

Advanced Graphics & Image Processing

Virtual and Augmented Reality

Part 1/2 – virtual reality

Rafał Mantiuk Dept. of Computer Science and Technology, University of Cambridge

> The slides used in this lecture are the courtesy of Gordon Wetzstein. From Virtual Reality course: http://stanford.edu/class/ee267/

vir·tu·al re·al·i·ty vərCH(əw)əl rē'alədē

the computer-generated simulation of a three-dimensional image or environment that can be interacted with in a seemingly real or physical way by a person using <u>special</u> <u>electronic equipment</u>, such as a helmet with a screen inside or gloves fitted with sensors.

simulation & training

gaming

education

virtual travel

visualization & entertainment remote control of vehicles, e.g. drones

architecture walkthroughs

a trip down the rabbit hole

Vision treatment in VR

Treatment of amblyopia

Training the brain to use the "lazy" eye

Exciting Engineering Aspects of VR/AR

- cloud computing
- shared experiences

 compression, streaming

- photonics / waveguides
- human perception
- displays: visual, auditory, vestibular, haptic, ...

CPU, GPU

IPU, DPU?

- sensors & imaging
- computer vision
- scene understanding
 - HCI
 - applications

Where We Want It To Be

image by ray ban

e.g. Microsoft Hololens

8

A Brief History of Virtual Reality

Ivan Sutherland's HMD

- optical see-through AR, including:
 - displays (2x 1" CRTs)
 - rendering
 - head tracking
 - interaction
 - model generation
- computer graphics
- human-computer interaction

I. Sutherland "A head-mounted three-dimensional display", Fall Joint Computer Conference 1968

Nintendo Virtual Boy

• computer graphics & GPUs were not ready yet!

Game: Red Alarm

Where we are now

IFIXIT teardown

A dual-resolution display

- High resolution image in the centre, low resolution fills wide field-of-view
- Two displays combined using a beam-splitter
- Image from: https://varjo.com/bionic-display/

Advanced Graphics & Image Processing

Virtual and Augmented Reality

Part 1/2 – augmented reality

Rafał Mantiuk Dept. of Computer Science and Technology, University of Cambridge

> The slides used in this lecture are the courtesy of Gordon Wetzstein. From Virtual Reality course: http://stanford.edu/class/ee267/

Pepper's Ghost 1862

- Larger field of view (90 deg) than Glass
- Also larger device form factor

Microsoft HoloLens

Microsoft HoloLens

- diffraction grating •
- small FOV (30x17), but • good image quality

US 2016/0231568

(19)	United	States
(12)	Patent	Applicatio

(51) Int. Cl. G02B 27/01 G02B 5/18 F21V 8/00

(12) Patent Application Publication (12) Saarikko et al.			ion (10) Pub. No.: US 2016/0231568 A1 (43) Pub. Date: Aug. 11, 2016
(54)	WAVEGU	IDE	(52) U.S. Cl.
(71)	Applicant:	Microsoft Technology Licensing, LLC, Redmond, WA (US)	CPC
(72)	Inventors:	Pasi Saarikko, Espoo (FI); Pasi Kostamo, Espoo (FI)	(57) ABSTRACT
(21)	Appl. No.:	14/617,697	A waveguide has a front and a rear surface, the waveguide for a display system and arranged to guide light from a light engine onto an eye of a user to make an image visible to the user the light guided through the waveguide by reflection at
(22)	Filed:	Feb. 9, 2015	the front and rear surfaces. A first portion of the front or rear surface has a structure which causes light to change phase
	Publication Classification		upon reflection from the first portion by a first amount. A second portion of the same surface has a different structure which causes light to change phase upon reflection from the
(51)	Int. Cl.		second portion by a second amount different from the first
	G02B 27/0	01 (2006.01)	amount. The first portion is offset from the second portion by
	G02B 5/18	(2006.01)	a distance which substantially matches the difference
	F21V 8/00	(2006.01)	between the second amount and the first amount.

Microsoft HoloLens 2

- Wider field of view (52 deg)
- High resolution (47 pix per deg)
- Improved ergonomics
- Better hand tracking

Zeiss Smart Optics

- great device form factor
- polycarbonate light guide easy to manufacture and robust
- smaller field of view (17 deg)

Sony IMX-001

- also great form factor
- small FOV (9x6 deg)
- monochrome

Video AR: ARCore, ARKit, ARToolKit, ...

VR/AR challenges

- Latency (next lecture)
- Tracking
- 3D Image quality and resolution
- Reproduction of depth cues (last lecture)
- Rendering & bandwidth
- Simulation/cyber sickness
- Content creation
 - Game engines
 - Image-Based-Rendering

Simulation sickness

- Conflict between vestibular and visual systems
 - When camera motion inconsistent with head motion
 - Frame of reference (e.g. cockpit) helps
 - Worse with larger FOV
 - Worse with high luminance and flicker

References

- LaValle "Virtual Reality", Cambridge University Press, 2016
 - http://vr.cs.uiuc.edu/
- Virtual Reality course from the Stanford Computational Imaging group
 - http://stanford.edu/class/ee267/