators and gradient values from
our problem, we get the following linear system:

[

∇′

x ∇′

y

]

[

∇x

∇y

]

I =
[

∇′

x ∇′

y

]

[

G(x)

G(y)

]

, (20)

which, after multiplying stacked matrices, gives us:

(

∇′

x ∇x + ∇′

y ∇y

)

I = ∇′

x G
(x) + ∇′

y G
(y) . (21)

Weights can be added to such a system by inserting a sparse diagonal ma-
trix W . For simplicity we use the same weights for vertical and horizontal
derivatives:

(

∇′

x W ∇x + ∇′

y W ∇y

)

I = ∇′

x W G(x) + ∇′

y W G(y) . (22)

The above operations can be performed using a sparse matrix library (or
SciPy/Matlab), thus saving us effort of computing operators by hand.

There is still one problem remaining: our equation does not have a unique
solution. This is because the target gradient field contains relative informa-
tion about differences between pixels, but it does not say what the absolute
value of the pixels should be. For that reason, we need to constrain the
absolute value, for example by ensuring that a value of a first reconstructed
pixel is the same as in the source image (Isrc):

[

1 0 ... 0
]

I = Isrc(1, 1) . (23)

If we denote the vector on the left-hand side of the equation as C, the final
linear problem can be written as:

(

∇′

x W ∇x + ∇′

y W ∇y + C ′ C
)

I = ∇′

x W G(x) + ∇′

y W G(y) + C ′ Isrc(1, 1) .
(24)

The resulting equation can be solved using a sparse solver in Python or
Matlab.

9
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1 Light field rendering using homographic trans-

formation

This section explains how to render a light field for a novel view position
using a parametrization with a focal plane. The method is explained on a
rather high level in [1]. These notes are meant to provide a practical guide
on how to perform the required calculations and in particular how to find a
homographic transformation between the virtual and array cameras.

The scenario and selected symbols are illustrated in Figure 1. We want to
render our light field ”as seen” by camera K. We have N images captured by
N cameras in the array (only 4 shown in the figure), all of which have their
apertures on the camera array plane C. We further assume that our array
cameras are pin-hole cameras to simplify the explanation. The novel view
is rendered assuming focal plane F . The focal plane has a similar function
as the focus distance in a regular camera: objects on the focal plane will
be rendered sharp, while objects that and in front or behind that plane will
appear blurry (in practice they will appear ghosted because of the limited
number of cameras). The focal plane F does not need to be parallel to
the camera plane; it can be titled, unlike in a traditional camera with a
regular lens. Because we have a limited number of cameras, we need to
use reconstruction functions A0, ..., A1 (only two shown) for each camera.
The functions shown contain the weights in the range 0-1 that are used to
interpolate between two neighboring views.

To intuitively understand how light field rendering is performed, imagine
the following hypothetical scenario. Each camera in the array captures the

1



C

F

K

3D object

A0

A1

pK

p0 p1

w

pA

Figure 1: Light field rendering for the novel view represented by camera K.
The pixels PK in the rendered image is the weighted average of the pixels
values p1, ..., pN from the images captured by the camera array.

image of the scene. Then, all objects in the scene are removed and you
put a large projection screen where the focal plane F should be. Then, you
swap all cameras for projectors, which project the captured images on the
projection screen F . Finally, you put a new camera K at the desired location
and capture the image of the projection screen. The projection screen (focal
plane) is needed to form an image. Ideally, to obtain a sharp image, we
would like to project the camera array images on a geometry. However, such
a geometry is not readily available when capturing scenes with a camera
array. In this situation a single plane is often a good-enough proxy, which
has its analogy in physical cameras (focal distance). More advanced light field
rendering methods attempt to reconstruct a more accurate proxy geometry
using multi-view stereo algorithms and then project camera images on that
geometry [3].

This simplified scenario misses one step, which is modulating each pro-
jected image by the reconstruction function A, as such modulation has no
physical counterpart. However, this scenario should give you a good idea
what operations need to be performed in order to render a light field from a
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Data: Camera array images J1, J2, ..., JN
Result: Rendered image I
for each pixel at the coordinates pppK in the novel view do

I(pppK)←0;
w(pppK)←0;
for each camera i in the array do

Find the coordinates pppi in the i-th camera image
corresponding to the pixel pppK ;

Find the coordinates pppA on the aperture plane A
corresponding to the pixel pppK ;
I(pppK)←I(pppK) + A(pppA) Ji(pppi) ;
W (pppK)←W (pppK) + A(pppA) ;

end

I(pppK)←I(pppK)/W (pppK) ;

end

Algorithm 1: Light field rendering algorithm

novel view position.
Now let us see how we can turn such a high-level explanation into a

practical algorithm. One way to render a light field is shown in Algorithm 1.
The algorithm iterates over all pixels in the rendered image, then for each
pixel it iterates over all cameras in the array. The resulting image is the
weighted average of the camera images that are warped using homographic
transformations. The weights are determined by the reconstruction functions
Ai. The algorithm is straightforward, except for the mapping from pixel
coordinates in the novel view pK to coordinates in each camera image pi and
the coordinates on the aperture plane pA. The following paragraphs explain
how to find such transformations.

1.1 Homographic transformation between the virtual

and array cameras

The text below assumes that you are familiar with homogeneous coordinates
and geometric transformations, both commonly used in computer graphics
and computer vision. If these topics are still unclear, refer to Section 2.1 in
[4] (this book is available online) or Chapter 6 in [2].

We assume that we know the position and pose of each camera in the

3
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array, so that homogeneous 3D coordinates of a point in the 3D word co-
ordinate space w can be mapped to the 2D pixel coordinates pi of camera
i:

pppi = KKKPPP VVV iwww . (1)

where VVV is the view transformation, PPP is the projection matrix and KKK is the
intrinsic camera matrix. Note that we will use bold lower case symbols to
denote vectors, uppercase bold symbols for matrices and a regular font for
scalars. The operation is easier to understand if the coordinates and matrices
are expanded:





xi

yi
wi



 =





fx 0 cx
0 fy cy
0 0 1









1 0 0 0
0 1 0 0
0 0 1 0













v11 v12 v13 v14
v21 v22 v23 v24
v31 v32 v33 v34
0 0 0 1

















X
Y
Z
1









. (2)

The view matrix VVV translates and rotates the 3D coordinates of the 3D point
www so that the origin of the new coordinate system is at the camera centre,
and camera’s optical axis is aligned with the z-axis (as the view matrix in
computer graphics). This matrix can be computed using a LookAt function,
often available in graphics matrix libraries.

The projection matrix PPP may look like an odd version of an identity
matrix, but it actually drops one dimension (projects from 3D to 2D) and
copies the value of Z coordinate into the additional homogeneous coordinate
wi. Note that to compute Cartesian coordinates of the point from the homo-
geneous coordinates, we divide xi/wi and yi/wi. As wi is now equal to the
depth in the camera coordinates, this operation is equivalent to a perspec-
tive projection (you can refer to slides 88–92 in the Introduction to Graphics
Course).

The intrinsic camera matrix KKK maps the projected 3D coordinates into
pixel coordinates. fx and fy are focal lengths and cx and cy are the coordi-
nates of optical center expressed in pixel coordinates. We assume that the
intrinsic matrix is the same for all the cameras in the array.

Besides having all matrices for all cameras in the array, we also have a
similar transformation for our virtual camera K, which represents the cur-
rently rendered view:

pppK = KKKK PPP VVV K www . (3)

Our first task is to find transformation matrices that could transform from
pixel coordinates pppK in the virtual camera image into pixel coordinates pppi
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for each camera i. This is normally achieved by inverting the transformation
matrix for the novel view and combining it with the camera array transforma-
tion. However, the problem is that the product of KKKK PPP VVV K is not a square
matrix that can be inverted — it is missing one dimension. The dimension is
missing because we are projecting from 3D to 2D and one dimension (depth)
is lost.

Therefore, to map both coordinates, we need to reintroduce missing in-
formation. This is achieved by assuming that the 3D point lies on the focal
plane F . Note that the plane equation can be expressed as NNN ·(www−wwwF ) = 0,
where NNN is the plane normal, and wwwF specifies the position of the plane in
the 3D space. Operator · is the dot product. If the homogeneous coordinates
of the point www are

[

X Y Z 1
]

, the plane equation can be expressed as

d =
[

nx ny nz −NNN ·wwwF

]









X
Y
Z
1









, (4)

where d is the distance to the plane and NNN =
[

nx ny nz

]

. We can introduce
the plane equation into the projection matrix from Equation 2:
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(5)
The product of the matrices in above is a full 4×4 transformation matrix,
which is not rank-deficient and can be inverted. Note that the pixel coordi-
nates pppK and pppi now have an extra dimension d, which should be set to 0
(because we constrain 3D point w to lie on the plane).

It should be noted that the normal and the point in the plane equation
have superscript (c), which denotes that the plane is given in the camera co-
ordinate system, rather than in the world coordinate system. This is because
the point

[

X Y Z 1
]

is transformed from the world to the camera coordi-
nates by the view matrix ViViVi before it is multiplied by our modified projection
matrix. This could be a desired behavior for the virtual camera, for example
if we want the focal plane to follow the camera and be perpendicular to the
camera’s optical axis. But, if we simply want to specify the focal plane in the
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world coordinates, we have two options: either replace the third row in the
final matrix (obtained after multiplying the three matrices in Equation 5)
with our plane equation in the world coordinate system; or to transform the
plane to the camera coordinates:

www
(c)
F = VVV iwwwF (6)

and
NNN (c) = VVV iNNN . (7)

VVV i is the ”normal” or direction transformation for the view matrix VVV i, which
rotates the normal vector but it does not translate it. It is obtained by
setting to zero the translation coefficients w14, w24, w34.

Now let us find the final mapping from the virtual camera coordinates p̂ppK
to the array camera coordinates p̂ppi. We will denote the extended coordinates
(with extra d) in Equation 5 as p̂ppK and p̂ppi. We will also denote our new

projection and intrinsic matrices in Equation 5 as P̂̂P̂P and K̂̂K̂K. Given that, the
mapping from pppK to pppi can be expressed as:

p̂ppi = K̂̂K̂Ki P̂̂P̂P VVV iVVV
−1
K P̂̂P̂P−1 K̂̂K̂K−1

K p̂ppK . (8)

The position on the aperture plane wwwA can be readily found from:

wwwA = VVV −1
i P̂̂P̂P−1

A K̂̂K̂K−1
i p̂ppK , (9)

where the projection matrix P̂̂P̂PA is modified to include the plane equation of
the aperture plane, the same way as done in Equation 5.

1.2 Reconstruction functions

The choice of the reconstruction function Ai will determine how images from
different cameras are mixed together. The functions shown in Figure 1 will
perform bilinear-interpolation between the views. Although this could be a
rational choice, it will result in ghosting for the parts of the scene that are
further away from the focal plane F . Another choice is to simulate a wide-
aperture camera and include all cameras in the generated view (set Ai = 1).
This will produce an image with a very shallow depth of field. Another
possibility is to use the nearest-neighbor strategy and a box-shaped recon-
struction filter (the width of the boxes being equal to the distance between
the cameras). This approach will avoid ghosting but will cause the views
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to jump sharply as the virtual camera moves over the scene. It is worth
experimenting with different reconstruction startegies to choose the best for
a given application but also for the given angular resolution of the light field
(number of views).
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