

Advanced Graphics & Image Processing

Stereo Rendering

Part 1/3 – depth perception

Rafał Mantiuk Dept. of Computer Science and Technology, University of Cambridge

We see depth due to depth cues.

Stereoscopic depth cues:

binocular disparity

The slides in this section are the courtesy of Piotr Didyk (http://people.mpi-inf.mpg.de/~pdidyk/)

We see depth due to depth cues.

Stereoscopic depth cues:

binocular disparity

Ocular depth cues:

accommodation, vergence

We see depth due to depth cues.

Stereoscopic depth cues:

binocular disparity

Ocular depth cues: accommodation, vergence

Pictorial depth cues:

occlusion, size, shadows...

Cues sensitivity

"Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth" by Cutting and Vishton [1995]

We see depth due to depth cues.

Stereoscopic depth cues:

binocular disparity

Ocular depth cues:

accommodation, vergence

Pictorial depth cues:

occlusion, size, shadows...

Challenge:

Consistency is required!

Simple conflict example

Present cues:

- Size
- Shadows
- Perspective
- Occlusion

Disparity & occlusion conflict

Disparity & occlusion conflict

We see depth due to depth cues.

Stereoscopic depth cues:

binocular disparity

Ocular depth cues:

accommodation, vergence

Require 3D space

We cheat our Visual System!

Pictorial depth cues:

occlusion, size, shadows...

Reproducible on a flat displays

Cheating our HVS

Single Image Random Dot Stereograms

 Fight the vergence vs. accommodation conflict to see the hidden image

Viewing discomfort

Comfort zone size depends on:

- Presented content
- Viewing condition

Comfort zone size depends on:

- Presented content
- Viewing condition

Simple scene, user allowed to look away from screen 0.2 – 0.3 m 0.5 – 2 m 70 cm "Controlling Perceived Depth in Stereoscopic Images" by Jones et al. 2001

Comfort zone size depends on:

- Presented content
- Viewing condition

Difficult scene

Comfort zone size depends on:

- Presented content
- Viewing condition

Difficult scene, user allowed to look away from screen

Comfort zone size depends on:

- Presented content
- Viewing condition
- Screen distance

Other factors:

- Distance between eyes
- Depth of field
- Temporal coherence

"The zone of comfort: Predicting visual discomfort with stereo displays" by Shibata et al. 2011

Depth manipulation

Comfort zone

Viewing discomfort Scene manipulation Viewing comfort

Advanced Graphics & Image Processing

Stereo Rendering

Part 2/3 – 3D display technologies

Rafał Mantiuk Dept. of Computer Science and Technology, University of Cambridge

Stereoscopic displays

- Stereoscopic (with glasses)
 - Anaglyps (red & cyan glasses)
 - Shutter glasses: most TV sets
 - Circular polarization: RealD 3D cinema, 3D displays from LG
 - Interference filters: Dolby 3D cinema
- How do they work?
- Which method suffers from:
 - reduced brightness;
 - distorted colours;
 - cross-talk between the eyes;
 - > cost (to manufacture)?

Stereoscopic displays

- Auto-stereoscopic (without glasses)
 - Parallax barrier
 - Example: Nintendo 3DS, some laptops and mobile phones
 - Switchable 2D/3D
 - Lenticular lens
 - Better efficiency
 - Non-switchable

Light field Displays

- integral photography, e. g. [Okano98]
- micro lens-array in front of screen
- screen at focal distance of micro lenses
 - → Parallel rays for each pixel
 - \rightarrow Each eye sees a different pixel

Light field Displays

integral photograph

- need high resolution images
- taken with micro lens array
- screen is auto-stereoscopic
 - \rightarrow no glasses, multiple users

one particular view

Advanced Graphics & Image Processing

Stereo Rendering

Part 3/3 – stereo rendering

Rafał Mantiuk Dept. of Computer Science and Technology, University of Cambridge

Put on Your 3D Glasses Now!

The slides used in this section are the courtesy of Gordon Wetzstein. From Virtual Reality course: http://stanford.edu/class/ee267/

Anaglyph Stereo - Monochrome

- render L & R images, convert to grayscale
- merge into red-cyan anaglyph by assigning I(r)=L, I(g,b)=R (I is anaglyph)

from movie "Bick Buck Bunny"

Anaglyph Stereo – Full Color

- render L & R images, do not convert to grayscale
- merge into red-cyan anaglyph by assigning I(r)=L(r), I(g,b)=R(g,b) (I is anaglyph)

from movie "Bick Buck Bunny"

Open Source Movie: Big Buck Bunny

Rendered with Blender (Open Source 3D Modeling Program)

http://bbb3d.renderfarming.net/download.html

Parallax

Parallax is the relative distance of a 3D point projected into the 2 stereo images

Parallax

- visual system only uses horizontal parallax, no vertical parallax!
- naïve toe-in method creates vertical parallax and visual discomfort

Parallax – well done

Parallax – well done

1862 "Tending wounded Union soldiers at Savage's Station, Virginia, during the Peninsular Campaign", Library of Congress Prints and Photographs Division

Parallax – not well done (vertical parallax = unnatural)

References

- LaValle "Virtual Reality", Cambridge University Press, 2016
 - Chapter 6
 - http://vr.cs.uiuc.edu/