
PERL(1) Perl Programmers Reference Guide PERL(1)

NAME
perl − The Perl 5 language interpreter

SYNOPSIS
perl [−sTtuUWX] [−hv] [−V[:configvar]]

[−cw] [−d[t][:debugger]] [−D[number/list]]
[−pna] [−Fpattern] [−l[octal]] [−0[octal/hexadecimal]]
[−Idir] [−m[−]module] [−M[−]’module...’] [−f] [−C [number/list]] [−S]
[−x[dir]] [−i[extension]]
[[−e|−E] ’command’] [−−] [programfile] [argument]...

For more information on these options, you can run perldoc perlrun.

GETTING HELP
The perldoc program gives you access to all the documentation that comes with Perl. You can get more
documentation, tutorials and community support online at <http://www.perl.org/>.

If you’re new to Perl, you should start by running perldoc perlintro, which is a general intro for
beginners and provides some background to help you navigate the rest of Perl’s extensive documentation.
Run perldoc perldoc to learn more things you can do with perldoc.

For ease of access, the Perl manual has been split up into several sections.

Overview
perl Perl overview (this section)
perlintro Perl introduction for beginners
perlrun Perl execution and options
perltoc Perl documentation table of contents

Tutorials
perlreftut Perl references short introduction
perldsc Perl data structures intro
perllol Perl data structures: arrays of arrays

perlrequick Perl regular expressions quick start
perlretut Perl regular expressions tutorial

perlootut Perl OO tutorial for beginners

perlperf Perl Performance and Optimization Techniques

perlstyle Perl style guide

perlcheat Perl cheat sheet
perltrap Perl traps for the unwary
perldebtut Perl debugging tutorial

perlfaq Perl frequently asked questions
perlfaq1 General Questions About Perl
perlfaq2 Obtaining and Learning about Perl
perlfaq3 Programming Tools
perlfaq4 Data Manipulation
perlfaq5 Files and Formats
perlfaq6 Regexes
perlfaq7 Perl Language Issues
perlfaq8 System Interaction
perlfaq9 Networking

Reference Manual

perl v5.26.1 2018-11-19 1

PERL(1) Perl Programmers Reference Guide PERL(1)

perlsyn Perl syntax
perldata Perl data structures
perlop Perl operators and precedence
perlsub Perl subroutines
perlfunc Perl built−in functions
perlopentut Perl open() tutorial
perlpacktut Perl pack() and unpack() tutorial

perlpod Perl plain old documentation
perlpodspec Perl plain old documentation format specification
perlpodstyle Perl POD style guide
perldiag Perl diagnostic messages
perldeprecation Perl deprecations
perllexwarn Perl warnings and their control
perldebug Perl debugging
perlvar Perl predefined variables
perlre Perl regular expressions, the rest of the story
perlrebackslash Perl regular expression backslash sequences
perlrecharclass Perl regular expression character classes
perlreref Perl regular expressions quick reference
perlref Perl references, the rest of the story
perlform Perl formats
perlobj Perl objects
perltie Perl objects hidden behind simple variables
perldbmfilter Perl DBM filters

perlipc Perl interprocess communication
perlfork Perl fork() information
perlnumber Perl number semantics

perlthrtut Perl threads tutorial

perlport Perl portability guide
perllocale Perl locale support
perluniintro Perl Unicode introduction
perlunicode Perl Unicode support
perlunicook Perl Unicode cookbook
perlunifaq Perl Unicode FAQ
perluniprops Index of Unicode properties in Perl
perlunitut Perl Unicode tutorial
perlebcdic Considerations for running Perl on EBCDIC platforms

perlsec Perl security

perlmod Perl modules: how they work
perlmodlib Perl modules: how to write and use
perlmodstyle Perl modules: how to write modules with style
perlmodinstall Perl modules: how to install from CPAN
perlnewmod Perl modules: preparing a new module for distribution
perlpragma Perl modules: writing a user pragma

perlutil utilities packaged with the Perl distribution

perlfilter Perl source filters

perldtrace Perl's support for DTrace

perlglossary Perl Glossary

2 2018-11-19 perl v5.26.1

PERL(1) Perl Programmers Reference Guide PERL(1)

Internals and C Language Interface
perlembed Perl ways to embed perl in your C or C++ application
perldebguts Perl debugging guts and tips
perlxstut Perl XS tutorial
perlxs Perl XS application programming interface
perlxstypemap Perl XS C/Perl type conversion tools
perlclib Internal replacements for standard C library functions
perlguts Perl internal functions for those doing extensions
perlcall Perl calling conventions from C
perlmroapi Perl method resolution plugin interface
perlreapi Perl regular expression plugin interface
perlreguts Perl regular expression engine internals

perlapi Perl API listing (autogenerated)
perlintern Perl internal functions (autogenerated)
perliol C API for Perl's implementation of IO in Layers
perlapio Perl internal IO abstraction interface

perlhack Perl hackers guide
perlsource Guide to the Perl source tree
perlinterp Overview of the Perl interpreter source and how it works
perlhacktut Walk through the creation of a simple C code patch
perlhacktips Tips for Perl core C code hacking
perlpolicy Perl development policies
perlgit Using git with the Perl repository

Miscellaneous
perlbook Perl book information
perlcommunity Perl community information

perldoc Look up Perl documentation in Pod format

perlhist Perl history records
perldelta Perl changes since previous version
perl5260delta Perl changes in version 5.26.0
perl5242delta Perl changes in version 5.24.2
perl5241delta Perl changes in version 5.24.1
perl5240delta Perl changes in version 5.24.0
perl5224delta Perl changes in version 5.22.4
perl5223delta Perl changes in version 5.22.3
perl5222delta Perl changes in version 5.22.2
perl5221delta Perl changes in version 5.22.1
perl5220delta Perl changes in version 5.22.0
perl5203delta Perl changes in version 5.20.3
perl5202delta Perl changes in version 5.20.2
perl5201delta Perl changes in version 5.20.1
perl5200delta Perl changes in version 5.20.0
perl5184delta Perl changes in version 5.18.4
perl5182delta Perl changes in version 5.18.2
perl5181delta Perl changes in version 5.18.1
perl5180delta Perl changes in version 5.18.0
perl5163delta Perl changes in version 5.16.3
perl5162delta Perl changes in version 5.16.2
perl5161delta Perl changes in version 5.16.1
perl5160delta Perl changes in version 5.16.0
perl5144delta Perl changes in version 5.14.4
perl5143delta Perl changes in version 5.14.3
perl5142delta Perl changes in version 5.14.2
perl5141delta Perl changes in version 5.14.1

perl v5.26.1 2018-11-19 3

PERL(1) Perl Programmers Reference Guide PERL(1)

perl5140delta Perl changes in version 5.14.0
perl5125delta Perl changes in version 5.12.5
perl5124delta Perl changes in version 5.12.4
perl5123delta Perl changes in version 5.12.3
perl5122delta Perl changes in version 5.12.2
perl5121delta Perl changes in version 5.12.1
perl5120delta Perl changes in version 5.12.0
perl5101delta Perl changes in version 5.10.1
perl5100delta Perl changes in version 5.10.0
perl589delta Perl changes in version 5.8.9
perl588delta Perl changes in version 5.8.8
perl587delta Perl changes in version 5.8.7
perl586delta Perl changes in version 5.8.6
perl585delta Perl changes in version 5.8.5
perl584delta Perl changes in version 5.8.4
perl583delta Perl changes in version 5.8.3
perl582delta Perl changes in version 5.8.2
perl581delta Perl changes in version 5.8.1
perl58delta Perl changes in version 5.8.0
perl561delta Perl changes in version 5.6.1
perl56delta Perl changes in version 5.6
perl5005delta Perl changes in version 5.005
perl5004delta Perl changes in version 5.004

perlexperiment A listing of experimental features in Perl

perlartistic Perl Artistic License
perlgpl GNU General Public License

Language-Specific
perlcn Perl for Simplified Chinese (in EUC−CN)
perljp Perl for Japanese (in EUC−JP)
perlko Perl for Korean (in EUC−KR)
perltw Perl for Traditional Chinese (in Big5)

Platform-Specific
perlaix Perl notes for AIX
perlamiga Perl notes for AmigaOS
perlandroid Perl notes for Android
perlbs2000 Perl notes for POSIX−BC BS2000
perlce Perl notes for WinCE
perlcygwin Perl notes for Cygwin
perldos Perl notes for DOS
perlfreebsd Perl notes for FreeBSD
perlhaiku Perl notes for Haiku
perlhpux Perl notes for HP−UX
perlhurd Perl notes for Hurd
perlirix Perl notes for Irix
perllinux Perl notes for Linux
perlmacos Perl notes for Mac OS (Classic)
perlmacosx Perl notes for Mac OS X
perlnetware Perl notes for NetWare
perlopenbsd Perl notes for OpenBSD
perlos2 Perl notes for OS/2
perlos390 Perl notes for OS/390
perlos400 Perl notes for OS/400
perlplan9 Perl notes for Plan 9
perlqnx Perl notes for QNX
perlriscos Perl notes for RISC OS
perlsolaris Perl notes for Solaris

4 2018-11-19 perl v5.26.1

PERL(1) Perl Programmers Reference Guide PERL(1)

perlsymbian Perl notes for Symbian
perlsynology Perl notes for Synology
perltru64 Perl notes for Tru64
perlvms Perl notes for VMS
perlvos Perl notes for Stratus VOS
perlwin32 Perl notes for Windows

Stubs for Deleted Documents
perlboot
perlbot
perlrepository
perltodo
perltooc
perltoot

On Debian systems, you need to install the perl-doc package which contains the majority of the standard
Perl documentation and the perldoc program.

Extensive additional documentation for Perl modules is available, both those distributed with Perl and third-
party modules which are packaged or locally installed.

You should be able to view Perl’s documentation with your man (1) program or perldoc (1).

Some documentation is not available as man pages, so if a cross-reference is not found by man, try it with
perldoc. Perldoc can also take you directly to documentation for functions (with the −f switch). See
perldoc −−help (or perldoc perldoc or man perldoc) for other helpful options perldoc has to
offer.

In general, if something strange has gone wrong with your program and you’re not sure where you should
look for help, try making your code comply with use strict and use warnings. These will often point out
exactly where the trouble is.

DESCRIPTION
Perl officially stands for Practical Extraction and Report Language, except when it doesn’t.

Perl was originally a language optimized for scanning arbitrary text files, extracting information from those
text files, and printing reports based on that information. It quickly became a good language for many
system management tasks. Over the years, Perl has grown into a general-purpose programming language.
It’s widely used for everything from quick ‘‘one-liners’’ to full-scale application development.

The language is intended to be practical (easy to use, efficient, complete) rather than beautiful (tiny, elegant,
minimal). It combines (in the author’s opinion, anyway) some of the best features of sed, awk, and sh,
making it familiar and easy to use for Unix users to whip up quick solutions to annoying problems. Its
general-purpose programming facilities support procedural, functional, and object-oriented programming
paradigms, making Perl a comfortable language for the long haul on major projects, whatever your bent.

Perl’s roots in text processing haven’t been forgotten over the years. It still boasts some of the most
powerful regular expressions to be found anywhere, and its support for Unicode text is world-class. It
handles all kinds of structured text, too, through an extensive collection of extensions. Those libraries,
collected in the CPAN, provide ready-made solutions to an astounding array of problems. When they
haven’t set the standard themselves, they steal from the best — just like Perl itself.

AV AILABILITY
Perl is available for most operating systems, including virtually all Unix-like platforms. See ‘‘Supported
Platforms’’ in perlport for a listing.

ENVIRONMENT
See perlrun.

AUTHOR
Larry Wall <larry@wall.org>, with the help of oodles of other folks.

If your Perl success stories and testimonials may be of help to others who wish to advocate the use of Perl
in their applications, or if you wish to simply express your gratitude to Larry and the Perl developers,
please write to perl−thanks@perl.org .

perl v5.26.1 2018-11-19 5

PERL(1) Perl Programmers Reference Guide PERL(1)

FILES
"@INC" locations of perl libraries

‘‘@INC’’ above is a reference to the built-in variable of the same name; see perlvar for more information.

SEE ALSO
http://www.perl.org/ the Perl homepage
http://www.perl.com/ Perl articles (O'Reilly)
http://www.cpan.org/ the Comprehensive Perl Archive
http://www.pm.org/ the Perl Mongers

DIAGNOSTICS
Using the use strict pragma ensures that all variables are properly declared and prevents other
misuses of legacy Perl features.

The use warnings pragma produces some lovely diagnostics. One can also use the −w flag, but its use
is normally discouraged, because it gets applied to all executed Perl code, including that not under your
control.

See perldiag for explanations of all Perl’s diagnostics. The use diagnostics pragma automatically
turns Perl’s normally terse warnings and errors into these longer forms.

Compilation errors will tell you the line number of the error, with an indication of the next token or token
type that was to be examined. (In a script passed to Perl via −e switches, each −e is counted as one line.)

Setuid scripts have additional constraints that can produce error messages such as ‘‘Insecure dependency’’.
See perlsec.

Did we mention that you should definitely consider using the use warnings pragma?

BUGS
The behavior implied by the use warnings pragma is not mandatory.

Perl is at the mercy of your machine’s definitions of various operations such as type casting, atof(), and
floating-point output with sprintf().

If your stdio requires a seek or eof between reads and writes on a particular stream, so does Perl. (This
doesn’t apply to sysread() and syswrite().)

While none of the built-in data types have any arbitrary size limits (apart from memory size), there are still
a few arbitrary limits: a giv en variable name may not be longer than 251 characters. Line numbers
displayed by diagnostics are internally stored as short integers, so they are limited to a maximum of 65535
(higher numbers usually being affected by wraparound).

You may mail your bug reports (be sure to include full configuration information as output by the myconfig
program in the perl source tree, or by perl −V) to perlbug@perl.org . If you’ve succeeded in compiling
perl, the perlbug script in the utils/ subdirectory can be used to help mail in a bug report.

Perl actually stands for Pathologically Eclectic Rubbish Lister, but don’t tell anyone I said that.

NOTES
The Perl motto is ‘‘There’s more than one way to do it.’’ Divining how many more is left as an exercise to
the reader.

The three principal virtues of a programmer are Laziness, Impatience, and Hubris. See the Camel Book for
why.

6 2018-11-19 perl v5.26.1

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

NAME
perlsyn − Perl syntax

DESCRIPTION
A Perl program consists of a sequence of declarations and statements which run from the top to the bottom.
Loops, subroutines, and other control structures allow you to jump around within the code.

Perl is a free-form language: you can format and indent it however you like. Whitespace serves mostly to
separate tokens, unlike languages like Python where it is an important part of the syntax, or Fortran where it
is immaterial.

Many of Perl’s syntactic elements are optional. Rather than requiring you to put parentheses around every
function call and declare every variable, you can often leave such explicit elements off and Perl will figure
out what you meant. This is known as Do What I Mean, abbreviated DWIM. It allows programmers to be
lazy and to code in a style with which they are comfortable.

Perl borrows syntax and concepts from many languages: awk, sed, C, Bourne Shell, Smalltalk, Lisp and
ev en English. Other languages have borrowed syntax from Perl, particularly its regular expression
extensions. So if you have programmed in another language you will see familiar pieces in Perl. They
often work the same, but see perltrap for information about how they differ.

Declarations
The only things you need to declare in Perl are report formats and subroutines (and sometimes not even
subroutines). A scalar variable holds the undefined value (undef) until it has been assigned a defined
value, which is anything other than undef. When used as a number, undef is treated as 0; when used as
a string, it is treated as the empty string, ""; and when used as a reference that isn’t being assigned to, it is
treated as an error. If you enable warnings, you’ll be notified of an uninitialized value whenever you treat
undef as a string or a number. Well, usually. Boolean contexts, such as:

if ($a) {}

are exempt from warnings (because they care about truth rather than definedness). Operators such as ++,
−−, +=, −=, and .=, that operate on undefined variables such as:

undef $a;
$a++;

are also always exempt from such warnings.

A declaration can be put anywhere a statement can, but has no effect on the execution of the primary
sequence of statements: declarations all take effect at compile time. All declarations are typically put at the
beginning or the end of the script. However, if you’re using lexically-scoped private variables created with
my(), state(), or our(), you’ll have to make sure your format or subroutine definition is within the
same block scope as the my if you expect to be able to access those private variables.

Declaring a subroutine allows a subroutine name to be used as if it were a list operator from that point
forward in the program. You can declare a subroutine without defining it by saying sub name, thus:

sub myname;
$me = myname $0 or die "can't get myname";

A bare declaration like that declares the function to be a list operator, not a unary operator, so you have to
be careful to use parentheses (or or instead of ||.) The || operator binds too tightly to use after list
operators; it becomes part of the last element. You can always use parentheses around the list operators
arguments to turn the list operator back into something that behaves more like a function call.
Alternatively, you can use the prototype ($) to turn the subroutine into a unary operator:

sub myname ($);
$me = myname $0 || die "can't get myname";

That now parses as you’d expect, but you still ought to get in the habit of using parentheses in that situation.
For more on prototypes, see perlsub.

Subroutines declarations can also be loaded up with the require statement or both loaded and imported
into your namespace with a use statement. See perlmod for details on this.

A statement sequence may contain declarations of lexically-scoped variables, but apart from declaring a
variable name, the declaration acts like an ordinary statement, and is elaborated within the sequence of
statements as if it were an ordinary statement. That means it actually has both compile-time and run-time

perl v5.26.1 2018-11-19 7

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

effects.

Comments
Te xt from a "#" character until the end of the line is a comment, and is ignored. Exceptions include "#"
inside a string or regular expression.

Simple Statements
The only kind of simple statement is an expression evaluated for its side-effects. Every simple statement
must be terminated with a semicolon, unless it is the final statement in a block, in which case the semicolon
is optional. But put the semicolon in anyway if the block takes up more than one line, because you may
ev entually add another line. Note that there are operators like eval {}, sub {}, and do {} that look
like compound statements, but aren’t — they’re just TERMs in an expression — and thus need an explicit
termination when used as the last item in a statement.

Truth and Falsehood
The number 0, the strings '0' and "", the empty list (), and undef are all false in a boolean context.
All other values are true. Negation of a true value by ! or not returns a special false value. When
evaluated as a string it is treated as "", but as a number, it is treated as 0. Most Perl operators that return
true or false behave this way.

Statement Modifiers
Any simple statement may optionally be followed by a SINGLE modifier, just before the terminating
semicolon (or block ending). The possible modifiers are:

if EXPR
unless EXPR
while EXPR
until EXPR
for LIST
foreach LIST
when EXPR

The EXPR following the modifier is referred to as the ‘‘condition’’. Its truth or falsehood determines how
the modifier will behave.

if executes the statement once if and only if the condition is true. unless is the opposite, it executes the
statement unless the condition is true (that is, if the condition is false).

print "Basset hounds got long ears" if length $ear >= 10;
go_outside() and play() unless $is_raining;

The for(each) modifier is an iterator: it executes the statement once for each item in the LIST (with $_
aliased to each item in turn).

print "Hello $_!\n" for qw(world Dolly nurse);

while repeats the statement while the condition is true. until does the opposite, it repeats the statement
until the condition is true (or while the condition is false):

Both of these count from 0 to 10.
print $i++ while $i <= 10;
print $j++ until $j > 10;

The while and until modifiers have the usual "while loop" semantics (conditional evaluated first),
except when applied to a do−BLOCK (or to the Perl4 do−SUBROUTINE statement), in which case the
block executes once before the conditional is evaluated.

This is so that you can write loops like:

do {
$line = <STDIN>;
...

} until !defined($line) || $line eq ".\n"

See ‘‘do’’ in perlfunc. Note also that the loop control statements described later will NOT work in this
construct, because modifiers don’t take loop labels. Sorry. You can always put another block inside of it
(for next/redo) or around it (for last) to do that sort of thing.

For next or redo, just double the braces:

8 2018-11-19 perl v5.26.1

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

do {{
next if $x == $y;
do something here

}} until $x++ > $z;

For last, you have to be more elaborate and put braces around it:

{
do {

last if $x == $y**2;
do something here

} while $x++ <= $z;
}

If you need both next and last, you have to do both and also use a loop label:

LOOP: {
do {{

next if $x == $y;
last LOOP if $x == $y**2;
do something here

}} until $x++ > $z;
}

NOTE: The behaviour of a my, state, or our modified with a statement modifier conditional or loop
construct (for example, my $x if ...) is undefined. The value of the my variable may be undef, any
previously assigned value, or possibly anything else. Don’t rely on it. Future versions of perl might do
something different from the version of perl you try it out on. Here be dragons.

The when modifier is an experimental feature that first appeared in Perl 5.14. To use it, you should include
a use v5.14 declaration. (Technically, it requires only the switch feature, but that aspect of it was not
available before 5.14.) Operative only from within a foreach loop or a given block, it executes the
statement only if the smartmatch $_ ˜˜ EXPR is true. If the statement executes, it is followed by a next
from inside a foreach and break from inside a given.

Under the current implementation, the foreach loop can be anywhere within the when modifier’s
dynamic scope, but must be within the given block’s lexical scope. This restriction may be relaxed in a
future release. See ‘‘Switch Statements’’ below.

Compound Statements
In Perl, a sequence of statements that defines a scope is called a block. Sometimes a block is delimited by
the file containing it (in the case of a required file, or the program as a whole), and sometimes a block is
delimited by the extent of a string (in the case of an eval).

But generally, a block is delimited by curly brackets, also known as braces. We will call this syntactic
construct a BLOCK.

The following compound statements may be used to control flow:

if (EXPR) BLOCK
if (EXPR) BLOCK else BLOCK
if (EXPR) BLOCK elsif (EXPR) BLOCK ...
if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK

unless (EXPR) BLOCK
unless (EXPR) BLOCK else BLOCK
unless (EXPR) BLOCK elsif (EXPR) BLOCK ...
unless (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK

given (EXPR) BLOCK

LABEL while (EXPR) BLOCK
LABEL while (EXPR) BLOCK continue BLOCK

LABEL until (EXPR) BLOCK

perl v5.26.1 2018-11-19 9

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

LABEL until (EXPR) BLOCK continue BLOCK

LABEL for (EXPR; EXPR; EXPR) BLOCK
LABEL for VAR (LIST) BLOCK
LABEL for VAR (LIST) BLOCK continue BLOCK

LABEL foreach (EXPR; EXPR; EXPR) BLOCK
LABEL foreach VAR (LIST) BLOCK
LABEL foreach VAR (LIST) BLOCK continue BLOCK

LABEL BLOCK
LABEL BLOCK continue BLOCK

PHASE BLOCK

The experimental given statement is not automatically enabled; see ‘‘Switch Statements’’ below for how
to do so, and the attendant caveats.

Unlike in C and Pascal, in Perl these are all defined in terms of BLOCKs, not statements. This means that
the curly brackets are required−−no dangling statements allowed. If you want to write conditionals without
curly brackets, there are several other ways to do it. The following all do the same thing:

if (!open(FOO)) { die "Can't open $FOO: $!" }
die "Can't open $FOO: $!" unless open(FOO);
open(FOO) || die "Can't open $FOO: $!";
open(FOO) ? () : die "Can't open $FOO: $!";

a bit exotic, that last one

The if statement is straightforward. Because BLOCKs are always bounded by curly brackets, there is
never any ambiguity about which if an else goes with. If you use unless in place of if, the sense of
the test is reversed. Like if, unless can be followed by else. unless can even be followed by one or
more elsif statements, though you may want to think twice before using that particular language
construct, as everyone reading your code will have to think at least twice before they can understand what’s
going on.

The while statement executes the block as long as the expression is true. The until statement executes
the block as long as the expression is false. The LABEL is optional, and if present, consists of an identifier
followed by a colon. The LABEL identifies the loop for the loop control statements next, last, and
redo. If the LABEL is omitted, the loop control statement refers to the innermost enclosing loop. This
may include dynamically looking back your call-stack at run time to find the LABEL. Such desperate
behavior triggers a warning if you use the use warnings pragma or the −w flag.

If there is a continue BLOCK, it is always executed just before the conditional is about to be evaluated
again. Thus it can be used to increment a loop variable, even when the loop has been continued via the
next statement.

When a block is preceding by a compilation phase keyword such as BEGIN, END, INIT, CHECK, or
UNITCHECK, then the block will run only during the corresponding phase of execution. See perlmod for
more details.

Extension modules can also hook into the Perl parser to define new kinds of compound statements. These
are introduced by a keyword which the extension recognizes, and the syntax following the keyword is
defined entirely by the extension. If you are an implementor, see ‘‘PL_keyword_plugin’’ in perlapi for the
mechanism. If you are using such a module, see the module’s documentation for details of the syntax that
it defines.

Loop Control
The next command starts the next iteration of the loop:

LINE: while (<STDIN>) {
next LINE if /ˆ#/; # discard comments
...

}

The last command immediately exits the loop in question. The continue block, if any, is not

10 2018-11-19 perl v5.26.1

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

executed:

LINE: while (<STDIN>) {
last LINE if /ˆ$/; # exit when done with header
...

}

The redo command restarts the loop block without evaluating the conditional again. The continue
block, if any, is not executed. This command is normally used by programs that want to lie to themselves
about what was just input.

For example, when processing a file like /etc/termcap. If your input lines might end in backslashes to
indicate continuation, you want to skip ahead and get the next record.

while (<>) {
chomp;
if (s/\\$//) {

$_ .= <>;
redo unless eof();

}
now process $_

}

which is Perl shorthand for the more explicitly written version:

LINE: while (defined($line = <ARGV>)) {
chomp($line);
if ($line =˜ s/\\$//) {

$line .= <ARGV>;
redo LINE unless eof(); # not eof(ARGV)!

}
now process $line

}

Note that if there were a continue block on the above code, it would get executed only on lines
discarded by the regex (since redo skips the continue block). A continue block is often used to reset line
counters or m?pat? one-time matches:

inspired by :1,$g/fred/s//WILMA/
while (<>) {

m?(fred)? && s//WILMA $1 WILMA/;
m?(barney)? && s//BETTY $1 BETTY/;
m?(homer)? && s//MARGE $1 MARGE/;

} continue {
print "$ARGV $.: $_";
close ARGV if eof; # reset $.
reset if eof; # reset ?pat?

}

If the word while is replaced by the word until, the sense of the test is reversed, but the conditional is
still tested before the first iteration.

Loop control statements don’t work in an if or unless, since they aren’t loops. You can double the
braces to make them such, though.

if (/pattern/) {{
last if /fred/;
next if /barney/; # same effect as "last",

but doesn't document as well
do something here

}}

This is caused by the fact that a block by itself acts as a loop that executes once, see ‘‘Basic BLOCKs’’.

The form while/if BLOCK BLOCK, available in Perl 4, is no longer available. Replace any
occurrence of if BLOCK by if (do BLOCK).

perl v5.26.1 2018-11-19 11

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

For Loops
Perl’s C−style for loop works like the corresponding while loop; that means that this:

for ($i = 1; $i < 10; $i++) {
...

}

is the same as this:

$i = 1;
while ($i < 10) {

...
} continue {

$i++;
}

There is one minor difference: if variables are declared with my in the initialization section of the for, the
lexical scope of those variables is exactly the for loop (the body of the loop and the control sections).

As a special case, if the test in the for loop (or the corresponding while loop) is empty, it is treated as
true. That is, both

for (;;) {
...

}

and

while () {
...

}

are treated as infinite loops.

Besides the normal array index looping, for can lend itself to many other interesting applications. Here’s
one that avoids the problem you get into if you explicitly test for end-of-file on an interactive file descriptor
causing your program to appear to hang.

$on_a_tty = −t STDIN && −t STDOUT;
sub prompt { print "yes? " if $on_a_tty }
for (prompt(); <STDIN>; prompt()) {

do something
}

Using readline (or the operator form, <EXPR>) as the conditional of a for loop is shorthand for the
following. This behaviour is the same as a while loop conditional.

for (prompt(); defined($_ = <STDIN>); prompt()) {
do something

}

Foreach Loops
The foreach loop iterates over a normal list value and sets the scalar variable VAR to be each element of
the list in turn. If the variable is preceded with the keyword my, then it is lexically scoped, and is therefore
visible only within the loop. Otherwise, the variable is implicitly local to the loop and regains its former
value upon exiting the loop. If the variable was previously declared with my, it uses that variable instead of
the global one, but it’s still localized to the loop. This implicit localization occurs only in a foreach loop.

The foreach keyword is actually a synonym for the for keyword, so you can use either. If VAR is
omitted, $_ is set to each value.

If any element of LIST is an lvalue, you can modify it by modifying VAR inside the loop. Conversely, if any
element of LIST is NOT an lvalue, any attempt to modify that element will fail. In other words, the
foreach loop index variable is an implicit alias for each item in the list that you’re looping over.

If any part of LIST is an array, foreach will get very confused if you add or remove elements within the
loop body, for example with splice. So don’t do that.

foreach probably won’t do what you expect if VAR is a tied or other special variable. Don’t do that

12 2018-11-19 perl v5.26.1

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

either.

As of Perl 5.22, there is an experimental variant of this loop that accepts a variable preceded by a backslash
for VAR, in which case the items in the LIST must be references. The backslashed variable will become an
alias to each referenced item in the LIST, which must be of the correct type. The variable needn’t be a
scalar in this case, and the backslash may be followed by my. To use this form, you must enable the
refaliasing feature via use feature. (See feature. See also ‘‘Assigning to References’’ in
perlref.)

Examples:

for (@ary) { s/foo/bar/ }

for my $elem (@elements) {
$elem *= 2;

}

for $count (reverse(1..10), "BOOM") {
print $count, "\n";
sleep(1);

}

for (1..15) { print "Merry Christmas\n"; }

foreach $item (split(/:[\\\n:]*/, $ENV{TERMCAP})) {
print "Item: $item\n";

}

use feature "refaliasing";
no warnings "experimental::refaliasing";
foreach \my %hash (@array_of_hash_references) {

do something which each %hash
}

Here’s how a C programmer might code up a particular algorithm in Perl:

for (my $i = 0; $i < @ary1; $i++) {
for (my $j = 0; $j < @ary2; $j++) {

if ($ary1[$i] > $ary2[$j]) {
last; # can't go to outer :−(

}
$ary1[$i] += $ary2[$j];

}
this is where that last takes me

}

Whereas here’s how a Perl programmer more comfortable with the idiom might do it:

OUTER: for my $wid (@ary1) {
INNER: for my $jet (@ary2) {

next OUTER if $wid > $jet;
$wid += $jet;

}
}

See how much easier this is? It’s cleaner, safer, and faster. It’s cleaner because it’s less noisy. It’s safer
because if code gets added between the inner and outer loops later on, the new code won’t be accidentally
executed. The next explicitly iterates the other loop rather than merely terminating the inner one. And
it’s faster because Perl executes a foreach statement more rapidly than it would the equivalent for loop.

Perceptive Perl hackers may have noticed that a for loop has a return value, and that this value can be
captured by wrapping the loop in a do block. The reward for this discovery is this cautionary advice: The
return value of a for loop is unspecified and may change without notice. Do not rely on it.

perl v5.26.1 2018-11-19 13

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

Basic BLOCKs
A BLOCK by itself (labeled or not) is semantically equivalent to a loop that executes once. Thus you can
use any of the loop control statements in it to leave or restart the block. (Note that this is NOT true in
eval{}, sub{}, or contrary to popular belief do{} blocks, which do NOT count as loops.) The
continue block is optional.

The BLOCK construct can be used to emulate case structures.

SWITCH: {
if (/ˆabc/) { $abc = 1; last SWITCH; }
if (/ˆdef/) { $def = 1; last SWITCH; }
if (/ˆxyz/) { $xyz = 1; last SWITCH; }
$nothing = 1;

}

You’ll also find that foreach loop used to create a topicalizer and a switch:

SWITCH:
for ($var) {

if (/ˆabc/) { $abc = 1; last SWITCH; }
if (/ˆdef/) { $def = 1; last SWITCH; }
if (/ˆxyz/) { $xyz = 1; last SWITCH; }
$nothing = 1;

}

Such constructs are quite frequently used, both because older versions of Perl had no official switch
statement, and also because the new version described immediately below remains experimental and can
sometimes be confusing.

Switch Statements
Starting from Perl 5.10.1 (well, 5.10.0, but it didn’t work right), you can say

use feature "switch";

to enable an experimental switch feature. This is loosely based on an old version of a Perl 6 proposal, but it
no longer resembles the Perl 6 construct. You also get the switch feature whenever you declare that your
code prefers to run under a version of Perl that is 5.10 or later. For example:

use v5.14;

Under the ‘‘switch’’ feature, Perl gains the experimental keywords given, when, default, continue,
and break. Starting from Perl 5.16, one can prefix the switch keywords with CORE:: to access the
feature without a use feature statement. The keywords given and when are analogous to switch
and case in other languages — though continue is not — so the code in the previous section could be
rewritten as

use v5.10.1;
for ($var) {

when (/ˆabc/) { $abc = 1 }
when (/ˆdef/) { $def = 1 }
when (/ˆxyz/) { $xyz = 1 }
default { $nothing = 1 }

}

The foreach is the non-experimental way to set a topicalizer. If you wish to use the highly experimental
given, that could be written like this:

use v5.10.1;
given ($var) {

when (/ˆabc/) { $abc = 1 }
when (/ˆdef/) { $def = 1 }
when (/ˆxyz/) { $xyz = 1 }
default { $nothing = 1 }

}

As of 5.14, that can also be written this way:

14 2018-11-19 perl v5.26.1

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

use v5.14;
for ($var) {

$abc = 1 when /ˆabc/;
$def = 1 when /ˆdef/;
$xyz = 1 when /ˆxyz/;
default { $nothing = 1 }

}

Or if you don’t care to play it safe, like this:

use v5.14;
given ($var) {

$abc = 1 when /ˆabc/;
$def = 1 when /ˆdef/;
$xyz = 1 when /ˆxyz/;
default { $nothing = 1 }

}

The arguments to given and when are in scalar context, and given assigns the $_ variable its topic
value.

Exactly what the EXPR argument to when does is hard to describe precisely, but in general, it tries to guess
what you want done. Sometimes it is interpreted as $_ ˜˜ EXPR, and sometimes it is not. It also
behaves differently when lexically enclosed by a given block than it does when dynamically enclosed by
a foreach loop. The rules are far too difficult to understand to be described here. See ‘‘Experimental
Details on given and when’’ later on.

Due to an unfortunate bug in how given was implemented between Perl 5.10 and 5.16, under those
implementations the version of $_ governed by given is merely a lexically scoped copy of the original,
not a dynamically scoped alias to the original, as it would be if it were a foreach or under both the
original and the current Perl 6 language specification. This bug was fixed in Perl 5.18 (and lexicalized $_
itself was removed in Perl 5.24).

If your code still needs to run on older versions, stick to foreach for your topicalizer and you will be less
unhappy.

Goto
Although not for the faint of heart, Perl does support a goto statement. There are three forms:
goto−LABEL, goto−EXPR, and goto−&NAME. A loop’s LABEL is not actually a valid target for a
goto; it’s just the name of the loop.

The goto−LABEL form finds the statement labeled with LABEL and resumes execution there. It may not
be used to go into any construct that requires initialization, such as a subroutine or a foreach loop. It
also can’t be used to go into a construct that is optimized away. It can be used to go almost anywhere else
within the dynamic scope, including out of subroutines, but it’s usually better to use some other construct
such as last or die. The author of Perl has never felt the need to use this form of goto (in Perl, that
is — C is another matter).

The goto−EXPR form expects a label name, whose scope will be resolved dynamically. This allows for
computed gotos per FORTRAN, but isn’t necessarily recommended if you’re optimizing for
maintainability:

goto(("FOO", "BAR", "GLARCH")[$i]);

The goto−&NAME form is highly magical, and substitutes a call to the named subroutine for the
currently running subroutine. This is used by AUTOLOAD() subroutines that wish to load another
subroutine and then pretend that the other subroutine had been called in the first place (except that any
modifications to @_ in the current subroutine are propagated to the other subroutine.) After the goto, not
ev en caller() will be able to tell that this routine was called first.

In almost all cases like this, it’s usually a far, far better idea to use the structured control flow mechanisms
of next, last, or redo instead of resorting to a goto. For certain applications, the catch and throw pair
of eval{} and die() for exception processing can also be a prudent approach.

perl v5.26.1 2018-11-19 15

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

The Ellipsis Statement
Beginning in Perl 5.12, Perl accepts an ellipsis, "...", as a placeholder for code that you haven’t
implemented yet. This form of ellipsis, the unimplemented statement, should not be confused with the
binary flip-flop ... operator. One is a statement and the other an operator. (Perl doesn’t usually confuse
them because usually Perl can tell whether it wants an operator or a statement, but see below for
exceptions.)

When Perl 5.12 or later encounters an ellipsis statement, it parses this without error, but if and when you
should actually try to execute it, Perl throws an exception with the text Unimplemented:

use v5.12;
sub unimplemented { ... }
eval { unimplemented() };
if ($@ =˜ /ˆUnimplemented at /) {

say "I found an ellipsis!";
}

You can only use the elliptical statement to stand in for a complete statement. These examples of how the
ellipsis works:

use v5.12;
{ ... }
sub foo { ... }
...;
eval { ... };
sub somemeth {

my $self = shift;
...;

}
$x = do {

my $n;
...;
say "Hurrah!";
$n;

};

The elliptical statement cannot stand in for an expression that is part of a larger statement, since the ... is
also the three-dot version of the flip-flop operator (see ‘‘Range Operators’’ in perlop).

These examples of attempts to use an ellipsis are syntax errors:

use v5.12;

print ...;
open(my $fh, ">", "/dev/passwd") or ...;
if ($condition && ...) { say "Howdy" };

There are some cases where Perl can’t immediately tell the difference between an expression and a
statement. For instance, the syntax for a block and an anonymous hash reference constructor look the same
unless there’s something in the braces to give Perl a hint. The ellipsis is a syntax error if Perl doesn’t guess
that the { ... } is a block. In that case, it doesn’t think the ... is an ellipsis because it’s expecting an
expression instead of a statement:

@transformed = map { ... } @input; # syntax error

Inside your block, you can use a ; before the ellipsis to denote that the { ... } is a block and not a hash
reference constructor. Now the ellipsis works:

@transformed = map {; ... } @input; # ';' disambiguates

Note: Some folks colloquially refer to this bit of punctuation as a ‘‘yada-yada’’ or ‘‘triple-dot’’, but its true
name is actually an ellipsis.

PODs: Embedded Documentation
Perl has a mechanism for intermixing documentation with source code. While it’s expecting the beginning
of a new statement, if the compiler encounters a line that begins with an equal sign and a word, like this

16 2018-11-19 perl v5.26.1

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

=head1 Here There Be Pods!

Then that text and all remaining text up through and including a line beginning with =cut will be ignored.
The format of the intervening text is described in perlpod.

This allows you to intermix your source code and your documentation text freely, as in

=item snazzle($)

The snazzle() function will behave in the most spectacular
form that you can possibly imagine, not even excepting
cybernetic pyrotechnics.

=cut back to the compiler, nuff of this pod stuff!

sub snazzle($) {
my $thingie = shift;
.........

}

Note that pod translators should look at only paragraphs beginning with a pod directive (it makes parsing
easier), whereas the compiler actually knows to look for pod escapes even in the middle of a paragraph.
This means that the following secret stuff will be ignored by both the compiler and the translators.

$a=3;
=secret stuff
warn "Neither POD nor CODE!?"
=cut back
print "got $a\n";

You probably shouldn’t rely upon the warn() being podded out forever. Not all pod translators are well-
behaved in this regard, and perhaps the compiler will become pickier.

One may also use pod directives to quickly comment out a section of code.

Plain Old Comments (Not!)
Perl can process line directives, much like the C preprocessor. Using this, one can control Perl’s idea of
filenames and line numbers in error or warning messages (especially for strings that are processed with
eval()). The syntax for this mechanism is almost the same as for most C preprocessors: it matches the
regular expression

example: '# line 42 "new_filename.plx"'
/ˆ\# \s*
line \s+ (\d+) \s*
(?:\s("?)([ˆ"]+)\g2)? \s*
$/x

with $1 being the line number for the next line, and $3 being the optional filename (specified with or
without quotes). Note that no whitespace may precede the #, unlike modern C preprocessors.

There is a fairly obvious gotcha included with the line directive: Debuggers and profilers will only show the
last source line to appear at a particular line number in a given file. Care should be taken not to cause line
number collisions in code you’d like to debug later.

Here are some examples that you should be able to type into your command shell:

% perl
line 200 "bzzzt"
the '#' on the previous line must be the first char on line
die 'foo';
__END_ _
foo at bzzzt line 201.

% perl
line 200 "bzzzt"
eval qq[\n#line 2001 ""\ndie 'foo']; print $@;

perl v5.26.1 2018-11-19 17

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

__END_ _
foo at − line 2001.

% perl
eval qq[\n#line 200 "foo bar"\ndie 'foo']; print $@;
__END_ _
foo at foo bar line 200.

% perl
line 345 "goop"
eval "\n#line " . __LINE_ _ . ' "' . __FILE_ _ ."\"\ndie 'foo'";
print $@;
__END_ _
foo at goop line 345.

Experimental Details on given and when
As previously mentioned, the ‘‘switch’’ feature is considered highly experimental; it is subject to change
with little notice. In particular, when has tricky behaviours that are expected to change to become less
tricky in the future. Do not rely upon its current (mis)implementation. Before Perl 5.18, given also had
tricky behaviours that you should still beware of if your code must run on older versions of Perl.

Here is a longer example of given:

use feature ":5.10";
given ($foo) {

when (undef) {
say '$foo is undefined';

}
when ("foo") {

say '$foo is the string "foo"';
}
when ([1,3,5,7,9]) {

say '$foo is an odd digit';
continue; # Fall through

}
when ($_ < 100) {

say '$foo is numerically less than 100';
}
when (\&complicated_check) {

say 'a complicated check for $foo is true';
}
default {

die q(I don't know what to do with $foo);
}

}

Before Perl 5.18, given(EXPR) assigned the value of EXPR to merely a lexically scoped copy (!) of $_,
not a dynamically scoped alias the way foreach does. That made it similar to

do { my $_ = EXPR; ... }

except that the block was automatically broken out of by a successful when or an explicit break.
Because it was only a copy, and because it was only lexically scoped, not dynamically scoped, you could
not do the things with it that you are used to in a foreach loop. In particular, it did not work for arbitrary
function calls if those functions might try to access $_. Best stick to foreach for that.

Most of the power comes from the implicit smartmatching that can sometimes apply. Most of the time,
when(EXPR) is treated as an implicit smartmatch of $_, that is, $_ ˜˜ EXPR. (See ‘‘Smartmatch
Operator’’ in perlop for more information on smartmatching.) But when EXPR is one of the 10 exceptional
cases (or things like them) listed below, it is used directly as a boolean.

1. A user-defined subroutine call or a method invocation.

18 2018-11-19 perl v5.26.1

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

2. A regular expression match in the form of /REGEX/, $foo =˜ /REGEX/, or $foo =˜ EXPR.
Also, a negated regular expression match in the form !/REGEX/, $foo !˜ /REGEX/, or $foo
!˜ EXPR.

3. A smart match that uses an explicit ˜˜ operator, such as EXPR ˜˜ EXPR.

NOTE: You will often have to use $c ˜˜ $_ because the default case uses $_ ˜˜ $c , which is
frequentlythe opposite of what you want.

4. A boolean comparison operator such as $_ < 10 or $x eq "abc". The relational operators that
this applies to are the six numeric comparisons (<, >, <=, >=, ==, and !=), and the six string
comparisons (lt, gt, le, ge, eq, and ne).

5. At least the three builtin functions defined(...), exists(...), and eof(...). We might
someday add more of these later if we think of them.

6. A neg ated expression, whether !(EXPR) or not(EXPR), or a logical exclusive-or, (EXPR1) xor
(EXPR2). The bitwise versions (˜ and ˆ) are not included.

7. A filetest operator, with exactly 4 exceptions: −s, −M, −A, and −C, as these return numerical values,
not boolean ones. The −z filetest operator is not included in the exception list.

8. The .. and ... flip-flop operators. Note that the ... flip-flop operator is completely different from
the ... elliptical statement just described.

In those 8 cases above, the value of EXPR is used directly as a boolean, so no smartmatching is done. You
may think of when as a smartsmartmatch.

Furthermore, Perl inspects the operands of logical operators to decide whether to use smartmatching for
each one by applying the above test to the operands:

9. If EXPR is EXPR1 && EXPR2 or EXPR1 and EXPR2, the test is applied recursively to both
EXPR1 and EXPR2. Only if both operands also pass the test, recursively, will the expression be treated
as boolean. Otherwise, smartmatching is used.

10. If EXPR is EXPR1 || EXPR2, EXPR1 // EXPR2, or EXPR1 or EXPR2, the test is applied
recursively to EXPR1 only (which might itself be a higher-precedence AND operator, for example, and
thus subject to the previous rule), not to EXPR2. If EXPR1 is to use smartmatching, then EXPR2 also
does so, no matter what EXPR2 contains. But if EXPR2 does not get to use smartmatching, then the
second argument will not be either. This is quite different from the && case just described, so be
careful.

These rules are complicated, but the goal is for them to do what you want (even if you don’t quite
understand why they are doing it). For example:

when (/ˆ\d+$/ && $_ < 75) { ... }

will be treated as a boolean match because the rules say both a regex match and an explicit test on $_ will
be treated as boolean.

Also:

when ([qw(foo bar)] && /baz/) { ... }

will use smartmatching because only one of the operands is a boolean: the other uses smartmatching, and
that wins.

Further:

when ([qw(foo bar)] || /ˆbaz/) { ... }

will use smart matching (only the first operand is considered), whereas

when (/ˆbaz/ || [qw(foo bar)]) { ... }

will test only the regex, which causes both operands to be treated as boolean. Watch out for this one, then,
because an arrayref is always a true value, which makes it effectively redundant. Not a good idea.

Tautologous boolean operators are still going to be optimized away. Don’t be tempted to write

when ("foo" or "bar") { ... }

This will optimize down to "foo", so "bar" will never be considered (even though the rules say to use a
smartmatch on "foo"). For an alternation like this, an array ref will work, because this will instigate

perl v5.26.1 2018-11-19 19

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

smartmatching:

when ([qw(foo bar)] { ... }

This is somewhat equivalent to the C−style switch statement’s fallthrough functionality (not to be confused
with Perl’s fallthrough functionality — see below), wherein the same block is used for several case
statements.

Another useful shortcut is that, if you use a literal array or hash as the argument to given, it is turned into
a reference. So given(@foo) is the same as given(\@foo), for example.

default behaves exactly like when(1 == 1), which is to say that it always matches.

Breaking out

You can use the break keyword to break out of the enclosing given block. Every when block is
implicitly ended with a break.

Fall-through

You can use the continue keyword to fall through from one case to the next immediate when or
default:

given($foo) {
when (/x/) { say '$foo contains an x'; continue }
when (/y/) { say '$foo contains a y' }
default { say '$foo does not contain a y' }

}

Return value

When a given statement is also a valid expression (for example, when it’s the last statement of a block), it
evaluates to:

• An empty list as soon as an explicit break is encountered.

• The value of the last evaluated expression of the successful when/default clause, if there happens
to be one.

• The value of the last evaluated expression of the given block if no condition is true.

In both last cases, the last expression is evaluated in the context that was applied to the given block.

Note that, unlike if and unless, failed when statements always evaluate to an empty list.

my $price = do {
given ($item) {

when (["pear", "apple"]) { 1 }
break when "vote"; # My vote cannot be bought
1e10 when /Mona Lisa/;
"unknown";

}
};

Currently, given blocks can’t always be used as proper expressions. This may be addressed in a future
version of Perl.

Switching in a loop

Instead of using given(), you can use a foreach() loop. For example, here’s one way to count how
many times a particular string occurs in an array:

use v5.10.1;
my $count = 0;
for (@array) {

when ("foo") { ++$count }
}
print "\@array contains $count copies of 'foo'\n";

Or in a more recent version:

20 2018-11-19 perl v5.26.1

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

use v5.14;
my $count = 0;
for (@array) {

++$count when "foo";
}
print "\@array contains $count copies of 'foo'\n";

At the end of all when blocks, there is an implicit next. You can override that with an explicit last if
you’re interested in only the first match alone.

This doesn’t work if you explicitly specify a loop variable, as in for $item (@array). You have to
use the default variable $_.

Differences from Perl 6

The Perl 5 smartmatch and given/when constructs are not compatible with their Perl 6 analogues. The
most visible difference and least important difference is that, in Perl 5, parentheses are required around the
argument to given() and when() (except when this last one is used as a statement modifier).
Parentheses in Perl 6 are always optional in a control construct such as if(), while(), or when(); they
can’t be made optional in Perl 5 without a great deal of potential confusion, because Perl 5 would parse the
expression

given $foo {
...

}

as though the argument to given were an element of the hash %foo, interpreting the braces as hash-
element syntax.

However, their are many, many other differences. For example, this works in Perl 5:

use v5.12;
my @primary = ("red", "blue", "green");

if (@primary ˜˜ "red") {
say "primary smartmatches red";

}

if ("red" ˜˜ @primary) {
say "red smartmatches primary";

}

say "that's all, folks!";

But it doesn’t work at all in Perl 6. Instead, you should use the (parallelizable) any operator:

if any(@primary) eq "red" {
say "primary smartmatches red";

}

if "red" eq any(@primary) {
say "red smartmatches primary";

}

The table of smartmatches in ‘‘Smartmatch Operator’’ in perlop is not identical to that proposed by the Perl
6 specification, mainly due to differences between Perl 6’s and Perl 5’s data models, but also because the
Perl 6 spec has changed since Perl 5 rushed into early adoption.

In Perl 6, when() will always do an implicit smartmatch with its argument, while in Perl 5 it is convenient
(albeit potentially confusing) to suppress this implicit smartmatch in various rather loosely-defined
situations, as roughly outlined above. (The difference is largely because Perl 5 does not have, even
internally, a boolean type.)

perl v5.26.1 2018-11-19 21

PERLDAT A(1) Perl Programmers Reference Guide PERLDAT A(1)

NAME
perldata − Perl data types

DESCRIPTION
Variable names

Perl has three built-in data types: scalars, arrays of scalars, and associative arrays of scalars, known as
‘‘hashes’’. A scalar is a single string (of any size, limited only by the available memory), number, or a
reference to something (which will be discussed in perlref). Normal arrays are ordered lists of scalars
indexed by number, starting with 0. Hashes are unordered collections of scalar values indexed by their
associated string key.

Values are usually referred to by name, or through a named reference. The first character of the name tells
you to what sort of data structure it refers. The rest of the name tells you the particular value to which it
refers. Usually this name is a single identifier, that is, a string beginning with a letter or underscore, and
containing letters, underscores, and digits. In some cases, it may be a chain of identifiers, separated by ::
(or by the slightly archaic '); all but the last are interpreted as names of packages, to locate the namespace
in which to look up the final identifier (see ‘‘Packages’’ in perlmod for details). For a more in-depth
discussion on identifiers, see ‘‘Identifier parsing’’. It’s possible to substitute for a simple identifier, an
expression that produces a reference to the value at runtime. This is described in more detail below and in
perlref.

Perl also has its own built-in variables whose names don’t follow these rules. They hav e strange names so
they don’t accidentally collide with one of your normal variables. Strings that match parenthesized parts of
a regular expression are saved under names containing only digits after the $ (see perlop and perlre). In
addition, several special variables that provide windows into the inner working of Perl have names
containing punctuation characters. These are documented in perlvar.

Scalar values are always named with ’$’, even when referring to a scalar that is part of an array or a hash.
The ’$’ symbol works semantically like the English word ‘‘the’’ in that it indicates a single value is
expected.

$days # the simple scalar value "days"
$days[28] # the 29th element of array @days
$days{'Feb'} # the 'Feb' value from hash %days
$#days # the last index of array @days

Entire arrays (and slices of arrays and hashes) are denoted by ’@’, which works much as the word ‘‘these’’
or ‘‘those’’ does in English, in that it indicates multiple values are expected.

@days # ($days[0], $days[1],... $days[n])
@days[3,4,5] # same as ($days[3],$days[4],$days[5])
@days{'a','c'} # same as ($days{'a'},$days{'c'})

Entire hashes are denoted by ’%’:

%days # (key1, val1, key2, val2 ...)

In addition, subroutines are named with an initial ’&’, though this is optional when unambiguous, just as
the word ‘‘do’’ is often redundant in English. Symbol table entries can be named with an initial ’*’, but
you don’t really care about that yet (if ever :−).

Every variable type has its own namespace, as do several non-variable identifiers. This means that you can,
without fear of conflict, use the same name for a scalar variable, an array, or a hash — or, for that matter, for
a filehandle, a directory handle, a subroutine name, a format name, or a label. This means that $foo and
@foo are two different variables. It also means that $foo[1] is a part of @foo, not a part of $foo. This
may seem a bit weird, but that’s okay, because it is weird.

Because variable references always start with ’$’, ’@’, or ’%’, the ‘‘reserved’’ words aren’t in fact reserved
with respect to variable names. They are reserved with respect to labels and filehandles, however, which
don’t hav e an initial special character. You can’t hav e a filehandle named ‘‘log’’, for instance. Hint: you
could say open(LOG,'logfile') rather than open(log,'logfile'). Using uppercase
filehandles also improves readability and protects you from conflict with future reserved words. Case is
significant−−‘‘FOO’’, ‘‘Foo’’, and ‘‘foo’’ are all different names. Names that start with a letter or
underscore may also contain digits and underscores.

It is possible to replace such an alphanumeric name with an expression that returns a reference to the

22 2018-11-19 perl v5.26.1

PERLDAT A(1) Perl Programmers Reference Guide PERLDAT A(1)

appropriate type. For a description of this, see perlref.

Names that start with a digit may contain only more digits. Names that do not start with a letter,
underscore, digit or a caret are limited to one character, e.g., $% or $$. (Most of these one character
names have a predefined significance to Perl. For instance, $$ is the current process id. And all such
names are reserved for Perl’s possible use.)

Identifier parsing
Up until Perl 5.18, the actual rules of what a valid identifier was were a bit fuzzy. Howev er, in general,
anything defined here should work on previous versions of Perl, while the opposite — edge cases that
work in previous versions, but aren’t defined here — probably won’t work on newer versions. As an
important side note, please note that the following only applies to bareword identifiers as found in Perl
source code, not identifiers introduced through symbolic references, which have much fewer restrictions. If
working under the effect of the use utf8; pragma, the following rules apply:

/ (?[(\p{Word} & \p{XID_Start}) + [_]])
(?[(\p{Word} & \p{XID_Continue})]) * /x

That is, a ‘‘start’’ character followed by any number of ‘‘continue’’ characters. Perl requires every
character in an identifier to also match \w (this prevents some problematic cases); and Perl additionally
accepts identfier names beginning with an underscore.

If not under use utf8, the source is treated as ASCII + 128 extra generic characters, and identifiers should
match

/ (?aa) (?!\d) \w+ /x

That is, any word character in the ASCII range, as long as the first character is not a digit.

There are two package separators in Perl: A double colon (::) and a single quote ('). Normal identifiers
can start or end with a double colon, and can contain several parts delimited by double colons. Single
quotes have similar rules, but with the exception that they are not legal at the end of an identifier: That is,
$'foo and $foo'bar are legal, but $foo'bar' is not.

Additionally, if the identifier is preceded by a sigil — that is, if the identifier is part of a variable name —
it may optionally be enclosed in braces.

While you can mix double colons with singles quotes, the quotes must come after the colons: $::::'foo
and $foo::'bar are legal, but $::'::foo and $foo'::bar are not.

Put together, a grammar to match a basic identifier becomes

/
(?(DEFINE)

(?<variable>
(?&sigil)
(?:

(?&normal_identifier)
| \{ \s* (?&normal_identifier) \s* \}

)
)
(?<normal_identifier>

(?: ::)* '?
(?&basic_identifier)
(?: (?= (?: ::)+ '? | (?: ::)* ') (?&normal_identifier))?
(?: ::)*

)
(?<basic_identifier>
is use utf8 on?
(?(?{ (caller(0))[8] & $utf8::hint_bits })

(?&Perl_XIDS) (?&Perl_XIDC)*
| (?aa) (?!\d) \w+

)
)
(?<sigil> [&*\$\@\%])
(?<Perl_XIDS> (?[(\p{Word} & \p{XID_Start}) + [_]]))

perl v5.26.1 2018-11-19 23

PERLDAT A(1) Perl Programmers Reference Guide PERLDAT A(1)

(?<Perl_XIDC> (?[\p{Word} & \p{XID_Continue}]))
)
/x

Meanwhile, special identifiers don’t follow the above rules; For the most part, all of the identifiers in this
category have a special meaning given by Perl. Because they hav e special parsing rules, these generally
can’t be fully-qualified. They come in six forms (but don’t use forms 5 and 6):

1. A sigil, followed solely by digits matching \p{POSIX_Digit}, like $0, $1, or $10000.

2. A sigil followed by a single character matching the \p{POSIX_Punct} property, like $! or %+,
except the character "{" doesn’t work.

3. A sigil, followed by a caret and any one of the characters [][A−Zˆ_?\], like $ˆV or $ˆ].

4. Similar to the above, a sigil, followed by bareword text in braces, where the first character is a caret.
The next character is any one of the characters [][A−Zˆ_?\], followed by ASCII word characters.
An example is ${ˆGLOBAL_PHASE}.

5. A sigil, followed by any single character in the range [\xA1−\xAC\xAE−\xFF] when not under
"use utf8". (Under "use utf8", the normal identifier rules given earlier in this section apply.)
Use of non-graphic characters (the C1 controls, the NO-BREAK SPACE, and the SOFT HYPHEN) has
been disallowed since v5.26.0. The use of the other characters is unwise, as these are all reserved to
have special meaning to Perl, and none of them currently do have special meaning, though this could
change without notice.

Note that an implication of this form is that there are identifiers only legal under "use utf8", and
vice-versa, for example the identifier $état is legal under "use utf8", but is otherwise
considered to be the single character variable $é followed by the bareword "tat", the combination
of which is a syntax error.

6. This is a combination of the previous two forms. It is valid only when not under "use utf8"
(normal identifier rules apply when under "use utf8"). The form is a sigil, followed by text in
braces, where the first character is any one of the characters in the range [\x80−\xFF] followed by
ASCII word characters up to the trailing brace.

The same caveats as the previous form apply: The non-graphic characters are no longer allowed with
‘‘use utf8’’, it is unwise to use this form at all, and utf8ness makes a big difference.

Prior to Perl v5.24, non-graphical ASCII control characters were also allowed in some situations; this had
been deprecated since v5.20.

Context
The interpretation of operations and values in Perl sometimes depends on the requirements of the context
around the operation or value. There are two major contexts: list and scalar. Certain operations return list
values in contexts wanting a list, and scalar values otherwise. If this is true of an operation it will be
mentioned in the documentation for that operation. In other words, Perl overloads certain operations based
on whether the expected return value is singular or plural. Some words in English work this way, like
‘‘fish’’ and ‘‘sheep’’.

In a reciprocal fashion, an operation provides either a scalar or a list context to each of its arguments. For
example, if you say

int(<STDIN>)

the integer operation provides scalar context for the <> operator, which responds by reading one line from
STDIN and passing it back to the integer operation, which will then find the integer value of that line and
return that. If, on the other hand, you say

sort(<STDIN>)

then the sort operation provides list context for <>, which will proceed to read every line available up to the
end of file, and pass that list of lines back to the sort routine, which will then sort those lines and return
them as a list to whatever the context of the sort was.

Assignment is a little bit special in that it uses its left argument to determine the context for the right
argument. Assignment to a scalar evaluates the right-hand side in scalar context, while assignment to an
array or hash evaluates the righthand side in list context. Assignment to a list (or slice, which is just a list
anyway) also evaluates the right-hand side in list context.

24 2018-11-19 perl v5.26.1

PERLDAT A(1) Perl Programmers Reference Guide PERLDAT A(1)

When you use the use warnings pragma or Perl’s −w command-line option, you may see warnings
about useless uses of constants or functions in ‘‘void context’’. Void context just means the value has been
discarded, such as a statement containing only "fred"; or getpwuid(0);. It still counts as scalar
context for functions that care whether or not they’re being called in list context.

User-defined subroutines may choose to care whether they are being called in a void, scalar, or list context.
Most subroutines do not need to bother, though. That’s because both scalars and lists are automatically
interpolated into lists. See ‘‘wantarray’’ in perlfunc for how you would dynamically discern your function’s
calling context.

Scalar values
All data in Perl is a scalar, an array of scalars, or a hash of scalars. A scalar may contain one single value in
any of three different flavors: a number, a string, or a reference. In general, conversion from one form to
another is transparent. Although a scalar may not directly hold multiple values, it may contain a reference
to an array or hash which in turn contains multiple values.

Scalars aren’t necessarily one thing or another. There’s no place to declare a scalar variable to be of type
‘‘string’’, type ‘‘number’’, type ‘‘reference’’, or anything else. Because of the automatic conversion of
scalars, operations that return scalars don’t need to care (and in fact, cannot care) whether their caller is
looking for a string, a number, or a reference. Perl is a contextually polymorphic language whose scalars
can be strings, numbers, or references (which includes objects). Although strings and numbers are
considered pretty much the same thing for nearly all purposes, references are strongly-typed, uncastable
pointers with builtin reference-counting and destructor invocation.

A scalar value is interpreted as FALSE in the Boolean sense if it is undefined, the null string or the number 0
(or its string equivalent, ‘‘0’’), and TRUE if it is anything else. The Boolean context is just a special kind of
scalar context where no conversion to a string or a number is ever performed.

There are actually two varieties of null strings (sometimes referred to as ‘‘empty’’ strings), a defined one
and an undefined one. The defined version is just a string of length zero, such as "". The undefined
version is the value that indicates that there is no real value for something, such as when there was an error,
or at end of file, or when you refer to an uninitialized variable or element of an array or hash. Although in
early versions of Perl, an undefined scalar could become defined when first used in a place expecting a
defined value, this no longer happens except for rare cases of autovivification as explained in perlref. You
can use the defined() operator to determine whether a scalar value is defined (this has no meaning on arrays
or hashes), and the undef() operator to produce an undefined value.

To find out whether a given string is a valid non-zero number, it’s sometimes enough to test it against both
numeric 0 and also lexical ‘‘0’’ (although this will cause noises if warnings are on). That’s because strings
that aren’t numbers count as 0, just as they do in awk:

if ($str == 0 && $str ne "0") {
warn "That doesn't look like a number";

}

That method may be best because otherwise you won’t treat IEEE notations like NaN or Infinity
properly. At other times, you might prefer to determine whether string data can be used numerically by
calling the POSIX::strtod() function or by inspecting your string with a regular expression (as documented
in perlre).

warn "has nondigits" if /\D/;
warn "not a natural number" unless /ˆ\d+$/; # rejects −3
warn "not an integer" unless /ˆ−?\d+$/; # rejects +3
warn "not an integer" unless /ˆ[+−]?\d+$/;
warn "not a decimal number" unless /ˆ−?\d+\.?\d*$/; # rejects .2
warn "not a decimal number" unless /ˆ−?(?:\d+(?:\.\d*)?|\.\d+)$/;
warn "not a C float"

unless /ˆ([+−]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+−]?\d+))?$/;

The length of an array is a scalar value. You may find the length of array @days by evaluating $#days,
as in csh. Howev er, this isn’t the length of the array; it’s the subscript of the last element, which is a
different value since there is ordinarily a 0th element. Assigning to $#days actually changes the length of
the array. Shortening an array this way destroys intervening values. Lengthening an array that was
previously shortened does not recover values that were in those elements.

perl v5.26.1 2018-11-19 25

PERLDAT A(1) Perl Programmers Reference Guide PERLDAT A(1)

You can also gain some minuscule measure of efficiency by pre-extending an array that is going to get big.
You can also extend an array by assigning to an element that is off the end of the array. You can truncate an
array down to nothing by assigning the null list () to it. The following are equivalent:

@whatever = ();
$#whatever = −1;

If you evaluate an array in scalar context, it returns the length of the array. (Note that this is not true of
lists, which return the last value, like the C comma operator, nor of built-in functions, which return
whatever they feel like returning.) The following is always true:

scalar(@whatever) == $#whatever + 1;

Some programmers choose to use an explicit conversion so as to leave nothing to doubt:

$element_count = scalar(@whatever);

If you evaluate a hash in scalar context, it returns false if the hash is empty. If there are any key/value pairs,
it returns true. A more precise definition is version dependent.

Prior to Perl 5.25 the value returned was a string consisting of the number of used buckets and the number
of allocated buckets, separated by a slash. This is pretty much useful only to find out whether Perl’s
internal hashing algorithm is performing poorly on your data set. For example, you stick 10,000 things in a
hash, but evaluating %HASH in scalar context reveals "1/16", which means only one out of sixteen
buckets has been touched, and presumably contains all 10,000 of your items. This isn’t supposed to
happen.

As of Perl 5.25 the return was changed to be the count of keys in the hash. If you need access to the old
behavior you can use Hash::Util::bucket_ratio() instead.

If a tied hash is evaluated in scalar context, the SCALAR method is called (with a fallback to FIRSTKEY).

You can preallocate space for a hash by assigning to the keys() function. This rounds up the allocated
buckets to the next power of two:

keys(%users) = 1000; # allocate 1024 buckets

Scalar value constructors
Numeric literals are specified in any of the following floating point or integer formats:

12345
12345.67
.23E−10 # a very small number
3.14_15_92 # a very important number
4_294_967_296 # underscore for legibility
0xff # hex
0xdead_beef # more hex
0377 # octal (only numbers, begins with 0)
0b011011 # binary
0x1.999ap−4 # hexadecimal floating point (the 'p' is required)

You are allowed to use underscores (underbars) in numeric literals between digits for legibility (but not
multiple underscores in a row: 23_ _500 is not legal; 23_500 is). You could, for example, group binary
digits by threes (as for a Unix-style mode argument such as 0b110_100_100) or by fours (to represent
nibbles, as in 0b1010_0110) or in other groups.

String literals are usually delimited by either single or double quotes. They work much like quotes in the
standard Unix shells: double-quoted string literals are subject to backslash and variable substitution; single-
quoted strings are not (except for \' and \\). The usual C−style backslash rules apply for making
characters such as newline, tab, etc., as well as some more exotic forms. See ‘‘Quote and Quote-like
Operators’’ in perlop for a list.

Hexadecimal, octal, or binary, representations in string literals (e.g. ’0xff’) are not automatically converted
to their integer representation. The hex() and oct() functions make these conversions for you. See ‘‘hex’’ in
perlfunc and ‘‘oct’’ in perlfunc for more details.

Hexadecimal floating point can start just like a hexadecimal literal, and it can be followed by an optional
fractional hexadecimal part, but it must be followed by p, an optional sign, and a power of two. The format
is useful for accurately presenting floating point values, avoiding conversions to or from decimal floating

26 2018-11-19 perl v5.26.1

PERLDAT A(1) Perl Programmers Reference Guide PERLDAT A(1)

point, and therefore avoiding possible loss in precision. Notice that while most current platforms use the
64−bit IEEE 754 floating point, not all do. Another potential source of (low-order) differences are the
floating point rounding modes, which can differ between CPUs, operating systems, and compilers, and
which Perl doesn’t control.

You can also embed newlines directly in your strings, i.e., they can end on a different line than they begin.
This is nice, but if you forget your trailing quote, the error will not be reported until Perl finds another line
containing the quote character, which may be much further on in the script. Variable substitution inside
strings is limited to scalar variables, arrays, and array or hash slices. (In other words, names beginning with
$ or @, followed by an optional bracketed expression as a subscript.) The following code segment prints
out ‘‘The price is $100.’’

$Price = '$100'; # not interpolated
print "The price is $Price.\n"; # interpolated

There is no double interpolation in Perl, so the $100 is left as is.

By default floating point numbers substituted inside strings use the dot (‘‘.’’) as the decimal separator. If
use locale is in effect, and POSIX::setlocale() has been called, the character used for the decimal
separator is affected by the LC_NUMERIC locale. See perllocale and POSIX.

As in some shells, you can enclose the variable name in braces to disambiguate it from following
alphanumerics (and underscores). You must also do this when interpolating a variable into a string to
separate the variable name from a following double-colon or an apostrophe, since these would be otherwise
treated as a package separator:

$who = "Larry";
print PASSWD "${who}::0:0:Superuser:/:/bin/perl\n";
print "We use ${who}speak when ${who}'s here.\n";

Without the braces, Perl would have looked for a $whospeak, a $who::0, and a $who's variable. The
last two would be the $0 and the $s variables in the (presumably) non-existent package who.

In fact, a simple identifier within such curlies is forced to be a string, and likewise within a hash subscript.
Neither need quoting. Our earlier example, $days{'Feb'} can be written as $days{Feb} and the
quotes will be assumed automatically. But anything more complicated in the subscript will be interpreted
as an expression. This means for example that $version{2.0}++ is equivalent to $version{2}++,
not to $version{'2.0'}++.

Special floating point: infinity (Inf) and not-a-number (NaN)

Floating point values include the special values Inf and NaN, for infinity and not-a-number. The infinity
can be also negative.

The infinity is the result of certain math operations that overflow the floating point range, like 9**9**9.
The not-a-number is the result when the result is undefined or unrepresentable. Though note that you
cannot get NaN from some common ‘‘undefined’’ or ‘‘out-of-range’’ operations like dividing by zero, or
square root of a negative number, since Perl generates fatal errors for those.

The infinity and not-a-number have their own special arithmetic rules. The general rule is that they are
‘‘contagious’’: Inf plus one is Inf, and NaN plus one is NaN. Where things get interesting is when you
combine infinities and not-a-numbers: Inf minus Inf and Inf divided by Inf are NaN (while Inf plus
Inf is Inf and Inf times Inf is Inf). NaN is also curious in that it does not equal any number,
including itself: NaN != NaN.

Perl doesn’t understand Inf and NaN as numeric literals, but you can have them as strings, and Perl will
convert them as needed: ‘‘Inf ’’ + 1. (You can, however, import them from the POSIX extension; use
POSIX qw(Inf NaN); and then use them as literals.)

Note that on input (string to number) Perl accepts Inf and NaN in many forms. Case is ignored, and the
Win32−specific forms like 1.#INF are understood, but on output the values are normalized to Inf and
NaN.

Version Strings

A literal of the form v1.20.300.4000 is parsed as a string composed of characters with the specified
ordinals. This form, known as v−strings, provides an alternative, more readable way to construct strings,
rather than use the somewhat less readable interpolation form "\x{1}\x{14}\x{12c}\x{fa0}".

perl v5.26.1 2018-11-19 27

PERLDAT A(1) Perl Programmers Reference Guide PERLDAT A(1)

This is useful for representing Unicode strings, and for comparing version ‘‘numbers’’ using the string
comparison operators, cmp, gt, lt etc. If there are two or more dots in the literal, the leading v may be
omitted.

print v9786; # prints SMILEY, "\x{263a}"
print v102.111.111; # prints "foo"
print 102.111.111; # same

Such literals are accepted by both require and use for doing a version check. Note that using the
v−strings for IPv4 addresses is not portable unless you also use the inet_aton()/inet_ntoa() routines of the
Socket package.

Note that since Perl 5.8.1 the single-number v−strings (like v65) are not v−strings before the => operator
(which is usually used to separate a hash key from a hash value); instead they are interpreted as literal
strings (’v65’). They were v−strings from Perl 5.6.0 to Perl 5.8.0, but that caused more confusion and
breakage than good. Multi-number v−strings like v65.66 and 65.66.67 continue to be v−strings
always.

Special Literals

The special literals _ _FILE_ _, _ _LINE_ _, and _ _PACKAGE_ _ represent the current filename, line
number, and package name at that point in your program. _ _SUB_ _ gives a reference to the current
subroutine. They may be used only as separate tokens; they will not be interpolated into strings. If there is
no current package (due to an empty package; directive), _ _PACKAGE_ _ is the undefined value. (But
the empty package; is no longer supported, as of version 5.10.) Outside of a subroutine, _ _SUB_ _ is
the undefined value. _ _SUB_ _ is only available in 5.16 or higher, and only with a use v5.16 or use
feature "current_sub" declaration.

The two control characters ˆD and ˆZ, and the tokens _ _END_ _ and _ _DAT A_ _ may be used to indicate
the logical end of the script before the actual end of file. Any following text is ignored.

Te xt after _ _DAT A_ _ may be read via the filehandle PACKNAME::DATA, where PACKNAME is the
package that was current when the _ _DAT A_ _ token was encountered. The filehandle is left open pointing
to the line after _ _DAT A_ _. The program should close DATA when it is done reading from it.
(Leaving it open leaks filehandles if the module is reloaded for any reason, so it’s a safer practice to close
it.) For compatibility with older scripts written before _ _DAT A_ _ was introduced, _ _END_ _ behaves like
_ _DATA_ _ in the top level script (but not in files loaded with require or do) and leaves the remaining
contents of the file accessible via main::DATA.

See SelfLoader for more description of _ _DAT A_ _, and an example of its use. Note that you cannot read
from the DATA filehandle in a BEGIN block: the BEGIN block is executed as soon as it is seen (during
compilation), at which point the corresponding _ _DAT A_ _ (or _ _END_ _) token has not yet been seen.

Barewords

A word that has no other interpretation in the grammar will be treated as if it were a quoted string. These
are known as ‘‘barewords’’. As with filehandles and labels, a bareword that consists entirely of lowercase
letters risks conflict with future reserved words, and if you use the use warnings pragma or the −w
switch, Perl will warn you about any such words. Perl limits barewords (like identifiers) to about 250
characters. Future versions of Perl are likely to eliminate these arbitrary limitations.

Some people may wish to outlaw barewords entirely. If you say

use strict 'subs';

then any bareword that would NOT be interpreted as a subroutine call produces a compile-time error
instead. The restriction lasts to the end of the enclosing block. An inner block may countermand this by
saying no strict 'subs'.

Array Interpolation

Arrays and slices are interpolated into double-quoted strings by joining the elements with the delimiter
specified in the $" variable ($LIST_SEPARATOR if ‘‘use English;’’ is specified), space by default. The
following are equivalent:

$temp = join($", @ARGV);
system "echo $temp";

28 2018-11-19 perl v5.26.1

PERLDAT A(1) Perl Programmers Reference Guide PERLDAT A(1)

system "echo @ARGV";

Within search patterns (which also undergo double-quotish substitution) there is an unfortunate ambiguity:
Is /$foo[bar]/ to be interpreted as /${foo}[bar]/ (where [bar] is a character class for the
regular expression) or as /${foo[bar]}/ (where [bar] is the subscript to array @foo)? If @foo
doesn’t otherwise exist, then it’s obviously a character class. If @foo exists, Perl takes a good guess about
[bar], and is almost always right. If it does guess wrong, or if you’re just plain paranoid, you can force
the correct interpretation with curly braces as above.

If you’re looking for the information on how to use here-documents, which used to be here, that’s been
moved to ‘‘Quote and Quote-like Operators’’ in perlop.

List value constructors
List values are denoted by separating individual values by commas (and enclosing the list in parentheses
where precedence requires it):

(LIST)

In a context not requiring a list value, the value of what appears to be a list literal is simply the value of the
final element, as with the C comma operator. For example,

@foo = ('cc', '−E', $bar);

assigns the entire list value to array @foo, but

$foo = ('cc', '−E', $bar);

assigns the value of variable $bar to the scalar variable $foo. Note that the value of an actual array in
scalar context is the length of the array; the following assigns the value 3 to $foo:

@foo = ('cc', '−E', $bar);
$foo = @foo; # $foo gets 3

You may have an optional comma before the closing parenthesis of a list literal, so that you can say:

@foo = (
1,
2,
3,

);

To use a here-document to assign an array, one line per element, you might use an approach like this:

@sauces = <<End_Lines =˜ m/(\S.*\S)/g;
normal tomato
spicy tomato
green chile
pesto
white wine

End_Lines

LISTs do automatic interpolation of sublists. That is, when a LIST is evaluated, each element of the list is
evaluated in list context, and the resulting list value is interpolated into LIST just as if each individual
element were a member of LIST. Thus arrays and hashes lose their identity in a LIST — the list

(@foo,@bar,&SomeSub,%glarch)

contains all the elements of @foo followed by all the elements of @bar, followed by all the elements
returned by the subroutine named SomeSub called in list context, followed by the key/value pairs of
%glarch. To make a list reference that does NOT interpolate, see perlref.

The null list is represented by (). Interpolating it in a list has no effect. Thus ((),(),()) is equivalent to ().
Similarly, interpolating an array with no elements is the same as if no array had been interpolated at that
point.

This interpolation combines with the facts that the opening and closing parentheses are optional (except
when necessary for precedence) and lists may end with an optional comma to mean that multiple commas
within lists are legal syntax. The list 1,,3 is a concatenation of two lists, 1, and 3, the first of which ends
with that optional comma. 1,,3 is (1,),(3) is 1,3 (And similarly for 1,,,3 is (1,),(,),3 is
1,3 and so on.) Not that we’d advise you to use this obfuscation.

perl v5.26.1 2018-11-19 29

PERLDAT A(1) Perl Programmers Reference Guide PERLDAT A(1)

A list value may also be subscripted like a normal array. You must put the list in parentheses to avoid
ambiguity. For example:

Stat returns list value.
$time = (stat($file))[8];

SYNTAX ERROR HERE.
$time = stat($file)[8]; # OOPS, FORGOT PARENTHESES

Find a hex digit.
$hexdigit = ('a','b','c','d','e','f')[$digit−10];

A "reverse comma operator".
return (pop(@foo),pop(@foo))[0];

Lists may be assigned to only when each element of the list is itself legal to assign to:

($a, $b, $c) = (1, 2, 3);

($map{'red'}, $map{'blue'}, $map{'green'}) = (0x00f, 0x0f0, 0xf00);

An exception to this is that you may assign to undef in a list. This is useful for throwing away some of
the return values of a function:

($dev, $ino, undef, undef, $uid, $gid) = stat($file);

As of Perl 5.22, you can also use (undef)x2 instead of undef, undef. (You can also do ($x) x 2,
which is less useful, because it assigns to the same variable twice, clobbering the first value assigned.)

List assignment in scalar context returns the number of elements produced by the expression on the right
side of the assignment:

$x = (($foo,$bar) = (3,2,1)); # set $x to 3, not 2
$x = (($foo,$bar) = f()); # set $x to f()'s return count

This is handy when you want to do a list assignment in a Boolean context, because most list functions
return a null list when finished, which when assigned produces a 0, which is interpreted as FALSE.

It’s also the source of a useful idiom for executing a function or performing an operation in list context and
then counting the number of return values, by assigning to an empty list and then using that assignment in
scalar context. For example, this code:

$count = () = $string =˜ /\d+/g;

will place into $count the number of digit groups found in $string. This happens because the pattern
match is in list context (since it is being assigned to the empty list), and will therefore return a list of all
matching parts of the string. The list assignment in scalar context will translate that into the number of
elements (here, the number of times the pattern matched) and assign that to $count. Note that simply
using

$count = $string =˜ /\d+/g;

would not have worked, since a pattern match in scalar context will only return true or false, rather than a
count of matches.

The final element of a list assignment may be an array or a hash:

($a, $b, @rest) = split;
my($a, $b, %rest) = @_;

You can actually put an array or hash anywhere in the list, but the first one in the list will soak up all the
values, and anything after it will become undefined. This may be useful in a my() or local().

A hash can be initialized using a literal list holding pairs of items to be interpreted as a key and a value:

same as map assignment above
%map = ('red',0x00f,'blue',0x0f0,'green',0xf00);

While literal lists and named arrays are often interchangeable, that’s not the case for hashes. Just because
you can subscript a list value like a normal array does not mean that you can subscript a list value as a hash.
Likewise, hashes included as parts of other lists (including parameters lists and return lists from functions)

30 2018-11-19 perl v5.26.1

PERLDAT A(1) Perl Programmers Reference Guide PERLDAT A(1)

always flatten out into key/value pairs. That’s why it’s good to use references sometimes.

It is often more readable to use the => operator between key/value pairs. The => operator is mostly just a
more visually distinctive synonym for a comma, but it also arranges for its left-hand operand to be
interpreted as a string if it’s a bareword that would be a legal simple identifier. => doesn’t quote compound
identifiers, that contain double colons. This makes it nice for initializing hashes:

%map = (
red => 0x00f,
blue => 0x0f0,
green => 0xf00,

);

or for initializing hash references to be used as records:

$rec = {
witch => 'Mable the Merciless',
cat => 'Fluffy the Ferocious',
date => '10/31/1776',

};

or for using call-by-named-parameter to complicated functions:

$field = $query−>radio_group(
name => 'group_name',
values => ['eenie','meenie','minie'],
default => 'meenie',
linebreak => 'true',
labels => \%labels

);

Note that just because a hash is initialized in that order doesn’t mean that it comes out in that order. See
‘‘sort’’ in perlfunc for examples of how to arrange for an output ordering.

If a key appears more than once in the initializer list of a hash, the last occurrence wins:

%circle = (
center => [5, 10],
center => [27, 9],
radius => 100,
color => [0xDF, 0xFF, 0x00],
radius => 54,

);

same as
%circle = (

center => [27, 9],
color => [0xDF, 0xFF, 0x00],
radius => 54,

);

This can be used to provide overridable configuration defaults:

values in %args take priority over %config_defaults
%config = (%config_defaults, %args);

Subscripts
An array can be accessed one scalar at a time by specifying a dollar sign ($), then the name of the array
(without the leading @), then the subscript inside square brackets. For example:

@myarray = (5, 50, 500, 5000);
print "The Third Element is", $myarray[2], "\n";

The array indices start with 0. A neg ative subscript retrieves its value from the end. In our example,
$myarray[−1] would have been 5000, and $myarray[−2] would have been 500.

Hash subscripts are similar, only instead of square brackets curly brackets are used. For example:

perl v5.26.1 2018-11-19 31

PERLDAT A(1) Perl Programmers Reference Guide PERLDAT A(1)

%scientists =
(

"Newton" => "Isaac",
"Einstein" => "Albert",
"Darwin" => "Charles",
"Feynman" => "Richard",

);

print "Darwin's First Name is ", $scientists{"Darwin"}, "\n";

You can also subscript a list to get a single element from it:

$dir = (getpwnam("daemon"))[7];

Multi-dimensional array emulation
Multidimensional arrays may be emulated by subscripting a hash with a list. The elements of the list are
joined with the subscript separator (see ‘‘$;’’ in perlvar).

$foo{$a,$b,$c}

is equivalent to

$foo{join($;, $a, $b, $c)}

The default subscript separator is ‘‘\034’’, the same as SUBSEP in awk.

Slices
A slice accesses several elements of a list, an array, or a hash simultaneously using a list of subscripts. It’s
more convenient than writing out the individual elements as a list of separate scalar values.

($him, $her) = @folks[0,−1]; # array slice
@them = @folks[0 .. 3]; # array slice
($who, $home) = @ENV{"USER", "HOME"}; # hash slice
($uid, $dir) = (getpwnam("daemon"))[2,7]; # list slice

Since you can assign to a list of variables, you can also assign to an array or hash slice.

@days[3..5] = qw/Wed Thu Fri/;
@colors{'red','blue','green'}

= (0xff0000, 0x0000ff, 0x00ff00);
@folks[0, −1] = @folks[−1, 0];

The previous assignments are exactly equivalent to

($days[3], $days[4], $days[5]) = qw/Wed Thu Fri/;
($colors{'red'}, $colors{'blue'}, $colors{'green'})

= (0xff0000, 0x0000ff, 0x00ff00);
($folks[0], $folks[−1]) = ($folks[−1], $folks[0]);

Since changing a slice changes the original array or hash that it’s slicing, a foreach construct will alter
some — or ev en all — of the values of the array or hash.

foreach (@array[4 .. 10]) { s/peter/paul/ }

foreach (@hash{qw[key1 key2]}) {
s/ˆ\s+//; # trim leading whitespace
s/\s+$//; # trim trailing whitespace
s/(\w+)/\u\L$1/g; # "titlecase" words

}

As a special exception, when you slice a list (but not an array or a hash), if the list evaluates to empty, then
taking a slice of that empty list will always yield the empty list in turn. Thus:

32 2018-11-19 perl v5.26.1

PERLDAT A(1) Perl Programmers Reference Guide PERLDAT A(1)

@a = ()[0,1]; # @a has no elements
@b = (@a)[0,1]; # @b has no elements
@c = (sub{}−>())[0,1]; # @c has no elements
@d = ('a','b')[0,1]; # @d has two elements
@e = (@d)[0,1,8,9]; # @e has four elements
@f = (@d)[8,9]; # @f has two elements

This makes it easy to write loops that terminate when a null list is returned:

while (($home, $user) = (getpwent)[7,0]) {
printf "%−8s %s\n", $user, $home;

}

As noted earlier in this document, the scalar sense of list assignment is the number of elements on the right-
hand side of the assignment. The null list contains no elements, so when the password file is exhausted, the
result is 0, not 2.

Slices in scalar context return the last item of the slice.

@a = qw/first second third/;
%h = (first => 'A', second => 'B');
$t = @a[0, 1]; # $t is now 'second'
$u = @h{'first', 'second'}; # $u is now 'B'

If you’re confused about why you use an ’@’ there on a hash slice instead of a ’%’, think of it like this.
The type of bracket (square or curly) governs whether it’s an array or a hash being looked at. On the other
hand, the leading symbol (’$’ or ’@’) on the array or hash indicates whether you are getting back a singular
value (a scalar) or a plural one (a list).

Ke y/Value Hash Slices

Starting in Perl 5.20, a hash slice operation with the % symbol is a variant of slice operation returning a list
of key/value pairs rather than just values:

%h = (blonk => 2, foo => 3, squink => 5, bar => 8);
%subset = %h{'foo', 'bar'}; # key/value hash slice
%subset is now (foo => 3, bar => 8)

However, the result of such a slice cannot be localized, deleted or used in assignment. These are otherwise
very much consistent with hash slices using the @ symbol.

Index/Value Array Slices

Similar to key/value hash slices (and also introduced in Perl 5.20), the % array slice syntax returns a list of
index/value pairs:

@a = "a".."z";
@list = %a[3,4,6];
@list is now (3, "d", 4, "e", 6, "g")

Typeglobs and Filehandles
Perl uses an internal type called a typeglob to hold an entire symbol table entry. The type prefix of a
typeglob is a *, because it represents all types. This used to be the preferred way to pass arrays and hashes
by reference into a function, but now that we have real references, this is seldom needed.

The main use of typeglobs in modern Perl is create symbol table aliases. This assignment:

*this = *that;

makes $this an alias for $that, @this an alias for @that, %this an alias for %that, &this an alias
for &that, etc. Much safer is to use a reference. This:

local *Here::blue = \$There::green;

temporarily makes $Here::blue an alias for $There::green, but doesn’t make @Here::blue an
alias for @There::green, or %Here::blue an alias for %There::green, etc. See ‘‘Symbol
Tables’’ in perlmod for more examples of this. Strange though this may seem, this is the basis for the
whole module import/export system.

Another use for typeglobs is to pass filehandles into a function or to create new filehandles. If you need to
use a typeglob to save away a filehandle, do it this way:

perl v5.26.1 2018-11-19 33

PERLDAT A(1) Perl Programmers Reference Guide PERLDAT A(1)

$fh = *STDOUT;

or perhaps as a real reference, like this:

$fh = *STDOUT;

See perlsub for examples of using these as indirect filehandles in functions.

Typeglobs are also a way to create a local filehandle using the local() operator. These last until their block
is exited, but may be passed back. For example:

sub newopen {
my $path = shift;
local *FH; # not my!
open (FH, $path) or return undef;
return *FH;

}
$fh = newopen('/etc/passwd');

Now that we have the *foo{THING} notation, typeglobs aren’t used as much for filehandle
manipulations, although they’re still needed to pass brand new file and directory handles into or out of
functions. That’s because *HANDLE{IO} only works if HANDLE has already been used as a handle. In
other words, *FH must be used to create new symbol table entries; *foo{THING} cannot. When in
doubt, use *FH.

All functions that are capable of creating filehandles (open(), opendir(), pipe(), socketpair(), sysopen(),
socket(), and accept()) automatically create an anonymous filehandle if the handle passed to them is an
uninitialized scalar variable. This allows the constructs such as open(my $fh, ...) and
open(local $fh,...) to be used to create filehandles that will conveniently be closed automatically
when the scope ends, provided there are no other references to them. This largely eliminates the need for
typeglobs when opening filehandles that must be passed around, as in the following example:

sub myopen {
open my $fh, "@_"

or die "Can't open '@_': $!";
return $fh;

}

{
my $f = myopen("</etc/motd");
print <$f>;
$f implicitly closed here

}

Note that if an initialized scalar variable is used instead the result is different: my $fh='zzz';
open($fh, ...) is equivalent to open(*{'zzz'}, ...). use strict 'refs' forbids such
practice.

Another way to create anonymous filehandles is with the Symbol module or with the IO::Handle module
and its ilk. These modules have the advantage of not hiding different types of the same name during the
local(). See the bottom of ‘‘open’’ in perlfunc for an example.

SEE ALSO
See perlvar for a description of Perl’s built-in variables and a discussion of legal variable names. See
perlref, perlsub, and ‘‘Symbol Tables’’ in perlmod for more discussion on typeglobs and the
*foo{THING} syntax.

34 2018-11-19 perl v5.26.1

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

NAME
perlop − Perl operators and precedence

DESCRIPTION
In Perl, the operator determines what operation is performed, independent of the type of the operands. For
example $x + $y is always a numeric addition, and if $x or $y do not contain numbers, an attempt is
made to convert them to numbers first.

This is in contrast to many other dynamic languages, where the operation is determined by the type of the
first argument. It also means that Perl has two versions of some operators, one for numeric and one for
string comparison. For example $x == $y compares two numbers for equality, and $x eq $y
compares two strings.

There are a few exceptions though: x can be either string repetition or list repetition, depending on the type
of the left operand, and &, |, ˆ and ˜ can be either string or numeric bit operations.

Operator Precedence and Associativity
Operator precedence and associativity work in Perl more or less like they do in mathematics.

Operator precedence means some operators are evaluated before others. For example, in 2 + 4 * 5, the
multiplication has higher precedence so 4 * 5 is evaluated first yielding 2 + 20 == 22 and not
6 * 5 == 30.

Operator associativity defines what happens if a sequence of the same operators is used one after another:
whether the evaluator will evaluate the left operations first, or the right first. For example, in 8 − 4 − 2,
subtraction is left associative so Perl evaluates the expression left to right. 8 − 4 is evaluated first making
the expression 4 − 2 == 2 and not 8 − 2 == 6.

Perl operators have the following associativity and precedence, listed from highest precedence to lowest.
Operators borrowed from C keep the same precedence relationship with each other, even where C’s
precedence is slightly screwy. (This makes learning Perl easier for C folks.) With very few exceptions,
these all operate on scalar values only, not array values.

left terms and list operators (leftward)
left −>
nonassoc ++ −−
right **
right ! ˜ \ and unary + and −
left =˜ !˜
left * / % x
left + − .
left << >>
nonassoc named unary operators
nonassoc < > <= >= lt gt le ge
nonassoc == != <=> eq ne cmp ˜˜
left &
left | ˆ
left &&
left || //
nonassoc
right ?:
right = += −= *= etc. goto last next redo dump
left , =>
nonassoc list operators (rightward)
right not
left and
left or xor

In the following sections, these operators are covered in detail, in the same order in which they appear in
the table above.

Many operators can be overloaded for objects. See overload.

perl v5.26.1 2018-11-19 35

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

Terms and List Operators (Leftward)
A TERM has the highest precedence in Perl. They include variables, quote and quote-like operators, any
expression in parentheses, and any function whose arguments are parenthesized. Actually, there aren’t
really functions in this sense, just list operators and unary operators behaving as functions because you put
parentheses around the arguments. These are all documented in perlfunc.

If any list operator (print(), etc.) or any unary operator (chdir(), etc.) is followed by a left
parenthesis as the next token, the operator and arguments within parentheses are taken to be of highest
precedence, just like a normal function call.

In the absence of parentheses, the precedence of list operators such as print, sort, or chmod is either
very high or very low depending on whether you are looking at the left side or the right side of the operator.
For example, in

@ary = (1, 3, sort 4, 2);
print @ary; # prints 1324

the commas on the right of the sort are evaluated before the sort, but the commas on the left are
evaluated after. In other words, list operators tend to gobble up all arguments that follow, and then act like
a simple TERM with regard to the preceding expression. Be careful with parentheses:

These evaluate exit before doing the print:
print($foo, exit); # Obviously not what you want.
print $foo, exit; # Nor is this.

These do the print before evaluating exit:
(print $foo), exit; # This is what you want.
print($foo), exit; # Or this.
print ($foo), exit; # Or even this.

Also note that

print ($foo & 255) + 1, "\n";

probably doesn’t do what you expect at first glance. The parentheses enclose the argument list for print
which is evaluated (printing the result of $foo & 255). Then one is added to the return value of print
(usually 1). The result is something like this:

1 + 1, "\n"; # Obviously not what you meant.

To do what you meant properly, you must write:

print(($foo & 255) + 1, "\n");

See ‘‘Named Unary Operators’’ for more discussion of this.

Also parsed as terms are the do {} and eval {} constructs, as well as subroutine and method calls, and
the anonymous constructors [] and {}.

See also ‘‘Quote and Quote-like Operators’’ tow ard the end of this section, as well as ‘‘I/O Operators’’.

The Arrow Operator
"−>" is an infix dereference operator, just as it is in C and C++. If the right side is either a [...], {...},
or a (...) subscript, then the left side must be either a hard or symbolic reference to an array, a hash, or a
subroutine respectively. (Or technically speaking, a location capable of holding a hard reference, if it’s an
array or hash reference being used for assignment.) See perlreftut and perlref.

Otherwise, the right side is a method name or a simple scalar variable containing either the method name or
a subroutine reference, and the left side must be either an object (a blessed reference) or a class name (that
is, a package name). See perlobj.

The dereferencing cases (as opposed to method-calling cases) are somewhat extended by the postderef
feature. For the details of that feature, consult ‘‘Postfix Dereference Syntax’’ in perlref.

Auto-increment and Auto-decrement
"++" and "−−" work as in C. That is, if placed before a variable, they increment or decrement the
variable by one before returning the value, and if placed after, increment or decrement after returning the
value.

36 2018-11-19 perl v5.26.1

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

$i = 0; $j = 0;
print $i++; # prints 0
print ++$j; # prints 1

Note that just as in C, Perl doesn’t define when the variable is incremented or decremented. You just know
it will be done sometime before or after the value is returned. This also means that modifying a variable
twice in the same statement will lead to undefined behavior. Avoid statements like:

$i = $i ++;
print ++ $i + $i ++;

Perl will not guarantee what the result of the above statements is.

The auto-increment operator has a little extra builtin magic to it. If you increment a variable that is
numeric, or that has ever been used in a numeric context, you get a normal increment. If, however, the
variable has been used in only string contexts since it was set, and has a value that is not the empty string
and matches the pattern /ˆ[a−zA−Z]*[0−9]*\z/, the increment is done as a string, preserving each
character within its range, with carry:

print ++($foo = "99"); # prints "100"
print ++($foo = "a0"); # prints "a1"
print ++($foo = "Az"); # prints "Ba"
print ++($foo = "zz"); # prints "aaa"

undef is always treated as numeric, and in particular is changed to 0 before incrementing (so that a post-
increment of an undef value will return 0 rather than undef).

The auto-decrement operator is not magical.

Exponentiation
Binary "**" is the exponentiation operator. It binds even more tightly than unary minus, so −2**4 is
−(2**4), not (−2)**4. (This is implemented using C’s pow(3) function, which actually works on
doubles internally.)

Note that certain exponentiation expressions are ill-defined: these include 0**0, 1**Inf, and Inf**0.
Do not expect any particular results from these special cases, the results are platform-dependent.

Symbolic Unary Operators
Unary "!" performs logical negation, that is, ‘‘not’’. See also not for a lower precedence version of this.

Unary "−" performs arithmetic negation if the operand is numeric, including any string that looks like a
number. If the operand is an identifier, a string consisting of a minus sign concatenated with the identifier
is returned. Otherwise, if the string starts with a plus or minus, a string starting with the opposite sign is
returned. One effect of these rules is that −bareword is equivalent to the string "−bareword". If,
however, the string begins with a non-alphabetic character (excluding "+" or "−"), Perl will attempt to
convert the string to a numeric, and the arithmetic negation is performed. If the string cannot be cleanly
converted to a numeric, Perl will give the warning Argument ‘‘the string’’ isn’t numeric in negation (−)
at

Unary "˜" performs bitwise negation, that is, 1’s complement. For example, 0666 & ˜027 is 0640.
(See also ‘‘Integer Arithmetic’’ and ‘‘Bitwise String Operators’’.) Note that the width of the result is
platform-dependent: ˜0 is 32 bits wide on a 32−bit platform, but 64 bits wide on a 64−bit platform, so if
you are expecting a certain bit width, remember to use the "&" operator to mask off the excess bits.

When complementing strings, if all characters have ordinal values under 256, then their complements will,
also. But if they do not, all characters will be in either 32− or 64−bit complements, depending on your
architecture. So for example, ˜"\x{3B1}" is "\x{FFFF_FC4E}" on 32−bit machines and
"\x{FFFF_FFFF_FFFF_FC4E}" on 64−bit machines.

If the experimental ‘‘bitwise’’ feature is enabled via use feature 'bitwise', then unary "˜"
always treats its argument as a number, and an alternate form of the operator, "˜.", always treats its
argument as a string. So ˜0 and ˜"0" will both give 2**32−1 on 32−bit platforms, whereas ˜.0 and
˜."0" will both yield "\xff". This feature produces a warning unless you use
no warnings 'experimental::bitwise'.

Unary "+" has no effect whatsoever, even on strings. It is useful syntactically for separating a function
name from a parenthesized expression that would otherwise be interpreted as the complete list of function
arguments. (See examples above under ‘‘Terms and List Operators (Leftward)’’.)

perl v5.26.1 2018-11-19 37

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

Unary "\" creates a reference to whatever follows it. See perlreftut and perlref. Do not confuse this
behavior with the behavior of backslash within a string, although both forms do convey the notion of
protecting the next thing from interpolation.

Binding Operators
Binary "=˜" binds a scalar expression to a pattern match. Certain operations search or modify the string
$_ by default. This operator makes that kind of operation work on some other string. The right argument
is a search pattern, substitution, or transliteration. The left argument is what is supposed to be searched,
substituted, or transliterated instead of the default $_. When used in scalar context, the return value
generally indicates the success of the operation. The exceptions are substitution (s///) and transliteration
(y///) with the /r (non-destructive) option, which cause the return value to be the result of the
substitution. Behavior in list context depends on the particular operator. See ‘‘Regexp Quote-Like
Operators’’ for details and perlretut for examples using these operators.

If the right argument is an expression rather than a search pattern, substitution, or transliteration, it is
interpreted as a search pattern at run time. Note that this means that its contents will be interpolated twice,
so

'\\' =˜ q'\\';

is not ok, as the regex engine will end up trying to compile the pattern \, which it will consider a syntax
error.

Binary "!˜" is just like "=˜" except the return value is negated in the logical sense.

Binary "!˜" with a non-destructive substitution (s///r) or transliteration (y///r) is a syntax error.

Multiplicative Operators
Binary "*" multiplies two numbers.

Binary "/" divides two numbers.

Binary "%" is the modulo operator, which computes the division remainder of its first argument with
respect to its second argument. Given integer operands $m and $n: If $n is positive, then $m % $n is $m
minus the largest multiple of $n less than or equal to $m. If $n is negative, then $m % $n is $m minus the
smallest multiple of $n that is not less than $m (that is, the result will be less than or equal to zero). If the
operands $m and $n are floating point values and the absolute value of $n (that is abs($n)) is less than
(UV_MAX + 1), only the integer portion of $m and $n will be used in the operation (Note: here UV_MAX
means the maximum of the unsigned integer type). If the absolute value of the right operand (abs($n)) is
greater than or equal to (UV_MAX + 1), "%" computes the floating-point remainder $r in the equation
($r = $m − $i*$n) where $i is a certain integer that makes $r have the same sign as the right
operand $n (not as the left operand $m like C function fmod()) and the absolute value less than that of
$n. Note that when use integer is in scope, "%" gives you direct access to the modulo operator as
implemented by your C compiler. This operator is not as well defined for negative operands, but it will
execute faster.

Binary "x" is the repetition operator. In scalar context or if the left operand is not enclosed in parentheses,
it returns a string consisting of the left operand repeated the number of times specified by the right operand.
In list context, if the left operand is enclosed in parentheses or is a list formed by qw/STRING/, it repeats
the list. If the right operand is zero or negative (raising a warning on negative), it returns an empty string or
an empty list, depending on the context.

print '−' x 80; # print row of dashes

print "\t" x ($tab/8), ' ' x ($tab%8); # tab over

@ones = (1) x 80; # a list of 80 1's
@ones = (5) x @ones; # set all elements to 5

Additive Operators
Binary "+" returns the sum of two numbers.

Binary "−" returns the difference of two numbers.

Binary "." concatenates two strings.

38 2018-11-19 perl v5.26.1

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

Shift Operators
Binary "<<" returns the value of its left argument shifted left by the number of bits specified by the right
argument. Arguments should be integers. (See also ‘‘Integer Arithmetic’’.)

Binary ">>" returns the value of its left argument shifted right by the number of bits specified by the right
argument. Arguments should be integers. (See also ‘‘Integer Arithmetic’’.)

If use integer (see ‘‘Integer Arithmetic’’) is in force then signed C integers are used (arithmetic shift),
otherwise unsigned C integers are used (logical shift), even for negative shiftees. In arithmetic right shift
the sign bit is replicated on the left, in logical shift zero bits come in from the left.

Either way, the implementation isn’t going to generate results larger than the size of the integer type Perl
was built with (32 bits or 64 bits).

Shifting by negative number of bits means the reverse shift: left shift becomes right shift, right shift
becomes left shift. This is unlike in C, where negative shift is undefined.

Shifting by more bits than the size of the integers means most of the time zero (all bits fall off), except that
under use integer right overshifting a negative shiftee results in −1. This is unlike in C, where shifting
by too many bits is undefined. A common C behavior is ‘‘shift by modulo wordbits’’, so that for example

1 >> 64 == 1 >> (64 % 64) == 1 >> 0 == 1 # Common C behavior.

but that is completely accidental.

If you get tired of being subject to your platform’s native integers, the use bigint pragma neatly
sidesteps the issue altogether:

print 20 << 20; # 20971520
print 20 << 40; # 5120 on 32−bit machines,

21990232555520 on 64−bit machines
use bigint;
print 20 << 100; # 25353012004564588029934064107520

Named Unary Operators
The various named unary operators are treated as functions with one argument, with optional parentheses.

If any list operator (print(), etc.) or any unary operator (chdir(), etc.) is followed by a left
parenthesis as the next token, the operator and arguments within parentheses are taken to be of highest
precedence, just like a normal function call. For example, because named unary operators are higher
precedence than ||:

chdir $foo || die; # (chdir $foo) || die
chdir($foo) || die; # (chdir $foo) || die
chdir ($foo) || die; # (chdir $foo) || die
chdir +($foo) || die; # (chdir $foo) || die

but, because "*" is higher precedence than named operators:

chdir $foo * 20; # chdir ($foo * 20)
chdir($foo) * 20; # (chdir $foo) * 20
chdir ($foo) * 20; # (chdir $foo) * 20
chdir +($foo) * 20; # chdir ($foo * 20)

rand 10 * 20; # rand (10 * 20)
rand(10) * 20; # (rand 10) * 20
rand (10) * 20; # (rand 10) * 20
rand +(10) * 20; # rand (10 * 20)

Regarding precedence, the filetest operators, like −f, −M, etc. are treated like named unary operators, but
they don’t follow this functional parenthesis rule. That means, for example, that −f($file).".bak" is
equivalent to −f "$file.bak".

See also ‘‘Terms and List Operators (Leftward)’’.

Relational Operators
Perl operators that return true or false generally return values that can be safely used as numbers. For
example, the relational operators in this section and the equality operators in the next one return 1 for true
and a special version of the defined empty string, "", which counts as a zero but is exempt from warnings

perl v5.26.1 2018-11-19 39

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

about improper numeric conversions, just as "0 but true" is.

Binary "<" returns true if the left argument is numerically less than the right argument.

Binary ">" returns true if the left argument is numerically greater than the right argument.

Binary "<=" returns true if the left argument is numerically less than or equal to the right argument.

Binary ">=" returns true if the left argument is numerically greater than or equal to the right argument.

Binary "lt" returns true if the left argument is stringwise less than the right argument.

Binary "gt" returns true if the left argument is stringwise greater than the right argument.

Binary "le" returns true if the left argument is stringwise less than or equal to the right argument.

Binary "ge" returns true if the left argument is stringwise greater than or equal to the right argument.

Equality Operators
Binary "==" returns true if the left argument is numerically equal to the right argument.

Binary "!=" returns true if the left argument is numerically not equal to the right argument.

Binary "<=>" returns −1, 0, or 1 depending on whether the left argument is numerically less than, equal
to, or greater than the right argument. If your platform supports NaN’s (not-a-numbers) as numeric values,
using them with "<=>" returns undef. NaN is not "<", "==", ">", "<=" or ">=" anything (even NaN),
so those 5 return false. NaN != NaN returns true, as does NaN != anything else. If your platform
doesn’t support NaN’s then NaN is just a string with numeric value 0.

$ perl −le '$x = "NaN"; print "No NaN support here" if $x == $x'
$ perl −le '$x = "NaN"; print "NaN support here" if $x != $x'

(Note that the bigint, bigrat, and bignum pragmas all support "NaN".)

Binary "eq" returns true if the left argument is stringwise equal to the right argument.

Binary "ne" returns true if the left argument is stringwise not equal to the right argument.

Binary "cmp" returns −1, 0, or 1 depending on whether the left argument is stringwise less than, equal to,
or greater than the right argument.

Binary "˜˜" does a smartmatch between its arguments. Smart matching is described in the next section.

"lt", "le", "ge", "gt" and "cmp" use the collation (sort) order specified by the current
LC_COLLATE locale if a use locale form that includes collation is in effect. See perllocale. Do not
mix these with Unicode, only use them with legacy 8−bit locale encodings. The standard
Unicode::Collate and Unicode::Collate::Locale modules offer much more powerful
solutions to collation issues.

For case-insensitive comparisions, look at the ‘‘fc’’ in perlfunc case-folding function, available in Perl
v5.16 or later:

if (fc($x) eq fc($y)) { ... }

Smartmatch Operator
First available in Perl 5.10.1 (the 5.10.0 version behaved differently), binary ˜˜ does a ‘‘smartmatch’’
between its arguments. This is mostly used implicitly in the when construct described in perlsyn, although
not all when clauses call the smartmatch operator. Unique among all of Perl’s operators, the smartmatch
operator can recurse. The smartmatch operator is experimental and its behavior is subject to change.

It is also unique in that all other Perl operators impose a context (usually string or numeric context) on their
operands, autoconverting those operands to those imposed contexts. In contrast, smartmatch infers contexts
from the actual types of its operands and uses that type information to select a suitable comparison
mechanism.

The ˜˜ operator compares its operands ‘‘polymorphically’’, determining how to compare them according
to their actual types (numeric, string, array, hash, etc.) Like the equality operators with which it shares the
same precedence, ˜˜ returns 1 for true and "" for false. It is often best read aloud as ‘‘in’’, ‘‘inside of’’, or
‘‘is contained in’’, because the left operand is often looked for inside the right operand. That makes the
order of the operands to the smartmatch operand often opposite that of the regular match operator. In other
words, the ‘‘smaller’’ thing is usually placed in the left operand and the larger one in the right.

The behavior of a smartmatch depends on what type of things its arguments are, as determined by the

40 2018-11-19 perl v5.26.1

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

following table. The first row of the table whose types apply determines the smartmatch behavior. Because
what actually happens is mostly determined by the type of the second operand, the table is sorted on the
right operand instead of on the left.

Left Right Description and pseudocode
===
Any undef check whether Any is undefined

like: !defined Any

Any Object invoke ˜˜ overloading on Object, or die

Right operand is an ARRAY:

Left Right Description and pseudocode
===
ARRAY1 ARRAY2 recurse on paired elements of ARRAY1 and ARRAY2[2]

like: (ARRAY1[0] ˜˜ ARRAY2[0])
&& (ARRAY1[1] ˜˜ ARRAY2[1]) && ...

HASH ARRAY any ARRAY elements exist as HASH keys
like: grep { exists HASH−>{$_} } ARRAY

Regexp ARRAY any ARRAY elements pattern match Regexp
like: grep { /Regexp/ } ARRAY

undef ARRAY undef in ARRAY
like: grep { !defined } ARRAY

Any ARRAY smartmatch each ARRAY element[3]
like: grep { Any ˜˜ $_ } ARRAY

Right operand is a HASH:

Left Right Description and pseudocode
===
HASH1 HASH2 all same keys in both HASHes

like: keys HASH1 ==
grep { exists HASH2−>{$_} } keys HASH1

ARRAY HASH any ARRAY elements exist as HASH keys
like: grep { exists HASH−>{$_} } ARRAY

Regexp HASH any HASH keys pattern match Regexp
like: grep { /Regexp/ } keys HASH

undef HASH always false (undef can't be a key)
like: 0 == 1

Any HASH HASH key existence
like: exists HASH−>{Any}

Right operand is CODE:

Left Right Description and pseudocode
===
ARRAY CODE sub returns true on all ARRAY elements[1]

like: !grep { !CODE−>($_) } ARRAY
HASH CODE sub returns true on all HASH keys[1]

like: !grep { !CODE−>($_) } keys HASH
Any CODE sub passed Any returns true

like: CODE−>(Any)

Right operand is a Regexp:

perl v5.26.1 2018-11-19 41

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

Left Right Description and pseudocode
===
ARRAY Regexp any ARRAY elements match Regexp

like: grep { /Regexp/ } ARRAY
HASH Regexp any HASH keys match Regexp

like: grep { /Regexp/ } keys HASH
Any Regexp pattern match

like: Any =˜ /Regexp/

Other:

Left Right Description and pseudocode
===
Object Any invoke ˜˜ overloading on Object,

or fall back to...

Any Num numeric equality
like: Any == Num

Num nummy[4] numeric equality
like: Num == nummy

undef Any check whether undefined
like: !defined(Any)

Any Any string equality
like: Any eq Any

Notes:

1. Empty hashes or arrays match.
2. That is, each element smartmatches the element of the same index in the other array.[3]
3. If a circular reference is found, fall back to referential equality.
4. Either an actual number, or a string that looks like one.

The smartmatch implicitly dereferences any non-blessed hash or array reference, so the HASH and ARRAY
entries apply in those cases. For blessed references, the Object entries apply. Smartmatches involving
hashes only consider hash keys, never hash values.

The ‘‘like’’ code entry is not always an exact rendition. For example, the smartmatch operator short-
circuits whenever possible, but grep does not. Also, grep in scalar context returns the number of
matches, but ˜˜ returns only true or false.

Unlike most operators, the smartmatch operator knows to treat undef specially:

use v5.10.1;
@array = (1, 2, 3, undef, 4, 5);
say "some elements undefined" if undef ˜˜ @array;

Each operand is considered in a modified scalar context, the modification being that array and hash
variables are passed by reference to the operator, which implicitly dereferences them. Both elements of
each pair are the same:

use v5.10.1;

my %hash = (red => 1, blue => 2, green => 3,
orange => 4, yellow => 5, purple => 6,
black => 7, grey => 8, white => 9);

my @array = qw(red blue green);

say "some array elements in hash keys" if @array ˜˜ %hash;
say "some array elements in hash keys" if \@array ˜˜ \%hash;

say "red in array" if "red" ˜˜ @array;
say "red in array" if "red" ˜˜ \@array;

42 2018-11-19 perl v5.26.1

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

say "some keys end in e" if /e$/ ˜˜ %hash;
say "some keys end in e" if /e$/ ˜˜ \%hash;

Tw o arrays smartmatch if each element in the first array smartmatches (that is, is ‘‘in’’) the corresponding
element in the second array, recursively.

use v5.10.1;
my @little = qw(red blue green);
my @bigger = ("red", "blue", ["orange", "green"]);
if (@little ˜˜ @bigger) { # true!

say "little is contained in bigger";
}

Because the smartmatch operator recurses on nested arrays, this will still report that ‘‘red’’ is in the array.

use v5.10.1;
my @array = qw(red blue green);
my $nested_array = [[[[[[[@array]]]]]]];
say "red in array" if "red" ˜˜ $nested_array;

If two arrays smartmatch each other, then they are deep copies of each others’ values, as this example
reports:

use v5.12.0;
my @a = (0, 1, 2, [3, [4, 5], 6], 7);
my @b = (0, 1, 2, [3, [4, 5], 6], 7);

if (@a ˜˜ @b && @b ˜˜ @a) {
say "a and b are deep copies of each other";

}
elsif (@a ˜˜ @b) {

say "a smartmatches in b";
}
elsif (@b ˜˜ @a) {

say "b smartmatches in a";
}
else {

say "a and b don't smartmatch each other at all";
}

If you were to set $b[3] = 4, then instead of reporting that ‘‘a and b are deep copies of each other’’, it
now reports that "b smartmatches in a". That’s because the corresponding position in @a contains
an array that (eventually) has a 4 in it.

Smartmatching one hash against another reports whether both contain the same keys, no more and no less.
This could be used to see whether two records have the same field names, without caring what values those
fields might have. For example:

use v5.10.1;
sub make_dogtag {

state $REQUIRED_FIELDS = { name=>1, rank=>1, serial_num=>1 };

my ($class, $init_fields) = @_;

die "Must supply (only) name, rank, and serial number"
unless $init_fields ˜˜ $REQUIRED_FIELDS;

...
}

However, this only does what you mean if $init_fields is indeed a hash reference. The condition
$init_fields ˜˜ $REQUIRED_FIELDS also allows the strings "name", "rank",
"serial_num" as well as any array reference that contains "name" or "rank" or "serial_num"
anywhere to pass through.

perl v5.26.1 2018-11-19 43

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

The smartmatch operator is most often used as the implicit operator of a when clause. See the section on
‘‘Switch Statements’’ in perlsyn.

Smartmatching of Objects

To avoid relying on an object’s underlying representation, if the smartmatch’s right operand is an object that
doesn’t overload ˜˜, it raises the exception "Smartmatching a non−overloaded object
breaks encapsulation‘‘. That’s because one has no business digging around to see whether
something is ’’in" an object. These are all illegal on objects without a ˜˜ overload:

%hash ˜˜ $object
42 ˜˜ $object

"fred" ˜˜ $object

However, you can change the way an object is smartmatched by overloading the ˜˜ operator. This is
allowed to extend the usual smartmatch semantics. For objects that do have an ˜˜ overload, see overload.

Using an object as the left operand is allowed, although not very useful. Smartmatching rules take
precedence over overloading, so even if the object in the left operand has smartmatch overloading, this will
be ignored. A left operand that is a non-overloaded object falls back on a string or numeric comparison of
whatever the ref operator returns. That means that

$object ˜˜ X

does not invoke the overload method with X as an argument. Instead the above table is consulted as normal,
and based on the type of X, overloading may or may not be invoked. For simple strings or numbers, ‘‘in’’
becomes equivalent to this:

$object ˜˜ $number ref($object) == $number
$object ˜˜ $string ref($object) eq $string

For example, this reports that the handle smells IOish (but please don’t really do this!):

use IO::Handle;
my $fh = IO::Handle−>new();
if ($fh ˜˜ /\bIO\b/) {

say "handle smells IOish";
}

That’s because it treats $fh as a string like "IO::Handle=GLOB(0x8039e0)", then pattern matches
against that.

Bitwise And
Binary "&" returns its operands ANDed together bit by bit. Although no warning is currently raised, the
result is not well defined when this operation is performed on operands that aren’t either numbers (see
‘‘Integer Arithmetic’’) nor bitstrings (see ‘‘Bitwise String Operators’’).

Note that "&" has lower priority than relational operators, so for example the parentheses are essential in a
test like

print "Even\n" if ($x & 1) == 0;

If the experimental ‘‘bitwise’’ feature is enabled via use feature 'bitwise', then this operator
always treats its operand as numbers. This feature produces a warning unless you also use
no warnings 'experimental::bitwise'.

Bitwise Or and Exclusive Or
Binary "|" returns its operands ORed together bit by bit.

Binary "ˆ" returns its operands XORed together bit by bit.

Although no warning is currently raised, the results are not well defined when these operations are
performed on operands that aren’t either numbers (see ‘‘Integer Arithmetic’’) nor bitstrings (see ‘‘Bitwise
String Operators’’).

Note that "|" and "ˆ" have lower priority than relational operators, so for example the parentheses are
essential in a test like

print "false\n" if (8 | 2) != 10;

If the experimental ‘‘bitwise’’ feature is enabled via use feature 'bitwise', then this operator

44 2018-11-19 perl v5.26.1

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

always treats its operand as numbers. This feature produces a warning unless you also use
no warnings 'experimental::bitwise'.

C−style Logical And
Binary "&&" performs a short-circuit logical AND operation. That is, if the left operand is false, the right
operand is not even evaluated. Scalar or list context propagates down to the right operand if it is evaluated.

C−style Logical Or
Binary "||" performs a short-circuit logical OR operation. That is, if the left operand is true, the right
operand is not even evaluated. Scalar or list context propagates down to the right operand if it is evaluated.

Logical Defined-Or
Although it has no direct equivalent in C, Perl’s // operator is related to its C−style ‘‘or’’. In fact, it’s
exactly the same as ||, except that it tests the left hand side’s definedness instead of its truth. Thus,
EXPR1 // EXPR2 returns the value of EXPR1 if it’s defined, otherwise, the value of EXPR2 is returned.
(EXPR1 is evaluated in scalar context, EXPR2 in the context of // itself). Usually, this is the same result
as defined(EXPR1) ? EXPR1 : EXPR2 (except that the ternary-operator form can be used as a
lvalue, while EXPR1 // EXPR2 cannot). This is very useful for providing default values for variables. If
you actually want to test if at least one of $x and $y is defined, use defined($x // $y).

The ||, // and && operators return the last value evaluated (unlike C’s || and &&, which return 0 or 1).
Thus, a reasonably portable way to find out the home directory might be:

$home = $ENV{HOME}
// $ENV{LOGDIR}
// (getpwuid($<))[7]
// die "You're homeless!\n";

In particular, this means that you shouldn’t use this for selecting between two aggregates for assignment:

@a = @b || @c; # This doesn't do the right thing
@a = scalar(@b) || @c; # because it really means this.
@a = @b ? @b : @c; # This works fine, though.

As alternatives to && and || when used for control flow, Perl provides the and and or operators (see
below). The short-circuit behavior is identical. The precedence of "and" and "or" is much lower,
however, so that you can safely use them after a list operator without the need for parentheses:

unlink "alpha", "beta", "gamma"
or gripe(), next LINE;

With the C−style operators that would have been written like this:

unlink("alpha", "beta", "gamma")
|| (gripe(), next LINE);

It would be even more readable to write that this way:

unless(unlink("alpha", "beta", "gamma")) {
gripe();
next LINE;

}

Using "or" for assignment is unlikely to do what you want; see below.

Range Operators
Binary ".." is the range operator, which is really two different operators depending on the context. In list
context, it returns a list of values counting (up by ones) from the left value to the right value. If the left
value is greater than the right value then it returns the empty list. The range operator is useful for writing
foreach (1..10) loops and for doing slice operations on arrays. In the current implementation, no
temporary array is created when the range operator is used as the expression in foreach loops, but older
versions of Perl might burn a lot of memory when you write something like this:

for (1 .. 1_000_000) {
code

}

The range operator also works on strings, using the magical auto-increment, see below.

perl v5.26.1 2018-11-19 45

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

In scalar context, ".." returns a boolean value. The operator is bistable, like a flip-flop, and emulates the
line-range (comma) operator of sed, awk, and various editors. Each ".." operator maintains its own
boolean state, even across calls to a subroutine that contains it. It is false as long as its left operand is false.
Once the left operand is true, the range operator stays true until the right operand is true, AFTER which the
range operator becomes false again. It doesn’t become false till the next time the range operator is
evaluated. It can test the right operand and become false on the same evaluation it became true (as in awk),
but it still returns true once. If you don’t want it to test the right operand until the next evaluation, as in sed,
just use three dots ("...") instead of two. In all other regards, "..." behaves just like ".." does.

The right operand is not evaluated while the operator is in the ‘‘false’’ state, and the left operand is not
evaluated while the operator is in the ‘‘true’’ state. The precedence is a little lower than || and &&. The
value returned is either the empty string for false, or a sequence number (beginning with 1) for true. The
sequence number is reset for each range encountered. The final sequence number in a range has the string
"E0" appended to it, which doesn’t affect its numeric value, but gives you something to search for if you
want to exclude the endpoint. You can exclude the beginning point by waiting for the sequence number to
be greater than 1.

If either operand of scalar ".." is a constant expression, that operand is considered true if it is equal (==)
to the current input line number (the $. variable).

To be pedantic, the comparison is actually int(EXPR) == int(EXPR), but that is only an issue if you
use a floating point expression; when implicitly using $. as described in the previous paragraph, the
comparison is int(EXPR) == int($.) which is only an issue when $. is set to a floating point value
and you are not reading from a file. Furthermore, "span" .. "spat" or 2.18 .. 3.14 will not do
what you want in scalar context because each of the operands are evaluated using their integer
representation.

Examples:

As a scalar operator:

if (101 .. 200) { print; } # print 2nd hundred lines, short for
if ($. == 101 .. $. == 200) { print; }

next LINE if (1 .. /ˆ$/); # skip header lines, short for
next LINE if ($. == 1 .. /ˆ$/);
(typically in a loop labeled LINE)

s/ˆ/> / if (/ˆ$/ .. eof()); # quote body

parse mail messages
while (<>) {

$in_header = 1 .. /ˆ$/;
$in_body = /ˆ$/ .. eof;
if ($in_header) {

do something
} else { # in body

do something else
}

} continue {
close ARGV if eof; # reset $. each file

}

Here’s a simple example to illustrate the difference between the two range operators:

@lines = (" − Foo",
"01 − Bar",
"1 − Baz",
" − Quux");

foreach (@lines) {
if (/0/ .. /1/) {

print "$_\n";

46 2018-11-19 perl v5.26.1

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

}
}

This program will print only the line containing ‘‘Bar’’. If the range operator is changed to ..., it will
also print the ‘‘Baz’’ line.

And now some examples as a list operator:

for (101 .. 200) { print } # print $_ 100 times
@foo = @foo[0 .. $#foo]; # an expensive no−op
@foo = @foo[$#foo−4 .. $#foo]; # slice last 5 items

The range operator (in list context) makes use of the magical auto-increment algorithm if the operands are
strings. You can say

@alphabet = ("A" .. "Z");

to get all normal letters of the English alphabet, or

$hexdigit = (0 .. 9, "a" .. "f")[$num & 15];

to get a hexadecimal digit, or

@z2 = ("01" .. "31");
print $z2[$mday];

to get dates with leading zeros.

If the final value specified is not in the sequence that the magical increment would produce, the sequence
goes until the next value would be longer than the final value specified.

As of Perl 5.26, the list-context range operator on strings works as expected in the scope of
"use feature 'unicode_strings". In previous versions, and outside the scope of that feature, it
exhibits ‘‘The ’’Unicode Bug"" in perlunicode: its behavior depends on the internal encoding of the range
endpoint.

If the initial value specified isn’t part of a magical increment sequence (that is, a non-empty string matching
/ˆ[a−zA−Z]*[0−9]*\z/), only the initial value will be returned. So the following will only return an
alpha:

use charnames "greek";
my @greek_small = ("\N{alpha}" .. "\N{omega}");

To get the 25 traditional lowercase Greek letters, including both sigmas, you could use this instead:

use charnames "greek";
my @greek_small = map { chr } (ord("\N{alpha}")

..
ord("\N{omega}")

);

However, because there are many other lowercase Greek characters than just those, to match lowercase
Greek characters in a regular expression, you could use the pattern
/(?:(?=\p{Greek})\p{Lower})+/ (or the experimental feature
/(?[\p{Greek} & \p{Lower}])+/).

Because each operand is evaluated in integer form, 2.18 .. 3.14 will return two elements in list
context.

@list = (2.18 .. 3.14); # same as @list = (2 .. 3);

Conditional Operator
Ternary "?:" is the conditional operator, just as in C. It works much like an if-then-else. If the argument
before the ? is true, the argument before the : is returned, otherwise the argument after the : is returned.
For example:

printf "I have %d dog%s.\n", $n,
($n == 1) ? "" : "s";

Scalar or list context propagates downward into the 2nd or 3rd argument, whichever is selected.

perl v5.26.1 2018-11-19 47

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

$x = $ok ? $y : $z; # get a scalar
@x = $ok ? @y : @z; # get an array
$x = $ok ? @y : @z; # oops, that's just a count!

The operator may be assigned to if both the 2nd and 3rd arguments are legal lvalues (meaning that you can
assign to them):

($x_or_y ? $x : $y) = $z;

Because this operator produces an assignable result, using assignments without parentheses will get you in
trouble. For example, this:

$x % 2 ? $x += 10 : $x += 2

Really means this:

(($x % 2) ? ($x += 10) : $x) += 2

Rather than this:

($x % 2) ? ($x += 10) : ($x += 2)

That should probably be written more simply as:

$x += ($x % 2) ? 10 : 2;

Assignment Operators
"=" is the ordinary assignment operator.

Assignment operators work as in C. That is,

$x += 2;

is equivalent to

$x = $x + 2;

although without duplicating any side effects that dereferencing the lvalue might trigger, such as from
tie(). Other assignment operators work similarly. The following are recognized:

**= += *= &= &.= <<= &&=
−= /= |= |.= >>= ||=
.= %= ˆ= ˆ.= //=

x=

Although these are grouped by family, they all have the precedence of assignment. These combined
assignment operators can only operate on scalars, whereas the ordinary assignment operator can assign to
arrays, hashes, lists and even references. (See ‘‘Context’’ and ‘‘List value constructors’’ in perldata, and
‘‘Assigning to References’’ in perlref.)

Unlike in C, the scalar assignment operator produces a valid lvalue. Modifying an assignment is equivalent
to doing the assignment and then modifying the variable that was assigned to. This is useful for modifying
a copy of something, like this:

($tmp = $global) =˜ tr/13579/24680/;

Although as of 5.14, that can be also be accomplished this way:

use v5.14;
$tmp = ($global =˜ tr/13579/24680/r);

Likewise,

($x += 2) *= 3;

is equivalent to

$x += 2;
$x *= 3;

Similarly, a list assignment in list context produces the list of lvalues assigned to, and a list assignment in
scalar context returns the number of elements produced by the expression on the right hand side of the
assignment.

The three dotted bitwise assignment operators (&.= |.= ̂ .=) are new in Perl 5.22 and experimental. See

48 2018-11-19 perl v5.26.1

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

‘‘Bitwise String Operators’’.

Comma Operator
Binary "," is the comma operator. In scalar context it evaluates its left argument, throws that value away,
then evaluates its right argument and returns that value. This is just like C’s comma operator.

In list context, it’s just the list argument separator, and inserts both its arguments into the list. These
arguments are also evaluated from left to right.

The => operator (sometimes pronounced ‘‘fat comma’’) is a synonym for the comma except that it causes a
word on its left to be interpreted as a string if it begins with a letter or underscore and is composed only of
letters, digits and underscores. This includes operands that might otherwise be interpreted as operators,
constants, single number v−strings or function calls. If in doubt about this behavior, the left operand can be
quoted explicitly.

Otherwise, the => operator behaves exactly as the comma operator or list argument separator, according to
context.

For example:

use constant FOO => "something";

my %h = (FOO => 23);

is equivalent to:

my %h = ("FOO", 23);

It is NOT:

my %h = ("something", 23);

The => operator is helpful in documenting the correspondence between keys and values in hashes, and
other paired elements in lists.

%hash = ($key => $value);
login($username => $password);

The special quoting behavior ignores precedence, and hence may apply to part of the left operand:

print time.shift => "bbb";

That example prints something like "1314363215shiftbbb", because the => implicitly quotes the
shift immediately on its left, ignoring the fact that time.shift is the entire left operand.

List Operators (Rightward)
On the right side of a list operator, the comma has very low precedence, such that it controls all comma-
separated expressions found there. The only operators with lower precedence are the logical operators
"and", "or", and "not", which may be used to evaluate calls to list operators without the need for
parentheses:

open HANDLE, "< :encoding(UTF−8)", "filename"
or die "Can't open: $!\n";

However, some people find that code harder to read than writing it with parentheses:

open(HANDLE, "< :encoding(UTF−8)", "filename")
or die "Can't open: $!\n";

in which case you might as well just use the more customary "||" operator:

open(HANDLE, "< :encoding(UTF−8)", "filename")
|| die "Can't open: $!\n";

See also discussion of list operators in ‘‘Terms and List Operators (Leftward)’’.

Logical Not
Unary "not" returns the logical negation of the expression to its right. It’s the equivalent of "!" except
for the very low precedence.

Logical And
Binary "and" returns the logical conjunction of the two surrounding expressions. It’s equivalent to &&
except for the very low precedence. This means that it short-circuits: the right expression is evaluated only

perl v5.26.1 2018-11-19 49

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

if the left expression is true.

Logical or and Exclusive Or
Binary "or" returns the logical disjunction of the two surrounding expressions. It’s equivalent to ||
except for the very low precedence. This makes it useful for control flow:

print FH $data or die "Can't write to FH: $!";

This means that it short-circuits: the right expression is evaluated only if the left expression is false. Due to
its precedence, you must be careful to avoid using it as replacement for the || operator. It usually works
out better for flow control than in assignments:

$x = $y or $z; # bug: this is wrong
($x = $y) or $z; # really means this
$x = $y || $z; # better written this way

However, when it’s a list-context assignment and you’re trying to use || for control flow, you probably
need "or" so that the assignment takes higher precedence.

@info = stat($file) || die; # oops, scalar sense of stat!
@info = stat($file) or die; # better, now @info gets its due

Then again, you could always use parentheses.

Binary "xor" returns the exclusive-OR of the two surrounding expressions. It cannot short-circuit (of
course).

There is no low precedence operator for defined-OR.

C Operators Missing From Perl
Here is what C has that Perl doesn’t:

unary & Address-of operator. (But see the "\" operator for taking a reference.)

unary * Dereference-address operator. (Perl’s prefix dereferencing operators are typed: $, @, %, and &.)

(TYPE) Type-casting operator.

Quote and Quote-like Operators
While we usually think of quotes as literal values, in Perl they function as operators, providing various
kinds of interpolating and pattern matching capabilities. Perl provides customary quote characters for these
behaviors, but also provides a way for you to choose your quote character for any of them. In the following
table, a {} represents any pair of delimiters you choose.

Customary Generic Meaning Interpolates
'' q{} Literal no
"" qq{} Literal yes
`` qx{} Command yes*

qw{} Word list no
// m{} Pattern match yes*

qr{} Pattern yes*
s{}{} Substitution yes*
tr{}{} Transliteration no (but see below)
y{}{} Transliteration no (but see below)

<<EOF here−doc yes*

* unless the delimiter is ''.

Non-bracketing delimiters use the same character fore and aft, but the four sorts of ASCII brackets (round,
angle, square, curly) all nest, which means that

q{foo{bar}baz}

is the same as

'foo{bar}baz'

Note, however, that this does not always work for quoting Perl code:

$s = q{ if($x eq "}") ... }; # WRONG

is a syntax error. The Text::Balanced module (standard as of v5.8, and from CPAN before then) is

50 2018-11-19 perl v5.26.1

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

able to do this properly.

There can (and in some cases, must) be whitespace between the operator and the quoting characters, except
when # is being used as the quoting character. q#foo# is parsed as the string foo, while q #foo# is the
operator q followed by a comment. Its argument will be taken from the next line. This allows you to write:

s {foo} # Replace foo
{bar} # with bar.

The cases where whitespace must be used are when the quoting character is a word character (meaning it
matches /\w/):

q XfooX # Works: means the string 'foo'
qXfooX # WRONG!

The following escape sequences are available in constructs that interpolate, and in transliterations:

Sequence Note Description
\t tab (HT, TAB)
\n newline (NL)
\r return (CR)
\f form feed (FF)
\b backspace (BS)
\a alarm (bell) (BEL)
\e escape (ESC)
\x{263A} [1,8] hex char (example: SMILEY)
\x1b [2,8] restricted range hex char (example: ESC)
\N{name} [3] named Unicode character or character sequence
\N{U+263D} [4,8] Unicode character (example: FIRST QUARTER MOON)
\c[[5] control char (example: chr(27))
\o{23072} [6,8] octal char (example: SMILEY)
\033 [7,8] restricted range octal char (example: ESC)

[1] The result is the character specified by the hexadecimal number between the braces. See ‘‘[8]’’ below
for details on which character.

Only hexadecimal digits are valid between the braces. If an invalid character is encountered, a
warning will be issued and the invalid character and all subsequent characters (valid or invalid) within
the braces will be discarded.

If there are no valid digits between the braces, the generated character is the NULL character
(\x{00}). However, an explicit empty brace (\x{}) will not cause a warning (currently).

[2] The result is the character specified by the hexadecimal number in the range 0x00 to 0xFF. See ‘‘[8]’’
below for details on which character.

Only hexadecimal digits are valid following \x. When \x is followed by fewer than two valid digits,
any valid digits will be zero-padded. This means that \x7 will be interpreted as \x07, and a lone
"\x" will be interpreted as \x00. Except at the end of a string, having fewer than two valid digits
will result in a warning. Note that although the warning says the illegal character is ignored, it is only
ignored as part of the escape and will still be used as the subsequent character in the string. For
example:

Original Result Warns?
"\x7" "\x07" no
"\x" "\x00" no
"\x7q" "\x07q" yes
"\xq" "\x00q" yes

[3] The result is the Unicode character or character sequence given by name. See charnames.

[4] \N{U+hexadecimal number} means the Unicode character whose Unicode code point is
hexadecimal number.

[5] The character following \c is mapped to some other character as shown in the table:

perl v5.26.1 2018-11-19 51

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

Sequence Value
\c@ chr(0)
\cA chr(1)
\ca chr(1)
\cB chr(2)
\cb chr(2)
...
\cZ chr(26)
\cz chr(26)
\c[chr(27)

See below for chr(28)
\c] chr(29)
\cˆ chr(30)
\c_ chr(31)
\c? chr(127) # (on ASCII platforms; see below for link to

EBCDIC discussion)

In other words, it’s the character whose code point has had 64 xor’d with its uppercase. \c? is
DELETE on ASCII platforms because ord("?") ˆ 64 is 127, and \c@ is NULL because the ord of
"@" is 64, so xor’ing 64 itself produces 0.

Also, \c\X yields chr(28) . "X" for any X, but cannot come at the end of a string, because the
backslash would be parsed as escaping the end quote.

On ASCII platforms, the resulting characters from the list above are the complete set of ASCII controls.
This isn’t the case on EBCDIC platforms; see ‘‘OPERATOR DIFFERENCES’’ in perlebcdic for a full
discussion of the differences between these for ASCII versus EBCDIC platforms.

Use of any other character following the "c" besides those listed above is discouraged, and as of Perl
v5.20, the only characters actually allowed are the printable ASCII ones, minus the left brace "{".
What happens for any of the allowed other characters is that the value is derived by xor’ing with the
seventh bit, which is 64, and a warning raised if enabled. Using the non-allowed characters generates
a fatal error.

To get platform independent controls, you can use \N{...}.

[6] The result is the character specified by the octal number between the braces. See ‘‘[8]’’ below for
details on which character.

If a character that isn’t an octal digit is encountered, a warning is raised, and the value is based on the
octal digits before it, discarding it and all following characters up to the closing brace. It is a fatal
error if there are no octal digits at all.

[7] The result is the character specified by the three-digit octal number in the range 000 to 777 (but best to
not use above 077, see next paragraph). See ‘‘[8]’’ below for details on which character.

Some contexts allow 2 or even 1 digit, but any usage without exactly three digits, the first being a zero,
may give unintended results. (For example, in a regular expression it may be confused with a
backreference; see ‘‘Octal escapes’’ in perlrebackslash.) Starting in Perl 5.14, you may use \o{}
instead, which avoids all these problems. Otherwise, it is best to use this construct only for ordinals
\077 and below, remembering to pad to the left with zeros to make three digits. For larger ordinals,
either use \o{}, or convert to something else, such as to hex and use \N{U+} (which is portable
between platforms with different character sets) or \x{} instead.

[8] Several constructs above specify a character by a number. That number gives the character’s position
in the character set encoding (indexed from 0). This is called synonymously its ordinal, code position,
or code point. Perl works on platforms that have a native encoding currently of either ASCII/Latin1 or
EBCDIC, each of which allow specification of 256 characters. In general, if the number is 255 (0xFF,
0377) or below, Perl interprets this in the platform’s native encoding. If the number is 256 (0x100,
0400) or above, Perl interprets it as a Unicode code point and the result is the corresponding Unicode
character. For example \x{50} and \o{120} both are the number 80 in decimal, which is less than
256, so the number is interpreted in the native character set encoding. In ASCII the character in the
80th position (indexed from 0) is the letter "P", and in EBCDIC it is the ampersand symbol "&".
\x{100} and \o{400} are both 256 in decimal, so the number is interpreted as a Unicode code

52 2018-11-19 perl v5.26.1

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

point no matter what the native encoding is. The name of the character in the 256th position (indexed
by 0) in Unicode is LATIN CAPITAL LETTER A WITH MACRON.

An exception to the above rule is that \N{U+hex number} is always interpreted as a Unicode code
point, so that \N{U+0050} is "P" ev en on EBCDIC platforms.

NOTE: Unlike C and other languages, Perl has no \v escape sequence for the vertical tab (VT, which is 11
in both ASCII and EBCDIC), but you may use \N{VT}, \ck, \N{U+0b}, or \x0b. (\v does have
meaning in regular expression patterns in Perl, see perlre.)

The following escape sequences are available in constructs that interpolate, but not in transliterations.

\l lowercase next character only
\u titlecase (not uppercase!) next character only
\L lowercase all characters till \E or end of string
\U uppercase all characters till \E or end of string
\F foldcase all characters till \E or end of string
\Q quote (disable) pattern metacharacters till \E or

end of string
\E end either case modification or quoted section

(whichever was last seen)

See ‘‘quotemeta’’ in perlfunc for the exact definition of characters that are quoted by \Q.

\L, \U, \F, and \Q can stack, in which case you need one \E for each. For example:

say"This \Qquoting \ubusiness \Uhere isn't quite\E done yet,\E is it?";
This quoting\ Business\ HERE\ ISN\'T\ QUITE\ done\ yet\, is it?

If a use locale form that includes LC_CTYPE is in effect (see perllocale), the case map used by \l,
\L, \u, and \U is taken from the current locale. If Unicode (for example, \N{} or code points of 0x100 or
beyond) is being used, the case map used by \l, \L, \u, and \U is as defined by Unicode. That means that
case-mapping a single character can sometimes produce a sequence of several characters. Under
use locale, \F produces the same results as \L for all locales but a UTF−8 one, where it instead uses
the Unicode definition.

All systems use the virtual "\n" to represent a line terminator, called a ‘‘newline’’. There is no such thing
as an unvarying, physical newline character. It is only an illusion that the operating system, device drivers,
C libraries, and Perl all conspire to preserve. Not all systems read "\r" as ASCII CR and "\n" as ASCII

LF. For example, on the ancient Macs (pre-MacOS X) of yesteryear, these used to be reversed, and on
systems without a line terminator, printing "\n" might emit no actual data. In general, use "\n" when
you mean a ‘‘newline’’ for your system, but use the literal ASCII when you need an exact character. For
example, most networking protocols expect and prefer a CR+LF ("\015\012" or "\cM\cJ") for line
terminators, and although they often accept just "\012", they seldom tolerate just "\015". If you get in
the habit of using "\n" for networking, you may be burned some day.

For constructs that do interpolate, variables beginning with "$‘‘ or ’’@" are interpolated. Subscripted
variables such as $a[3] or $href−>{key}[0] are also interpolated, as are array and hash slices. But
method calls such as $obj−>meth are not.

Interpolating an array or slice interpolates the elements in order, separated by the value of $", so is
equivalent to interpolating join $", @array. ‘‘Punctuation’’ arrays such as @* are usually
interpolated only if the name is enclosed in braces @{*}, but the arrays @_, @+, and @− are interpolated
ev en without braces.

For double-quoted strings, the quoting from \Q is applied after interpolation and escapes are processed.

"abc\Qfoo\tbar$s\Exyz"

is equivalent to

"abc" . quotemeta("foo\tbar$s") . "xyz"

For the pattern of regex operators (qr//, m// and s///), the quoting from \Q is applied after
interpolation is processed, but before escapes are processed. This allows the pattern to match literally
(except for $ and @). For example, the following matches:

'\s\t' =˜ /\Q\s\t/

perl v5.26.1 2018-11-19 53

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

Because $ or @ trigger interpolation, you’ll need to use something like /\Quser\E\@\Qhost/ to match
them literally.

Patterns are subject to an additional level of interpretation as a regular expression. This is done as a second
pass, after variables are interpolated, so that regular expressions may be incorporated into the pattern from
the variables. If this is not what you want, use \Q to interpolate a variable literally.

Apart from the behavior described above, Perl does not expand multiple levels of interpolation. In
particular, contrary to the expectations of shell programmers, back-quotes do NOT interpolate within double
quotes, nor do single quotes impede evaluation of variables when used within double quotes.

Regexp Quote-Like Operators
Here are the quote-like operators that apply to pattern matching and related activities.

qr/STRING/msixpodualn
This operator quotes (and possibly compiles) its STRING as a regular expression. STRING is
interpolated the same way as PA TTERN in m/PATTERN/. If "'" is used as the delimiter, no
variable interpolation is done. Returns a Perl value which may be used instead of the
corresponding /STRING/msixpodualn expression. The returned value is a normalized
version of the original pattern. It magically differs from a string containing the same characters:
ref(qr/x/) returns ‘‘Regexp’’; however, dereferencing it is not well defined (you currently get
the normalized version of the original pattern, but this may change).

For example,

$rex = qr/my.STRING/is;
print $rex; # prints (?si−xm:my.STRING)
s/$rex/foo/;

is equivalent to

s/my.STRING/foo/is;

The result may be used as a subpattern in a match:

$re = qr/$pattern/;
$string =˜ /foo${re}bar/; # can be interpolated in other

patterns
$string =˜ $re; # or used standalone
$string =˜ /$re/; # or this way

Since Perl may compile the pattern at the moment of execution of the qr() operator, using
qr() may have speed advantages in some situations, notably if the result of qr() is used
standalone:

sub match {
my $patterns = shift;
my @compiled = map qr/$_/i, @$patterns;
grep {

my $success = 0;
foreach my $pat (@compiled) {

$success = 1, last if /$pat/;
}
$success;

} @_;
}

Precompilation of the pattern into an internal representation at the moment of qr() avoids the
need to recompile the pattern every time a match /$pat/ is attempted. (Perl has many other
internal optimizations, but none would be triggered in the above example if we did not use qr()
operator.)

Options (specified by the following modifiers) are:

54 2018-11-19 perl v5.26.1

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

m Treat string as multiple lines.
s Treat string as single line. (Make . match a newline)
i Do case−insensitive pattern matching.
x Use extended regular expressions; specifying two

x's means \t and the SPACE character are ignored within
square−bracketed character classes

p When matching preserve a copy of the matched string so
that ${ˆPREMATCH}, ${ˆMATCH}, ${ˆPOSTMATCH} will be
defined (ignored starting in v5.20) as these are always
defined starting in that release

o Compile pattern only once.
a ASCII−restrict: Use ASCII for \d, \s, \w and [[:posix:]]

character classes; specifying two a's adds the further
restriction that no ASCII character will match a
non−ASCII one under /i.

l Use the current run−time locale's rules.
u Use Unicode rules.
d Use Unicode or native charset, as in 5.12 and earlier.
n Non−capture mode. Don't let () fill in $1, $2, etc...

If a precompiled pattern is embedded in a larger pattern then the effect of "msixpluadn" will
be propagated appropriately. The effect that the /o modifier has is not propagated, being
restricted to those patterns explicitly using it.

The last four modifiers listed above, added in Perl 5.14, control the character set rules, but /a is
the only one you are likely to want to specify explicitly; the other three are selected automatically
by various pragmas.

See perlre for additional information on valid syntax for STRING, and for a detailed look at the
semantics of regular expressions. In particular, all modifiers except the largely obsolete /o are
further explained in ‘‘Modifiers’’ in perlre. /o is described in the next section.

m/PATTERN/msixpodualngc
/PATTERN/msixpodualngc

Searches a string for a pattern match, and in scalar context returns true if it succeeds, false if it
fails. If no string is specified via the =˜ or !˜ operator, the $_ string is searched. (The string
specified with =˜ need not be an lvalue — it may be the result of an expression evaluation, but
remember the =˜ binds rather tightly.) See also perlre.

Options are as described in qr// above; in addition, the following match process modifiers are
available:

g Match globally, i.e., find all occurrences.
c Do not reset search position on a failed match when /g is

in effect.

If "/" is the delimiter then the initial m is optional. With the m you can use any pair of non-
whitespace (ASCII) characters as delimiters. This is particularly useful for matching path names
that contain "/", to avoid LTS (leaning toothpick syndrome). If "?" is the delimiter, then a
match-only-once rule applies, described in m?PATTERN? below. If "'" (single quote) is the
delimiter, no variable interpolation is performed on the PA TTERN. When using a delimiter
character valid in an identifier, whitespace is required after the m.

PA TTERN may contain variables, which will be interpolated every time the pattern search is
evaluated, except for when the delimiter is a single quote. (Note that $(, $), and $| are not
interpolated because they look like end-of-string tests.) Perl will not recompile the pattern unless
an interpolated variable that it contains changes. You can force Perl to skip the test and never
recompile by adding a /o (which stands for ‘‘once’’) after the trailing delimiter. Once upon a
time, Perl would recompile regular expressions unnecessarily, and this modifier was useful to tell
it not to do so, in the interests of speed. But now, the only reasons to use /o are one of:

1. The variables are thousands of characters long and you know that they don’t change, and
you need to wring out the last little bit of speed by having Perl skip testing for that. (There

perl v5.26.1 2018-11-19 55

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

is a maintenance penalty for doing this, as mentioning /o constitutes a promise that you
won’t change the variables in the pattern. If you do change them, Perl won’t even notice.)

2. you want the pattern to use the initial values of the variables regardless of whether they
change or not. (But there are saner ways of accomplishing this than using /o.)

3. If the pattern contains embedded code, such as

use re 'eval';
$code = 'foo(?{ $x })';
/$code/

then perl will recompile each time, even though the pattern string hasn’t changed, to ensure
that the current value of $x is seen each time. Use /o if you want to avoid this.

The bottom line is that using /o is almost never a good idea.

The empty pattern //
If the PA TTERN evaluates to the empty string, the last successfully matched regular expression is
used instead. In this case, only the g and c flags on the empty pattern are honored; the other flags
are taken from the original pattern. If no match has previously succeeded, this will (silently) act
instead as a genuine empty pattern (which will always match).

Note that it’s possible to confuse Perl into thinking // (the empty regex) is really // (the
defined-or operator). Perl is usually pretty good about this, but some pathological cases might
trigger this, such as $x/// (is that ($x) / (//) or $x // /?) and print $fh //
(print $fh(// or print($fh //?). In all of these examples, Perl will assume you meant
defined-or. If you meant the empty regex, just use parentheses or spaces to disambiguate, or even
prefix the empty regex with an m (so // becomes m//).

Matching in list context
If the /g option is not used, m// in list context returns a list consisting of the subexpressions
matched by the parentheses in the pattern, that is, ($1, $2, $3...) (Note that here $1 etc. are also
set). When there are no parentheses in the pattern, the return value is the list (1) for success.
With or without parentheses, an empty list is returned upon failure.

Examples:

open(TTY, "+</dev/tty")
|| die "can't access /dev/tty: $!";

<TTY> =˜ /ˆy/i && foo(); # do foo if desired

if (/Version: *([0−9.]*)/) { $version = $1; }

next if m#ˆ/usr/spool/uucp#;

poor man's grep
$arg = shift;
while (<>) {

print if /$arg/o; # compile only once (no longer needed!)
}

if (($F1, $F2, $Etc) = ($foo =˜ /ˆ(\S+)\s+(\S+)\s*(.*)/))

This last example splits $foo into the first two words and the remainder of the line, and assigns
those three fields to $F1, $F2, and $Etc. The conditional is true if any variables were assigned;
that is, if the pattern matched.

The /g modifier specifies global pattern matching — that is, matching as many times as possible
within the string. How it behaves depends on the context. In list context, it returns a list of the
substrings matched by any capturing parentheses in the regular expression. If there are no
parentheses, it returns a list of all the matched strings, as if there were parentheses around the
whole pattern.

In scalar context, each execution of m//g finds the next match, returning true if it matches, and

56 2018-11-19 perl v5.26.1

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

false if there is no further match. The position after the last match can be read or set using the
pos() function; see ‘‘pos’’ in perlfunc. A failed match normally resets the search position to the
beginning of the string, but you can avoid that by adding the /c modifier (for example, m//gc).
Modifying the target string also resets the search position.

\G assertion

You can intermix m//g matches with m/\G.../g, where \G is a zero-width assertion that
matches the exact position where the previous m//g, if any, left off. Without the /g modifier,
the \G assertion still anchors at pos() as it was at the start of the operation (see ‘‘pos’’ in
perlfunc), but the match is of course only attempted once. Using \G without /g on a target string
that has not previously had a /g match applied to it is the same as using the \A assertion to
match the beginning of the string. Note also that, currently, \G is only properly supported when
anchored at the very beginning of the pattern.

Examples:

list context
($one,$five,$fifteen) = (`uptime` =˜ /(\d+\.\d+)/g);

scalar context
local $/ = "";
while ($paragraph = <>) {

while ($paragraph =˜ /\p{Ll}['")]*[.!?]+['")]*\s/g) {
$sentences++;

}
}
say $sentences;

Here’s another way to check for sentences in a paragraph:

my $sentence_rx = qr{
(?: (?<= ˆ) | (?<= \s)) # after start−of−string or

whitespace
\p{Lu} # capital letter
.*? # a bunch of anything
(?<= \S) # that ends in non−

whitespace
(?<! \b [DMS]r) # but isn't a common abbr.
(?<! \b Mrs)
(?<! \b Sra)
(?<! \b St)
[.?!] # followed by a sentence

ender
(?= $ | \s) # in front of end−of−string

or whitespace
}sx;
local $/ = "";
while (my $paragraph = <>) {

say "NEW PARAGRAPH";
my $count = 0;
while ($paragraph =˜ /($sentence_rx)/g) {

printf "\tgot sentence %d: <%s>\n", ++$count, $1;
}

}

Here’s how to use m//gc with \G:

perl v5.26.1 2018-11-19 57

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

$_ = "ppooqppqq";
while ($i++ < 2) {

print "1: '";
print $1 while /(o)/gc; print "', pos=", pos, "\n";
print "2: '";
print $1 if /\G(q)/gc; print "', pos=", pos, "\n";
print "3: '";
print $1 while /(p)/gc; print "', pos=", pos, "\n";

}
print "Final: '$1', pos=",pos,"\n" if /\G(.)/;

The last example should print:

1: 'oo', pos=4
2: 'q', pos=5
3: 'pp', pos=7
1: '', pos=7
2: 'q', pos=8
3: '', pos=8
Final: 'q', pos=8

Notice that the final match matched q instead of p, which a match without the \G anchor would
have done. Also note that the final match did not update pos. pos is only updated on a /g
match. If the final match did indeed match p, it’s a good bet that you’re running a very old
(pre−5.6.0) version of Perl.

A useful idiom for lex−like scanners is /\G.../gc. You can combine several regexps like
this to process a string part-by-part, doing different actions depending on which regexp matched.
Each regexp tries to match where the previous one leaves off.

$_ = <<'EOL';
$url = URI::URL−>new("http://example.com/");
die if $url eq "xXx";

EOL

LOOP: {
print(" digits"), redo LOOP if /\G\d+\b[,.;]?\s*/gc;
print(" lowercase"), redo LOOP

if /\G\p{Ll}+\b[,.;]?\s*/gc;
print(" UPPERCASE"), redo LOOP

if /\G\p{Lu}+\b[,.;]?\s*/gc;
print(" Capitalized"), redo LOOP

if /\G\p{Lu}\p{Ll}+\b[,.;]?\s*/gc;
print(" MiXeD"), redo LOOP if /\G\pL+\b[,.;]?\s*/gc;
print(" alphanumeric"), redo LOOP

if /\G[\p{Alpha}\pN]+\b[,.;]?\s*/gc;
print(" line−noise"), redo LOOP if /\G\W+/gc;
print ". That's all!\n";

}

Here is the output (split into several lines):

line−noise lowercase line−noise UPPERCASE line−noise UPPERCASE
line−noise lowercase line−noise lowercase line−noise lowercase
lowercase line−noise lowercase lowercase line−noise lowercase
lowercase line−noise MiXeD line−noise. That's all!

m?PATTERN?msixpodualngc
This is just like the m/PATTERN/ search, except that it matches only once between calls to the
reset() operator. This is a useful optimization when you want to see only the first occurrence
of something in each file of a set of files, for instance. Only m?? patterns local to the current
package are reset.

58 2018-11-19 perl v5.26.1

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

while (<>) {
if (m?ˆ$?) {

blank line between header and body
}

} continue {
reset if eof; # clear m?? status for next file

}

Another example switched the first ‘‘latin1’’ encoding it finds to ‘‘utf8’’ in a pod file:

s//utf8/ if m? ˆ =encoding \h+ \K latin1 ?x;

The match-once behavior is controlled by the match delimiter being ?; with any other delimiter
this is the normal m// operator.

In the past, the leading m in m?PATTERN? was optional, but omitting it would produce a
deprecation warning. As of v5.22.0, omitting it produces a syntax error. If you encounter this
construct in older code, you can just add m.

s/PATTERN/REPLACEMENT/msixpodualngcer
Searches a string for a pattern, and if found, replaces that pattern with the replacement text and
returns the number of substitutions made. Otherwise it returns false (specifically, the empty
string).

If the /r (non-destructive) option is used then it runs the substitution on a copy of the string and
instead of returning the number of substitutions, it returns the copy whether or not a substitution
occurred. The original string is never changed when /r is used. The copy will always be a plain
string, even if the input is an object or a tied variable.

If no string is specified via the =˜ or !˜ operator, the $_ variable is searched and modified.
Unless the /r option is used, the string specified must be a scalar variable, an array element, a
hash element, or an assignment to one of those; that is, some sort of scalar lvalue.

If the delimiter chosen is a single quote, no variable interpolation is done on either the PA TTERN

or the REPLACEMENT. Otherwise, if the PA TTERN contains a $ that looks like a variable rather
than an end-of-string test, the variable will be interpolated into the pattern at run-time. If you
want the pattern compiled only once the first time the variable is interpolated, use the /o option.
If the pattern evaluates to the empty string, the last successfully executed regular expression is
used instead. See perlre for further explanation on these.

Options are as with m// with the addition of the following replacement specific options:

e Evaluate the right side as an expression.
ee Evaluate the right side as a string then eval the

result.
r Return substitution and leave the original string

untouched.

Any non-whitespace delimiter may replace the slashes. Add space after the s when using a
character allowed in identifiers. If single quotes are used, no interpretation is done on the
replacement string (the /e modifier overrides this, however). Note that Perl treats backticks as
normal delimiters; the replacement text is not evaluated as a command. If the PA TTERN is
delimited by bracketing quotes, the REPLACEMENT has its own pair of quotes, which may or may
not be bracketing quotes, for example, s(foo)(bar) or s<foo>/bar/. A /e will cause the
replacement portion to be treated as a full-fledged Perl expression and evaluated right then and
there. It is, however, syntax checked at compile-time. A second e modifier will cause the
replacement portion to be evaled before being run as a Perl expression.

Examples:

s/\bgreen\b/mauve/g; # don't change wintergreen

$path =˜ s|/usr/bin|/usr/local/bin|;

s/Login: $foo/Login: $bar/; # run−time pattern

perl v5.26.1 2018-11-19 59

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

($foo = $bar) =˜ s/this/that/; # copy first, then
change

($foo = "$bar") =˜ s/this/that/; # convert to string,
copy, then change

$foo = $bar =˜ s/this/that/r; # Same as above using /r
$foo = $bar =˜ s/this/that/r

=˜ s/that/the other/r; # Chained substitutes
using /r

@foo = map { s/this/that/r } @bar # /r is very useful in
maps

$count = ($paragraph =˜ s/Mister\b/Mr./g); # get change−cnt

$_ = 'abc123xyz';
s/\d+/$&*2/e; # yields 'abc246xyz'
s/\d+/sprintf("%5d",$&)/e; # yields 'abc 246xyz'
s/\w/$& x 2/eg; # yields 'aabbcc 224466xxyyzz'

s/%(.)/$percent{$1}/g; # change percent escapes; no /e
s/%(.)/$percent{$1} || $&/ge; # expr now, so /e
s/ˆ=(\w+)/pod($1)/ge; # use function call

$_ = 'abc123xyz';
$x = s/abc/def/r; # $x is 'def123xyz' and

$_ remains 'abc123xyz'.

expand variables in $_, but dynamics only, using
symbolic dereferencing
s/\$(\w+)/${$1}/g;

Add one to the value of any numbers in the string
s/(\d+)/1 + $1/eg;

Titlecase words in the last 30 characters only
substr($str, −30) =˜ s/\b(\p{Alpha}+)\b/\u\L$1/g;

This will expand any embedded scalar variable
(including lexicals) in $_ : First $1 is interpolated
to the variable name, and then evaluated
s/(\$\w+)/$1/eeg;

Delete (most) C comments.
$program =˜ s {

/* # Match the opening delimiter.
.*? # Match a minimal number of characters.
*/ # Match the closing delimiter.

} []gsx;

s/ˆ\s*(.*?)\s*$/$1/; # trim whitespace in $_,
expensively

for ($variable) { # trim whitespace in $variable,
cheap

s/ˆ\s+//;
s/\s+$//;

}

s/([ˆ]*) *([ˆ]*)/$2 $1/; # reverse 1st two fields

60 2018-11-19 perl v5.26.1

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

Note the use of $ instead of \ in the last example. Unlike sed, we use the \<digit> form only in
the left hand side. Anywhere else it’s $<digit>.

Occasionally, you can’t use just a /g to get all the changes to occur that you might want. Here
are two common cases:

put commas in the right places in an integer
1 while s/(\d)(\d\d\d)(?!\d)/$1,$2/g;

expand tabs to 8−column spacing
1 while s/\t+/' ' x (length($&)*8 − length($`)%8)/e;

Quote-Like Operators
q/STRING/
'STRING'

A single-quoted, literal string. A backslash represents a backslash unless followed by the delimiter or
another backslash, in which case the delimiter or backslash is interpolated.

$foo = q!I said, "You said, 'She said it.'"!;
$bar = q('This is it.');
$baz = '\n'; # a two−character string

qq/STRING/
‘‘STRING’’

A double-quoted, interpolated string.

$_ .= qq
(*** The previous line contains the naughty word "$1".\n)

if /\b(tcl|java|python)\b/i; # :−)
$baz = "\n"; # a one−character string

qx/STRING/
`STRING`

A string which is (possibly) interpolated and then executed as a system command with /bin/sh or its
equivalent. Shell wildcards, pipes, and redirections will be honored. The collected standard output of
the command is returned; standard error is unaffected. In scalar context, it comes back as a single
(potentially multi-line) string, or undef if the command failed. In list context, returns a list of lines
(however you’ve defined lines with $/ or $INPUT_RECORD_SEPARATOR), or an empty list if the
command failed.

Because backticks do not affect standard error, use shell file descriptor syntax (assuming the shell
supports this) if you care to address this. To capture a command’s STDERR and STDOUT together:

$output = `cmd 2>&1`;

To capture a command’s STDOUT but discard its STDERR:

$output = `cmd 2>/dev/null`;

To capture a command’s STDERR but discard its STDOUT (ordering is important here):

$output = `cmd 2>&1 1>/dev/null`;

To exchange a command’s STDOUT and STDERR in order to capture the STDERR but leave its
STDOUT to come out the old STDERR:

$output = `cmd 3>&1 1>&2 2>&3 3>&−`;

To read both a command’s STDOUT and its STDERR separately, it’s easiest to redirect them separately
to files, and then read from those files when the program is done:

system("program args 1>program.stdout 2>program.stderr");

The STDIN filehandle used by the command is inherited from Perl’s STDIN. For example:

perl v5.26.1 2018-11-19 61

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

open(SPLAT, "stuff") || die "can't open stuff: $!";
open(STDIN, "<&SPLAT") || die "can't dupe SPLAT: $!";
print STDOUT `sort`;

will print the sorted contents of the file named ‘‘stuff’’.

Using single-quote as a delimiter protects the command from Perl’s double-quote interpolation,
passing it on to the shell instead:

$perl_info = qx(ps $$); # that's Perl's $$
$shell_info = qx'ps $$'; # that's the new shell's $$

How that string gets evaluated is entirely subject to the command interpreter on your system. On most
platforms, you will have to protect shell metacharacters if you want them treated literally. This is in
practice difficult to do, as it’s unclear how to escape which characters. See perlsec for a clean and safe
example of a manual fork() and exec() to emulate backticks safely.

On some platforms (notably DOS-like ones), the shell may not be capable of dealing with multiline
commands, so putting newlines in the string may not get you what you want. You may be able to
evaluate multiple commands in a single line by separating them with the command separator character,
if your shell supports that (for example, ; on many Unix shells and & on the Windows NT cmd shell).

Perl will attempt to flush all files opened for output before starting the child process, but this may not
be supported on some platforms (see perlport). To be safe, you may need to set $| ($AUTOFLUSH in
English) or call the autoflush() method of IO::Handle on any open handles.

Beware that some command shells may place restrictions on the length of the command line. You
must ensure your strings don’t exceed this limit after any necessary interpolations. See the platform-
specific release notes for more details about your particular environment.

Using this operator can lead to programs that are difficult to port, because the shell commands called
vary between systems, and may in fact not be present at all. As one example, the type command
under the POSIX shell is very different from the type command under DOS. That doesn’t mean you
should go out of your way to avoid backticks when they’re the right way to get something done. Perl
was made to be a glue language, and one of the things it glues together is commands. Just understand
what you’re getting yourself into.

Like system, backticks put the child process exit code in $?. If you’d like to manually inspect
failure, you can check all possible failure modes by inspecting $? like this:

if ($? == −1) {
print "failed to execute: $!\n";

}
elsif ($? & 127) {

printf "child died with signal %d, %s coredump\n",
($? & 127), ($? & 128) ? 'with' : 'without';

}
else {

printf "child exited with value %d\n", $? >> 8;
}

Use the open pragma to control the I/O layers used when reading the output of the command, for
example:

use open IN => ":encoding(UTF−8)";
my $x = `cmd−producing−utf−8`;

See ‘‘I/O Operators’’ for more discussion.

qw/STRING/
Evaluates to a list of the words extracted out of STRING, using embedded whitespace as the word
delimiters. It can be understood as being roughly equivalent to:

split(" ", q/STRING/);

the differences being that it generates a real list at compile time, and in scalar context it returns the last
element in the list. So this expression:

62 2018-11-19 perl v5.26.1

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

qw(foo bar baz)

is semantically equivalent to the list:

"foo", "bar", "baz"

Some frequently seen examples:

use POSIX qw(setlocale localeconv)
@EXPORT = qw(foo bar baz);

A common mistake is to try to separate the words with commas or to put comments into a multi-line
qw−string. For this reason, the use warnings pragma and the −w switch (that is, the $ˆW
variable) produces warnings if the STRING contains the "," or the "#" character.

tr/SEARCHLIST/REPLACEMENTLIST/cdsr
y/SEARCHLIST/REPLACEMENTLIST/cdsr

Transliterates all occurrences of the characters found in the search list with the corresponding
character in the replacement list. It returns the number of characters replaced or deleted. If no string
is specified via the =˜ or !˜ operator, the $_ string is transliterated.

If the /r (non-destructive) option is present, a new copy of the string is made and its characters
transliterated, and this copy is returned no matter whether it was modified or not: the original string is
always left unchanged. The new copy is always a plain string, even if the input string is an object or a
tied variable.

Unless the /r option is used, the string specified with =˜ must be a scalar variable, an array element,
a hash element, or an assignment to one of those; in other words, an lvalue.

A character range may be specified with a hyphen, so tr/A−J/0−9/ does the same replacement as
tr/ACEGIBDFHJ/0246813579/. For sed devotees, y is provided as a synonym for tr. If the
SEARCHLIST is delimited by bracketing quotes, the REPLACEMENTLIST must have its own pair of
quotes, which may or may not be bracketing quotes; for example, tr[aeiouy][yuoiea] or
tr(+\−*/)/ABCD/.

Characters may be literals or any of the escape sequences accepted in double-quoted strings. But there
is no variable interpolation, so "$" and "@" are treated as literals. A hyphen at the beginning or end,
or preceded by a backslash is considered a literal. Escape sequence details are in the table near the
beginning of this section.

Note that tr does not do regular expression character classes such as \d or \pL. The tr operator is
not equivalent to the tr(1) utility. tr[a−z][A−Z] will uppercase the 26 letters ‘‘a’’ through ‘‘z’’,
but for case changing not confined to ASCII, use lc, uc, lcfirst, ucfirst (all documented in
perlfunc), or the substitution operator s/PATTERN/REPLACEMENT/ (with \U, \u, \L, and \l
string-interpolation escapes in the REPLACEMENT portion).

Most ranges are unportable between character sets, but certain ones signal Perl to do special handling
to make them portable. There are two classes of portable ranges. The first are any subsets of the
ranges A−Z, a−z, and 0−9, when expressed as literal characters.

tr/h−k/H−K/

capitalizes the letters "h", "i", "j", and "k" and nothing else, no matter what the platform’s
character set is. In contrast, all of

tr/\x68−\x6B/\x48−\x4B/
tr/h−\x6B/H−\x4B/
tr/\x68−k/\x48−K/

do the same capitalizations as the previous example when run on ASCII platforms, but something
completely different on EBCDIC ones.

The second class of portable ranges is invoked when one or both of the range’s end points are
expressed as \N{...}

$string =˜ tr/\N{U+20}−\N{U+7E}//d;

removes from $string all the platform’s characters which are equivalent to any of Unicode U+0020,

perl v5.26.1 2018-11-19 63

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

U+0021, ... U+007D, U+007E. This is a portable range, and has the same effect on every platform it
is run on. It turns out that in this example, these are the ASCII printable characters. So after this is
run, $string has only controls and characters which have no ASCII equivalents.

But, even for portable ranges, it is not generally obvious what is included without having to look
things up. A sound principle is to use only ranges that begin from and end at either ASCII alphabetics
of equal case (b−e, B−E), or digits (1−4). Anything else is unclear (and unportable unless \N{...}
is used). If in doubt, spell out the character sets in full.

Options:

c Complement the SEARCHLIST.
d Delete found but unreplaced characters.
s Squash duplicate replaced characters.
r Return the modified string and leave the original string

untouched.

If the /c modifier is specified, the SEARCHLIST character set is complemented. If the /d modifier is
specified, any characters specified by SEARCHLIST not found in REPLACEMENTLIST are deleted. (Note
that this is slightly more flexible than the behavior of some tr programs, which delete anything they
find in the SEARCHLIST, period.) If the /s modifier is specified, sequences of characters that were
transliterated to the same character are squashed down to a single instance of the character.

If the /d modifier is used, the REPLACEMENTLIST is always interpreted exactly as specified.
Otherwise, if the REPLACEMENTLIST is shorter than the SEARCHLIST, the final character is replicated
till it is long enough. If the REPLACEMENTLIST is empty, the SEARCHLIST is replicated. This latter is
useful for counting characters in a class or for squashing character sequences in a class.

Examples:

$ARGV[1] =˜ tr/A−Z/a−z/; # canonicalize to lower case ASCII

$cnt = tr/*/*/; # count the stars in $_

$cnt = $sky =˜ tr/*/*/; # count the stars in $sky

$cnt = tr/0−9//; # count the digits in $_

tr/a−zA−Z//s; # bookkeeper −> bokeper

($HOST = $host) =˜ tr/a−z/A−Z/;
$HOST = $host =˜ tr/a−z/A−Z/r; # same thing

$HOST = $host =˜ tr/a−z/A−Z/r # chained with s///r
=˜ s/:/ −p/r;

tr/a−zA−Z/ /cs; # change non−alphas to single space

@stripped = map tr/a−zA−Z/ /csr, @original;
/r with map

tr [\200−\377]
[\000−\177]; # wickedly delete 8th bit

If multiple transliterations are given for a character, only the first one is used:

tr/AAA/XYZ/

will transliterate any A to X.

Because the transliteration table is built at compile time, neither the SEARCHLIST nor the
REPLACEMENTLIST are subjected to double quote interpolation. That means that if you want to use
variables, you must use an eval():

64 2018-11-19 perl v5.26.1

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

eval "tr/$oldlist/$newlist/";
die $@ if $@;

eval "tr/$oldlist/$newlist/, 1" or die $@;

<<EOF
A line-oriented form of quoting is based on the shell ‘‘here-document’’ syntax. Following a << you
specify a string to terminate the quoted material, and all lines following the current line down to the
terminating string are the value of the item.

Prefixing the terminating string with a ˜ specifies that you want to use ‘‘Indented Here-docs’’ (see
below).

The terminating string may be either an identifier (a word), or some quoted text. An unquoted
identifier works like double quotes. There may not be a space between the << and the identifier,
unless the identifier is explicitly quoted. (If you put a space it will be treated as a null identifier, which
is valid, and matches the first empty line.) The terminating string must appear by itself (unquoted and
with no surrounding whitespace) on the terminating line.

If the terminating string is quoted, the type of quotes used determine the treatment of the text.

Double Quotes
Double quotes indicate that the text will be interpolated using exactly the same rules as normal
double quoted strings.

print <<EOF;
The price is $Price.
EOF

print << "EOF"; # same as above
The price is $Price.
EOF

Single Quotes
Single quotes indicate the text is to be treated literally with no interpolation of its content. This is
similar to single quoted strings except that backslashes have no special meaning, with \\ being
treated as two backslashes and not one as they would in every other quoting construct.

Just as in the shell, a backslashed bareword following the << means the same thing as a single-
quoted string does:

$cost = <<'VISTA'; # hasta la ...
That'll be $10 please, ma'am.
VISTA

$cost = <<\VISTA; # Same thing!
That'll be $10 please, ma'am.
VISTA

This is the only form of quoting in perl where there is no need to worry about escaping content,
something that code generators can and do make good use of.

Backticks
The content of the here doc is treated just as it would be if the string were embedded in backticks.
Thus the content is interpolated as though it were double quoted and then executed via the shell,
with the results of the execution returned.

print << `EOC`; # execute command and get results
echo hi there
EOC

Indented Here-docs
The here-doc modifier ˜ allows you to indent your here-docs to make the code more readable:

perl v5.26.1 2018-11-19 65

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

if ($some_var) {
print <<˜EOF;
This is a here−doc
EOF

}

This will print...

This is a here−doc

...with no leading whitespace.

The delimiter is used to determine the exact whitespace to remove from the beginning of each
line. All lines must have at least the same starting whitespace (except lines only containing a
newline) or perl will croak. Tabs and spaces can be mixed, but are matched exactly. One tab will
not be equal to 8 spaces!

Additional beginning whitespace (beyond what preceded the delimiter) will be preserved:

print <<˜EOF;
This text is not indented
This text is indented with two spaces

This text is indented with two tabs
EOF

Finally, the modifier may be used with all of the forms mentioned above:

<<˜\EOF;
<<˜'EOF'
<<˜"EOF"
<<˜`EOF`

And whitespace may be used between the ˜ and quoted delimiters:

<<˜ 'EOF'; # ... "EOF", `EOF`

It is possible to stack multiple here-docs in a row:

print <<"foo", <<"bar"; # you can stack them
I said foo.
foo
I said bar.
bar

myfunc(<< "THIS", 23, <<'THAT');
Here's a line
or two.
THIS
and here's another.
THAT

Just don’t forget that you have to put a semicolon on the end to finish the statement, as Perl doesn’t
know you’re not going to try to do this:

print <<ABC
179231
ABC

+ 20;

If you want to remove the line terminator from your here-docs, use chomp().

chomp($string = <<'END');
This is a string.
END

If you want your here-docs to be indented with the rest of the code, you’ll need to remove leading
whitespace from each line manually:

66 2018-11-19 perl v5.26.1

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

($quote = <<'FINIS') =˜ s/ˆ\s+//gm;
The Road goes ever on and on,
down from the door where it began.

FINIS

If you use a here-doc within a delimited construct, such as in s///eg, the quoted material must still
come on the line following the <<FOO marker, which means it may be inside the delimited construct:

s/this/<<E . 'that'
the other
E
. 'more '/eg;

It works this way as of Perl 5.18. Historically, it was inconsistent, and you would have to write

s/this/<<E . 'that'
. 'more '/eg;
the other
E

outside of string evals.

Additionally, quoting rules for the end-of-string identifier are unrelated to Perl’s quoting rules. q(),
qq(), and the like are not supported in place of '' and "", and the only interpolation is for
backslashing the quoting character:

print << "abc\"def";
testing...
abc"def

Finally, quoted strings cannot span multiple lines. The general rule is that the identifier must be a
string literal. Stick with that, and you should be safe.

Gory details of parsing quoted constructs
When presented with something that might have sev eral different interpretations, Perl uses the DWIM

(that’s ‘‘Do What I Mean’’) principle to pick the most probable interpretation. This strategy is so
successful that Perl programmers often do not suspect the ambivalence of what they write. But from time
to time, Perl’s notions differ substantially from what the author honestly meant.

This section hopes to clarify how Perl handles quoted constructs. Although the most common reason to
learn this is to unravel labyrinthine regular expressions, because the initial steps of parsing are the same for
all quoting operators, they are all discussed together.

The most important Perl parsing rule is the first one discussed below: when processing a quoted construct,
Perl first finds the end of that construct, then interprets its contents. If you understand this rule, you may
skip the rest of this section on the first reading. The other rules are likely to contradict the user’s
expectations much less frequently than this first one.

Some passes discussed below are performed concurrently, but because their results are the same, we
consider them individually. For different quoting constructs, Perl performs different numbers of passes,
from one to four, but these passes are always performed in the same order.

Finding the end
The first pass is finding the end of the quoted construct. This results in saving to a safe location a copy
of the text (between the starting and ending delimiters), normalized as necessary to avoid needing to
know what the original delimiters were.

If the construct is a here-doc, the ending delimiter is a line that has a terminating string as the content.
Therefore <<EOF is terminated by EOF immediately followed by "\n" and starting from the first
column of the terminating line. When searching for the terminating line of a here-doc, nothing is
skipped. In other words, lines after the here-doc syntax are compared with the terminating string line
by line.

For the constructs except here-docs, single characters are used as starting and ending delimiters. If the
starting delimiter is an opening punctuation (that is (, [, {, or <), the ending delimiter is the
corresponding closing punctuation (that is),], }, or >). If the starting delimiter is an unpaired
character like / or a closing punctuation, the ending delimiter is the same as the starting delimiter.

perl v5.26.1 2018-11-19 67

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

Therefore a / terminates a qq// construct, while a] terminates both qq[] and qq]] constructs.

When searching for single-character delimiters, escaped delimiters and \\ are skipped. For example,
while searching for terminating /, combinations of \\ and \/ are skipped. If the delimiters are
bracketing, nested pairs are also skipped. For example, while searching for a closing] paired with the
opening [, combinations of \\, \], and \[are all skipped, and nested [and] are skipped as well.
However, when backslashes are used as the delimiters (like qq\\ and tr\\\), nothing is skipped.
During the search for the end, backslashes that escape delimiters or other backslashes are removed
(exactly speaking, they are not copied to the safe location).

For constructs with three-part delimiters (s///, y///, and tr///), the search is repeated once
more. If the first delimiter is not an opening punctuation, the three delimiters must be the same, such
as s!!! and tr))), in which case the second delimiter terminates the left part and starts the right
part at once. If the left part is delimited by bracketing punctuation (that is (), [], {}, or <>), the
right part needs another pair of delimiters such as s(){} and tr[]//. In these cases, whitespace
and comments are allowed between the two parts, although the comment must follow at least one
whitespace character; otherwise a character expected as the start of the comment may be regarded as
the starting delimiter of the right part.

During this search no attention is paid to the semantics of the construct. Thus:

"$hash{"$foo/$bar"}"

or:

m/
bar # NOT a comment, this slash / terminated m//!
/x

do not form legal quoted expressions. The quoted part ends on the first " and /, and the rest happens
to be a syntax error. Because the slash that terminated m// was followed by a SPACE, the example
above is not m//x, but rather m// with no /x modifier. So the embedded # is interpreted as a literal
#.

Also no attention is paid to \c\ (multichar control char syntax) during this search. Thus the second \
in qq/\c\/ is interpreted as a part of \/, and the following / is not recognized as a delimiter.
Instead, use \034 or \x1c at the end of quoted constructs.

Interpolation
The next step is interpolation in the text obtained, which is now delimiter-independent. There are
multiple cases.

<<'EOF'
No interpolation is performed. Note that the combination \\ is left intact, since escaped
delimiters are not available for here-docs.

m'', the pattern of s'''
No interpolation is performed at this stage. Any backslashed sequences including \\ are treated
at the stage to ‘‘parsing regular expressions’’.

'', q//, tr''', y''', the replacement of s'''
The only interpolation is removal of \ from pairs of \\. Therefore "−" in tr''' and y''' is
treated literally as a hyphen and no character range is available. \1 in the replacement of s'''
does not work as $1.

tr///, y///
No variable interpolation occurs. String modifying combinations for case and quoting such as
\Q, \U, and \E are not recognized. The other escape sequences such as \200 and \t and
backslashed characters such as \\ and \− are converted to appropriate literals. The character
"−" is treated specially and therefore \− is treated as a literal "−".

‘‘’’, ``, qq//, qx//, <file*glob>, <<‘‘EOF’’
\Q, \U, \u, \L, \l, \F (possibly paired with \E) are converted to corresponding Perl
constructs. Thus, "$foo\Qbaz$bar" is converted to
$foo . (quotemeta("baz" . $bar)) internally. The other escape sequences such as
\200 and \t and backslashed characters such as \\ and \− are replaced with appropriate

68 2018-11-19 perl v5.26.1

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

expansions.

Let it be stressed that whatever falls between \Q and \E is interpolated in the usual way.
Something like "\Q\\E" has no \E inside. Instead, it has \Q, \\, and E, so the result is the
same as for "\\\\E". As a general rule, backslashes between \Q and \E may lead to
counterintuitive results. So, "\Q\t\E" is converted to quotemeta("\t"), which is the
same as "\\\t" (since TAB is not alphanumeric). Note also that:

$str = '\t';
return "\Q$str";

may be closer to the conjectural intention of the writer of "\Q\t\E".

Interpolated scalars and arrays are converted internally to the join and "." catenation
operations. Thus, "$foo XXX '@arr'" becomes:

$foo . " XXX '" . (join $", @arr) . "'";

All operations above are performed simultaneously, left to right.

Because the result of "\Q STRING \E" has all metacharacters quoted, there is no way to insert
a literal $ or @ inside a \Q\E pair. If protected by \, $ will be quoted to become "\\\$"; if
not, it is interpreted as the start of an interpolated scalar.

Note also that the interpolation code needs to make a decision on where the interpolated scalar
ends. For instance, whether "a $x −> {c}" really means:

"a " . $x . " −> {c}";

or:

"a " . $x −> {c};

Most of the time, the longest possible text that does not include spaces between components and
which contains matching braces or brackets. because the outcome may be determined by voting
based on heuristic estimators, the result is not strictly predictable. Fortunately, it’s usually correct
for ambiguous cases.

the replacement of s///
Processing of \Q, \U, \u, \L, \l, \F and interpolation happens as with qq// constructs.

It is at this step that \1 is begrudgingly converted to $1 in the replacement text of s///, in order
to correct the incorrigible sed hackers who haven’t picked up the saner idiom yet. A warning is
emitted if the use warnings pragma or the −w command-line flag (that is, the $ˆW variable)
was set.

RE in m?RE?, /RE/, m/RE/, s/RE/foo/,
Processing of \Q, \U, \u, \L, \l, \F, \E, and interpolation happens (almost) as with qq//
constructs.

Processing of \N{...} is also done here, and compiled into an intermediate form for the regex
compiler. (This is because, as mentioned below, the regex compilation may be done at execution
time, and \N{...} is a compile-time construct.)

However any other combinations of \ followed by a character are not substituted but only
skipped, in order to parse them as regular expressions at the following step. As \c is skipped at
this step, @ of \c@ in RE is possibly treated as an array symbol (for example @foo), even though
the same text in qq// gives interpolation of \c@.

Code blocks such as (?{BLOCK}) are handled by temporarily passing control back to the perl
parser, in a similar way that an interpolated array subscript expression such as
"foo$array[1+f("[xyz")]bar" would be.

Moreover, inside (?{BLOCK}), (?# comment), and a #−comment in a /x−regular
expression, no processing is performed whatsoever. This is the first step at which the presence of
the /x modifier is relevant.

Interpolation in patterns has several quirks: $|, $(, $), @+ and @− are not interpolated, and
constructs $var[SOMETHING] are voted (by several different estimators) to be either an array

perl v5.26.1 2018-11-19 69

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

element or $var followed by an RE alternative. This is where the notation ${arr[$bar]}
comes handy: /${arr[0−9]}/ is interpreted as array element −9, not as a regular expression
from the variable $arr followed by a digit, which would be the interpretation of
/$arr[0−9]/. Since voting among different estimators may occur, the result is not
predictable.

The lack of processing of \\ creates specific restrictions on the post-processed text. If the
delimiter is /, one cannot get the combination \/ into the result of this step. / will finish the
regular expression, \/ will be stripped to / on the previous step, and \\/ will be left as is.
Because / is equivalent to \/ inside a regular expression, this does not matter unless the
delimiter happens to be character special to the RE engine, such as in s*foo*bar*, m[foo],
or m?foo?; or an alphanumeric char, as in:

m m ˆ a \s* b mmx;

In the RE above, which is intentionally obfuscated for illustration, the delimiter is m, the modifier
is mx, and after delimiter-removal the RE is the same as for m/ ˆ a \s* b /mx. There’s
more than one reason you’re encouraged to restrict your delimiters to non-alphanumeric, non-
whitespace choices.

This step is the last one for all constructs except regular expressions, which are processed further.

parsing regular expressions
Previous steps were performed during the compilation of Perl code, but this one happens at run time,
although it may be optimized to be calculated at compile time if appropriate. After preprocessing
described above, and possibly after evaluation if concatenation, joining, casing translation, or
metaquoting are involved, the resulting string is passed to the RE engine for compilation.

Whatever happens in the RE engine might be better discussed in perlre, but for the sake of continuity,
we shall do so here.

This is another step where the presence of the /x modifier is relevant. The RE engine scans the string
from left to right and converts it into a finite automaton.

Backslashed characters are either replaced with corresponding literal strings (as with \{), or else they
generate special nodes in the finite automaton (as with \b). Characters special to the RE engine (such
as |) generate corresponding nodes or groups of nodes. (?#...) comments are ignored. All the
rest is either converted to literal strings to match, or else is ignored (as is whitespace and #−style
comments if /x is present).

Parsing of the bracketed character class construct, [...], is rather different than the rule used for the
rest of the pattern. The terminator of this construct is found using the same rules as for finding the
terminator of a {}−delimited construct, the only exception being that] immediately following [is
treated as though preceded by a backslash.

The terminator of runtime (?{...}) is found by temporarily switching control to the perl parser,
which should stop at the point where the logically balancing terminating } is found.

It is possible to inspect both the string given to RE engine and the resulting finite automaton. See the
arguments debug/debugcolor in the use re pragma, as well as Perl’s −Dr command-line switch
documented in ‘‘Command Switches’’ in perlrun.

Optimization of regular expressions
This step is listed for completeness only. Since it does not change semantics, details of this step are
not documented and are subject to change without notice. This step is performed over the finite
automaton that was generated during the previous pass.

It is at this stage that split() silently optimizes /ˆ/ to mean /ˆ/m.

I/O Operators
There are several I/O operators you should know about.

A string enclosed by backticks (grave accents) first undergoes double-quote interpolation. It is then
interpreted as an external command, and the output of that command is the value of the backtick string, like
in a shell. In scalar context, a single string consisting of all output is returned. In list context, a list of
values is returned, one per line of output. (You can set $/ to use a different line terminator.) The command
is executed each time the pseudo-literal is evaluated. The status value of the command is returned in $?

70 2018-11-19 perl v5.26.1

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

(see perlvar for the interpretation of $?). Unlike in csh, no translation is done on the return
data — newlines remain newlines. Unlike in any of the shells, single quotes do not hide variable names in
the command from interpretation. To pass a literal dollar-sign through to the shell you need to hide it with
a backslash. The generalized form of backticks is qx//. (Because backticks always undergo shell
expansion as well, see perlsec for security concerns.)

In scalar context, evaluating a filehandle in angle brackets yields the next line from that file (the newline, if
any, included), or undef at end-of-file or on error. When $/ is set to undef (sometimes known as file-
slurp mode) and the file is empty, it returns '' the first time, followed by undef subsequently.

Ordinarily you must assign the returned value to a variable, but there is one situation where an automatic
assignment happens. If and only if the input symbol is the only thing inside the conditional of a while
statement (even if disguised as a for(;;) loop), the value is automatically assigned to the global variable
$_, destroying whatever was there previously. (This may seem like an odd thing to you, but you’ll use the
construct in almost every Perl script you write.) The $_ variable is not implicitly localized. You’ll have to
put a local $_; before the loop if you want that to happen.

The following lines are equivalent:

while (defined($_ = <STDIN>)) { print; }
while ($_ = <STDIN>) { print; }
while (<STDIN>) { print; }
for (;<STDIN>;) { print; }
print while defined($_ = <STDIN>);
print while ($_ = <STDIN>);
print while <STDIN>;

This also behaves similarly, but assigns to a lexical variable instead of to $_:

while (my $line = <STDIN>) { print $line }

In these loop constructs, the assigned value (whether assignment is automatic or explicit) is then tested to
see whether it is defined. The defined test avoids problems where the line has a string value that would be
treated as false by Perl; for example a "" or a "0" with no trailing newline. If you really mean for such
values to terminate the loop, they should be tested for explicitly:

while (($_ = <STDIN>) ne '0') { ... }
while (<STDIN>) { last unless $_; ... }

In other boolean contexts, <FILEHANDLE> without an explicit defined test or comparison elicits a
warning if the use warnings pragma or the −w command-line switch (the $ˆW variable) is in effect.

The filehandles STDIN, STDOUT, and STDERR are predefined. (The filehandles stdin, stdout, and
stderr will also work except in packages, where they would be interpreted as local identifiers rather than
global.) Additional filehandles may be created with the open() function, amongst others. See
perlopentut and ‘‘open’’ in perlfunc for details on this.

If a <FILEHANDLE> is used in a context that is looking for a list, a list comprising all input lines is
returned, one line per list element. It’s easy to grow to a rather large data space this way, so use with care.

<FILEHANDLE> may also be spelled readline(*FILEHANDLE). See ‘‘readline’’ in perlfunc.

The null filehandle <> is special: it can be used to emulate the behavior of sed and awk, and any other
Unix filter program that takes a list of filenames, doing the same to each line of input from all of them.
Input from <> comes either from standard input, or from each file listed on the command line. Here’s how
it works: the first time <> is evaluated, the @ARGV array is checked, and if it is empty, $ARGV[0] is set to
"−", which when opened gives you standard input. The @ARGV array is then processed as a list of
filenames. The loop

while (<>) {
... # code for each line

}

is equivalent to the following Perl-like pseudo code:

perl v5.26.1 2018-11-19 71

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

unshift(@ARGV, '−') unless @ARGV;
while ($ARGV = shift) {

open(ARGV, $ARGV);
while (<ARGV>) {

... # code for each line
}

}

except that it isn’t so cumbersome to say, and will actually work. It really does shift the @ARGV array and
put the current filename into the $ARGV variable. It also uses filehandle ARGV internally. <> is just a
synonym for <ARGV>, which is magical. (The pseudo code above doesn’t work because it treats <ARGV>
as non-magical.)

Since the null filehandle uses the two argument form of ‘‘open’’ in perlfunc it interprets special characters,
so if you have a script like this:

while (<>) {
print;

}

and call it with perl dangerous.pl 'rm −rfv *|', it actually opens a pipe, executes the rm
command and reads rm’s output from that pipe. If you want all items in @ARGV to be interpreted as file
names, you can use the module ARGV::readonly from CPAN, or use the double bracket:

while (<<>>) {
print;

}

Using double angle brackets inside of a while causes the open to use the three argument form (with the
second argument being <), so all arguments in ARGV are treated as literal filenames (including "−"). (Note
that for convenience, if you use <<>> and if @ARGV is empty, it will still read from the standard input.)

You can modify @ARGV before the first <> as long as the array ends up containing the list of filenames you
really want. Line numbers ($.) continue as though the input were one big happy file. See the example in
‘‘eof ’’ in perlfunc for how to reset line numbers on each file.

If you want to set @ARGV to your own list of files, go right ahead. This sets @ARGV to all plain text files if
no @ARGV was giv en:

@ARGV = grep { −f && −T } glob('*') unless @ARGV;

You can even set them to pipe commands. For example, this automatically filters compressed arguments
through gzip:

@ARGV = map { /\.(gz|Z)$/ ? "gzip −dc < $_ |" : $_ } @ARGV;

If you want to pass switches into your script, you can use one of the Getopts modules or put a loop on
the front like this:

while ($_ = $ARGV[0], /ˆ−/) {
shift;
last if /ˆ−−$/;
if (/ˆ−D(.*)/) { $debug = $1 }
if (/ˆ−v/) { $verbose++ }
... # other switches

}

while (<>) {
... # code for each line

}

The <> symbol will return undef for end-of-file only once. If you call it again after this, it will assume
you are processing another @ARGV list, and if you haven’t set @ARGV, will read input from STDIN.

If what the angle brackets contain is a simple scalar variable (for example, $foo), then that variable
contains the name of the filehandle to input from, or its typeglob, or a reference to the same. For example:

72 2018-11-19 perl v5.26.1

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

$fh = *STDIN;
$line = <$fh>;

If what’s within the angle brackets is neither a filehandle nor a simple scalar variable containing a
filehandle name, typeglob, or typeglob reference, it is interpreted as a filename pattern to be globbed, and
either a list of filenames or the next filename in the list is returned, depending on context. This distinction
is determined on syntactic grounds alone. That means <$x> is always a readline() from an indirect
handle, but <$hash{key}> is always a glob(). That’s because $x is a simple scalar variable, but
$hash{key} is not — it’s a hash element. Even <$x > (note the extra space) is treated as glob("$x
"), not readline($x).

One level of double-quote interpretation is done first, but you can’t say <$foo> because that’s an indirect
filehandle as explained in the previous paragraph. (In older versions of Perl, programmers would insert
curly brackets to force interpretation as a filename glob: <${foo}>. These days, it’s considered cleaner to
call the internal function directly as glob($foo), which is probably the right way to have done it in the
first place.) For example:

while (<*.c>) {
chmod 0644, $_;

}

is roughly equivalent to:

open(FOO, "echo *.c | tr −s ' \t\r\f' '\\012\\012\\012\\012'|");
while (<FOO>) {

chomp;
chmod 0644, $_;

}

except that the globbing is actually done internally using the standard File::Glob extension. Of course,
the shortest way to do the above is:

chmod 0644, <*.c>;

A (file)glob evaluates its (embedded) argument only when it is starting a new list. All values must be read
before it will start over. In list context, this isn’t important because you automatically get them all anyway.
However, in scalar context the operator returns the next value each time it’s called, or undef when the list
has run out. As with filehandle reads, an automatic defined is generated when the glob occurs in the test
part of a while, because legal glob returns (for example, a file called 0) would otherwise terminate the
loop. Again, undef is returned only once. So if you’re expecting a single value from a glob, it is much
better to say

($file) = <blurch*>;

than

$file = <blurch*>;

because the latter will alternate between returning a filename and returning false.

If you’re trying to do variable interpolation, it’s definitely better to use the glob() function, because the
older notation can cause people to become confused with the indirect filehandle notation.

@files = glob("$dir/*.[ch]");
@files = glob($files[$i]);

Constant Folding
Like C, Perl does a certain amount of expression evaluation at compile time whenever it determines that all
arguments to an operator are static and have no side effects. In particular, string concatenation happens at
compile time between literals that don’t do variable substitution. Backslash interpolation also happens at
compile time. You can say

'Now is the time for all'
. "\n"
. 'good men to come to.'

and this all reduces to one string internally. Likewise, if you say

perl v5.26.1 2018-11-19 73

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

foreach $file (@filenames) {
if (−s $file > 5 + 100 * 2**16) { }

}

the compiler precomputes the number which that expression represents so that the interpreter won’t hav e to.

No-ops
Perl doesn’t officially have a no-op operator, but the bare constants 0 and 1 are special-cased not to produce
a warning in void context, so you can for example safely do

1 while foo();

Bitwise String Operators
Bitstrings of any size may be manipulated by the bitwise operators (˜ | & ˆ).

If the operands to a binary bitwise op are strings of different sizes, | and ˆ ops act as though the shorter
operand had additional zero bits on the right, while the & op acts as though the longer operand were
truncated to the length of the shorter. The granularity for such extension or truncation is one or more bytes.

ASCII−based examples
print "j p \n" ˆ " a h"; # prints "JAPH\n"
print "JA" | " ph\n"; # prints "japh\n"
print "japh\nJunk" & '_____'; # prints "JAPH\n";
print 'p N$' ˆ " E<H\n"; # prints "Perl\n";

If you are intending to manipulate bitstrings, be certain that you’re supplying bitstrings: If an operand is a
number, that will imply a numeric bitwise operation. You may explicitly show which type of operation
you intend by using "" or 0+, as in the examples below.

$foo = 150 | 105; # yields 255 (0x96 | 0x69 is 0xFF)
$foo = '150' | 105; # yields 255
$foo = 150 | '105'; # yields 255
$foo = '150' | '105'; # yields string '155' (under ASCII)

$baz = 0+$foo & 0+$bar; # both ops explicitly numeric
$biz = "$foo" ˆ "$bar"; # both ops explicitly stringy

This somewhat unpredictable behavior can be avoided with the experimental ‘‘bitwise’’ feature, new in Perl
5.22. You can enable it via use feature 'bitwise'. By default, it will warn unless the
"experimental::bitwise" warnings category has been disabled.
(use experimental 'bitwise' will enable the feature and disable the warning.) Under this
feature, the four standard bitwise operators (˜ | & ˆ) are always numeric. Adding a dot after each
operator (˜. |. &. ˆ.) forces it to treat its operands as strings:

use experimental "bitwise";
$foo = 150 | 105; # yields 255 (0x96 | 0x69 is 0xFF)
$foo = '150' | 105; # yields 255
$foo = 150 | '105'; # yields 255
$foo = '150' | '105'; # yields 255
$foo = 150 |. 105; # yields string '155'
$foo = '150' |. 105; # yields string '155'
$foo = 150 |.'105'; # yields string '155'
$foo = '150' |.'105'; # yields string '155'

$baz = $foo & $bar; # both operands numeric
$biz = $foo ˆ. $bar; # both operands stringy

The assignment variants of these operators (&= |= ˆ= &.= |.= ˆ.=) behave likewise under the
feature.

The behavior of these operators is problematic (and subject to change) if either or both of the strings are
encoded in UTF−8 (see ‘‘Byte and Character Semantics’’ in perlunicode.

See ‘‘vec’’ in perlfunc for information on how to manipulate individual bits in a bit vector.

74 2018-11-19 perl v5.26.1

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

Integer Arithmetic
By default, Perl assumes that it must do most of its arithmetic in floating point. But by saying

use integer;

you may tell the compiler to use integer operations (see integer for a detailed explanation) from here to the
end of the enclosing BLOCK. An inner BLOCK may countermand this by saying

no integer;

which lasts until the end of that BLOCK. Note that this doesn’t mean everything is an integer, merely that
Perl will use integer operations for arithmetic, comparison, and bitwise operators. For example, even under
use integer, if you take the sqrt(2), you’ll still get 1.4142135623731 or so.

Used on numbers, the bitwise operators (& | ˆ ˜ << >>) always produce integral results. (But see also
‘‘Bitwise String Operators’’.) However, use integer still has meaning for them. By default, their
results are interpreted as unsigned integers, but if use integer is in effect, their results are interpreted
as signed integers. For example, ˜0 usually evaluates to a large integral value. However,
use integer; ˜0 is −1 on two’s-complement machines.

Floating-point Arithmetic
While use integer provides integer-only arithmetic, there is no analogous mechanism to provide
automatic rounding or truncation to a certain number of decimal places. For rounding to a certain number
of digits, sprintf() or printf() is usually the easiest route. See perlfaq4.

Floating-point numbers are only approximations to what a mathematician would call real numbers. There
are infinitely more reals than floats, so some corners must be cut. For example:

printf "%.20g\n", 123456789123456789;
produces 123456789123456784

Testing for exact floating-point equality or inequality is not a good idea. Here’s a (relatively expensive)
work-around to compare whether two floating-point numbers are equal to a particular number of decimal
places. See Knuth, volume II, for a more robust treatment of this topic.

sub fp_equal {
my ($X, $Y, $POINTS) = @_;
my ($tX, $tY);
$tX = sprintf("%.${POINTS}g", $X);
$tY = sprintf("%.${POINTS}g", $Y);
return $tX eq $tY;

}

The POSIX module (part of the standard perl distribution) implements ceil(), floor(), and other
mathematical and trigonometric functions. The Math::Complex module (part of the standard perl
distribution) defines mathematical functions that work on both the reals and the imaginary numbers.
Math::Complex is not as efficient as POSIX, but POSIX can’t work with complex numbers.

Rounding in financial applications can have serious implications, and the rounding method used should be
specified precisely. In these cases, it probably pays not to trust whichever system rounding is being used by
Perl, but to instead implement the rounding function you need yourself.

Bigger Numbers
The standard Math::BigInt, Math::BigRat, and Math::BigFloat modules, along with the
bignum, bigint, and bigrat pragmas, provide variable-precision arithmetic and overloaded operators,
although they’re currently pretty slow. At the cost of some space and considerable speed, they avoid the
normal pitfalls associated with limited-precision representations.

use 5.010;
use bigint; # easy interface to Math::BigInt
$x = 123456789123456789;
say $x * $x;

+15241578780673678515622620750190521

Or with rationals:

perl v5.26.1 2018-11-19 75

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

use 5.010;
use bigrat;
$x = 3/22;
$y = 4/6;
say "x/y is ", $x/$y;
say "x*y is ", $x*$y;
x/y is 9/44
x*y is 1/11

Several modules let you calculate with unlimited or fixed precision (bound only by memory and CPU time).
There are also some non-standard modules that provide faster implementations via external C libraries.

Here is a short, but incomplete summary:

Math::String treat string sequences like numbers
Math::FixedPrecision calculate with a fixed precision
Math::Currency for currency calculations
Bit::Vector manipulate bit vectors fast (uses C)
Math::BigIntFast Bit::Vector wrapper for big numbers
Math::Pari provides access to the Pari C library
Math::Cephes uses the external Cephes C library (no

big numbers)
Math::Cephes::Fraction fractions via the Cephes library
Math::GMP another one using an external C library
Math::GMPz an alternative interface to libgmp's big ints
Math::GMPq an interface to libgmp's fraction numbers
Math::GMPf an interface to libgmp's floating point numbers

Choose wisely.

76 2018-11-19 perl v5.26.1

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

NAME
perlsub − Perl subroutines

SYNOPSIS
To declare subroutines:

sub NAME; # A "forward" declaration.
sub NAME(PROTO); # ditto, but with prototypes
sub NAME : ATTRS; # with attributes
sub NAME(PROTO) : ATTRS; # with attributes and prototypes

sub NAME BLOCK # A declaration and a definition.
sub NAME(PROTO) BLOCK # ditto, but with prototypes
sub NAME(SIG) BLOCK # with a signature instead
sub NAME : ATTRS BLOCK # with attributes
sub NAME(PROTO) : ATTRS BLOCK # with prototypes and attributes
sub NAME(SIG) : ATTRS BLOCK # with a signature and attributes

To define an anonymous subroutine at runtime:

$subref = sub BLOCK; # no proto
$subref = sub (PROTO) BLOCK; # with proto
$subref = sub (SIG) BLOCK; # with signature
$subref = sub : ATTRS BLOCK; # with attributes
$subref = sub (PROTO) : ATTRS BLOCK; # with proto and attributes
$subref = sub (SIG) : ATTRS BLOCK; # with signature and attributes

To import subroutines:

use MODULE qw(NAME1 NAME2 NAME3);

To call subroutines:

NAME(LIST); # & is optional with parentheses.
NAME LIST; # Parentheses optional if predeclared/imported.
&NAME(LIST); # Circumvent prototypes.
&NAME; # Makes current @_ visible to called subroutine.

DESCRIPTION
Like many languages, Perl provides for user-defined subroutines. These may be located anywhere in the
main program, loaded in from other files via the do, require, or use keywords, or generated on the fly
using eval or anonymous subroutines. You can even call a function indirectly using a variable containing
its name or a CODE reference.

The Perl model for function call and return values is simple: all functions are passed as parameters one
single flat list of scalars, and all functions likewise return to their caller one single flat list of scalars. Any
arrays or hashes in these call and return lists will collapse, losing their identities — but you may always use
pass-by-reference instead to avoid this. Both call and return lists may contain as many or as few scalar
elements as you’d like. (Often a function without an explicit return statement is called a subroutine, but
there’s really no difference from Perl’s perspective.)

Any arguments passed in show up in the array @_. (They may also show up in lexical variables introduced
by a signature; see ‘‘Signatures’’ below.) Therefore, if you called a function with two arguments, those
would be stored in $_[0] and $_[1]. The array @_ is a local array, but its elements are aliases for the
actual scalar parameters. In particular, if an element $_[0] is updated, the corresponding argument is
updated (or an error occurs if it is not updatable). If an argument is an array or hash element which did not
exist when the function was called, that element is created only when (and if) it is modified or a reference
to it is taken. (Some earlier versions of Perl created the element whether or not the element was assigned
to.) Assigning to the whole array @_ removes that aliasing, and does not update any arguments.

A return statement may be used to exit a subroutine, optionally specifying the returned value, which will
be evaluated in the appropriate context (list, scalar, or void) depending on the context of the subroutine call.
If you specify no return value, the subroutine returns an empty list in list context, the undefined value in
scalar context, or nothing in void context. If you return one or more aggregates (arrays and hashes), these
will be flattened together into one large indistinguishable list.

perl v5.26.1 2018-11-19 77

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

If no return is found and if the last statement is an expression, its value is returned. If the last statement
is a loop control structure like a foreach or a while, the returned value is unspecified. The empty sub
returns the empty list.

Aside from an experimental facility (see ‘‘Signatures’’ below), Perl does not have named formal
parameters. In practice all you do is assign to a my() list of these. Variables that aren’t declared to be
private are global variables. For gory details on creating private variables, see ‘‘Private Variables via my()’’
and ‘‘Temporary Values via local()’’. To create protected environments for a set of functions in a separate
package (and probably a separate file), see ‘‘Packages’’ in perlmod.

Example:

sub max {
my $max = shift(@_);
foreach $foo (@_) {

$max = $foo if $max < $foo;
}
return $max;

}
$bestday = max($mon,$tue,$wed,$thu,$fri);

Example:

get a line, combining continuation lines
that start with whitespace

sub get_line {
$thisline = $lookahead; # global variables!
LINE: while (defined($lookahead = <STDIN>)) {

if ($lookahead =˜ /ˆ[\t]/) {
$thisline .= $lookahead;

}
else {

last LINE;
}

}
return $thisline;

}

$lookahead = <STDIN>; # get first line
while (defined($line = get_line())) {

...
}

Assigning to a list of private variables to name your arguments:

sub maybeset {
my($key, $value) = @_;
$Foo{$key} = $value unless $Foo{$key};

}

Because the assignment copies the values, this also has the effect of turning call-by-reference into call-by-
value. Otherwise a function is free to do in-place modifications of @_ and change its caller’s values.

upcase_in($v1, $v2); # this changes $v1 and $v2
sub upcase_in {

for (@_) { tr/a−z/A−Z/ }
}

You aren’t allowed to modify constants in this way, of course. If an argument were actually literal and you
tried to change it, you’d take a (presumably fatal) exception. For example, this won’t work:

upcase_in("frederick");

It would be much safer if the upcase_in() function were written to return a copy of its parameters
instead of changing them in place:

78 2018-11-19 perl v5.26.1

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

($v3, $v4) = upcase($v1, $v2); # this doesn't change $v1 and $v2
sub upcase {

return unless defined wantarray; # void context, do nothing
my @parms = @_;
for (@parms) { tr/a−z/A−Z/ }
return wantarray ? @parms : $parms[0];

}

Notice how this (unprototyped) function doesn’t care whether it was passed real scalars or arrays. Perl sees
all arguments as one big, long, flat parameter list in @_. This is one area where Perl’s simple argument-
passing style shines. The upcase() function would work perfectly well without changing the
upcase() definition even if we fed it things like this:

@newlist = upcase(@list1, @list2);
@newlist = upcase(split /:/, $var);

Do not, however, be tempted to do this:

(@a, @b) = upcase(@list1, @list2);

Like the flattened incoming parameter list, the return list is also flattened on return. So all you have
managed to do here is stored everything in @a and made @b empty. See ‘‘Pass by Reference’’ for
alternatives.

A subroutine may be called using an explicit & prefix. The & is optional in modern Perl, as are parentheses
if the subroutine has been predeclared. The & is not optional when just naming the subroutine, such as
when it’s used as an argument to defined() or undef(). Nor is it optional when you want to do an indirect
subroutine call with a subroutine name or reference using the &$subref() or &{$subref}()
constructs, although the $subref−>() notation solves that problem. See perlref for more about all that.

Subroutines may be called recursively. If a subroutine is called using the & form, the argument list is
optional, and if omitted, no @_ array is set up for the subroutine: the @_ array at the time of the call is
visible to subroutine instead. This is an efficiency mechanism that new users may wish to avoid.

&foo(1,2,3); # pass three arguments
foo(1,2,3); # the same

foo(); # pass a null list
&foo(); # the same

&foo; # foo() get current args, like foo(@_) !!
foo; # like foo() IFF sub foo predeclared, else "foo"

Not only does the & form make the argument list optional, it also disables any prototype checking on
arguments you do provide. This is partly for historical reasons, and partly for having a convenient way to
cheat if you know what you’re doing. See ‘‘Prototypes’’ below.

Since Perl 5.16.0, the __SUB_ _ token is available under use feature 'current_sub' and use
5.16.0. It will evaluate to a reference to the currently-running sub, which allows for recursive calls
without knowing your subroutine’s name.

use 5.16.0;
my $factorial = sub {
my ($x) = @_;
return 1 if $x == 1;
return($x * __SUB_ _−>($x − 1));

};

The behavior of __SUB_ _ within a regex code block (such as /(?{...})/) is subject to change.

Subroutines whose names are in all upper case are reserved to the Perl core, as are modules whose names
are in all lower case. A subroutine in all capitals is a loosely-held convention meaning it will be called
indirectly by the run-time system itself, usually due to a triggered event. Subroutines whose name start
with a left parenthesis are also reserved the same way. The following is a list of some subroutines that
currently do special, pre-defined things.

perl v5.26.1 2018-11-19 79

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

documented later in this document
AUTOLOAD

documented in perlmod
CLONE, CLONE_SKIP

documented in perlobj
DESTROY, DOES

documented in perltie
BINMODE, CLEAR, CLOSE, DELETE, DESTROY, EOF, EXISTS, EXTEND, FETCH, FETCHSIZE,
FILENO, FIRSTKEY, GETC, NEXTKEY, OPEN, POP, PRINT, PRINTF, PUSH, READ, READLINE,
SCALAR, SEEK, SHIFT, SPLICE, STORE, STORESIZE, TELL, TIEARRAY, TIEHANDLE,
TIEHASH, TIESCALAR, UNSHIFT, UNTIE, WRITE

documented in PerlIO::via
BINMODE, CLEARERR, CLOSE, EOF, ERROR, FDOPEN, FILENO, FILL, FLUSH, OPEN, POPPED,
PUSHED, READ, SEEK, SETLINEBUF, SYSOPEN, TELL, UNREAD, UTF8, WRITE

documented in perlfunc
import , unimport , INC

documented in UNIVERSAL

VERSION

documented in perldebguts
DB::DB, DB::sub, DB::lsub, DB::goto, DB::postponed

undocumented, used internally by the overload feature
any starting with (

The BEGIN, UNITCHECK, CHECK, INIT and END subroutines are not so much subroutines as named
special code blocks, of which you can have more than one in a package, and which you can not call
explicitly. See ‘‘BEGIN, UNITCHECK, CHECK, INIT and END’’ in perlmod

Signatures
WARNING: Subroutine signatures are experimental. The feature may be modified or removed in future
versions of Perl.

Perl has an experimental facility to allow a subroutine’s formal parameters to be introduced by special
syntax, separate from the procedural code of the subroutine body. The formal parameter list is known as a
signature. The facility must be enabled first by a pragmatic declaration, use feature
'signatures', and it will produce a warning unless the ‘‘experimental::signatures’’ warnings category
is disabled.

The signature is part of a subroutine’s body. Normally the body of a subroutine is simply a braced block of
code. When using a signature, the signature is a parenthesised list that goes immediately after the
subroutine name (or, for anonymous subroutines, immediately after the sub keyword). The signature
declares lexical variables that are in scope for the block. When the subroutine is called, the signature takes
control first. It populates the signature variables from the list of arguments that were passed. If the
argument list doesn’t meet the requirements of the signature, then it will throw an exception. When the
signature processing is complete, control passes to the block.

Positional parameters are handled by simply naming scalar variables in the signature. For example,

sub foo ($left, $right) {
return $left + $right;

}

takes two positional parameters, which must be filled at runtime by two arguments. By default the
parameters are mandatory, and it is not permitted to pass more arguments than expected. So the above is
equivalent to

80 2018-11-19 perl v5.26.1

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

sub foo {
die "Too many arguments for subroutine" unless @_ <= 2;
die "Too few arguments for subroutine" unless @_ >= 2;
my $left = $_[0];
my $right = $_[1];
return $left + $right;

}

An argument can be ignored by omitting the main part of the name from a parameter declaration, leaving
just a bare $ sigil. For example,

sub foo ($first, $, $third) {
return "first=$first, third=$third";

}

Although the ignored argument doesn’t go into a variable, it is still mandatory for the caller to pass it.

A positional parameter is made optional by giving a default value, separated from the parameter name by =:

sub foo ($left, $right = 0) {
return $left + $right;

}

The above subroutine may be called with either one or two arguments. The default value expression is
evaluated when the subroutine is called, so it may provide different default values for different calls. It is
only evaluated if the argument was actually omitted from the call. For example,

my $auto_id = 0;
sub foo ($thing, $id = $auto_id++) {

print "$thing has ID $id";
}

automatically assigns distinct sequential IDs to things for which no ID was supplied by the caller. A default
value expression may also refer to parameters earlier in the signature, making the default for one parameter
vary according to the earlier parameters. For example,

sub foo ($first_name, $surname, $nickname = $first_name) {
print "$first_name $surname is known as \"$nickname\"";

}

An optional parameter can be nameless just like a mandatory parameter. For example,

sub foo ($thing, $ = 1) {
print $thing;

}

The parameter’s default value will still be evaluated if the corresponding argument isn’t supplied, even
though the value won’t be stored anywhere. This is in case evaluating it has important side effects.
However, it will be evaluated in void context, so if it doesn’t hav e side effects and is not trivial it will
generate a warning if the ‘‘void’’ warning category is enabled. If a nameless optional parameter’s default
value is not important, it may be omitted just as the parameter’s name was:

sub foo ($thing, $=) {
print $thing;

}

Optional positional parameters must come after all mandatory positional parameters. (If there are no
mandatory positional parameters then an optional positional parameters can be the first thing in the
signature.) If there are multiple optional positional parameters and not enough arguments are supplied to
fill them all, they will be filled from left to right.

After positional parameters, additional arguments may be captured in a slurpy parameter. The simplest
form of this is just an array variable:

sub foo ($filter, @inputs) {
print $filter−>($_) foreach @inputs;

}

With a slurpy parameter in the signature, there is no upper limit on how many arguments may be passed. A

perl v5.26.1 2018-11-19 81

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

slurpy array parameter may be nameless just like a positional parameter, in which case its only effect is to
turn off the argument limit that would otherwise apply:

sub foo ($thing, @) {
print $thing;

}

A slurpy parameter may instead be a hash, in which case the arguments available to it are interpreted as
alternating keys and values. There must be as many keys as values: if there is an odd argument then an
exception will be thrown. Keys will be stringified, and if there are duplicates then the later instance takes
precedence over the earlier, as with standard hash construction.

sub foo ($filter, %inputs) {
print $filter−>($_, $inputs{$_}) foreach sort keys %inputs;

}

A slurpy hash parameter may be nameless just like other kinds of parameter. It still insists that the number
of arguments available to it be even, even though they’re not being put into a variable.

sub foo ($thing, %) {
print $thing;

}

A slurpy parameter, either array or hash, must be the last thing in the signature. It may follow mandatory
and optional positional parameters; it may also be the only thing in the signature. Slurpy parameters cannot
have default values: if no arguments are supplied for them then you get an empty array or empty hash.

A signature may be entirely empty, in which case all it does is check that the caller passed no arguments:

sub foo () {
return 123;

}

When using a signature, the arguments are still available in the special array variable @_, in addition to the
lexical variables of the signature. There is a difference between the two ways of accessing the arguments:
@_ aliases the arguments, but the signature variables get copies of the arguments. So writing to a signature
variable only changes that variable, and has no effect on the caller’s variables, but writing to an element of
@_ modifies whatever the caller used to supply that argument.

There is a potential syntactic ambiguity between signatures and prototypes (see ‘‘Prototypes’’), because
both start with an opening parenthesis and both can appear in some of the same places, such as just after the
name in a subroutine declaration. For historical reasons, when signatures are not enabled, any opening
parenthesis in such a context will trigger very forgiving prototype parsing. Most signatures will be
interpreted as prototypes in those circumstances, but won’t be valid prototypes. (A valid prototype cannot
contain any alphabetic character.) This will lead to somewhat confusing error messages.

To avoid ambiguity, when signatures are enabled the special syntax for prototypes is disabled. There is no
attempt to guess whether a parenthesised group was intended to be a prototype or a signature. To giv e a
subroutine a prototype under these circumstances, use a prototype attribute. For example,

sub foo :prototype($) { $_[0] }

It is entirely possible for a subroutine to have both a prototype and a signature. They do different jobs: the
prototype affects compilation of calls to the subroutine, and the signature puts argument values into lexical
variables at runtime. You can therefore write

sub foo ($left, $right) : prototype($$) {
return $left + $right;

}

The prototype attribute, and any other attributes, come after the signature.

Private Variables via my()
Synopsis:

82 2018-11-19 perl v5.26.1

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

my $foo; # declare $foo lexically local
my (@wid, %get); # declare list of variables local
my $foo = "flurp"; # declare $foo lexical, and init it
my @oof = @bar; # declare @oof lexical, and init it
my $x : Foo = $y; # similar, with an attribute applied

WARNING: The use of attribute lists on my declarations is still evolving. The current semantics and
interface are subject to change. See attributes and Attribute::Handlers.

The my operator declares the listed variables to be lexically confined to the enclosing block, conditional
(if/unless/elsif/else), loop (for/foreach/while/until/continue), subroutine, eval, or
do/require/use’d file. If more than one value is listed, the list must be placed in parentheses. All listed
elements must be legal lvalues. Only alphanumeric identifiers may be lexically scoped — magical built-ins
like $/ must currently be localized with local instead.

Unlike dynamic variables created by the local operator, lexical variables declared with my are totally
hidden from the outside world, including any called subroutines. This is true if it’s the same subroutine
called from itself or elsewhere — every call gets its own copy.

This doesn’t mean that a my variable declared in a statically enclosing lexical scope would be invisible.
Only dynamic scopes are cut off. For example, the bumpx() function below has access to the lexical $x
variable because both the my and the sub occurred at the same scope, presumably file scope.

my $x = 10;
sub bumpx { $x++ }

An eval(), howev er, can see lexical variables of the scope it is being evaluated in, so long as the names
aren’t hidden by declarations within the eval() itself. See perlref.

The parameter list to my() may be assigned to if desired, which allows you to initialize your variables. (If
no initializer is given for a particular variable, it is created with the undefined value.) Commonly this is
used to name input parameters to a subroutine. Examples:

$arg = "fred"; # "global" variable
$n = cube_root(27);
print "$arg thinks the root is $n\n";

fred thinks the root is 3

sub cube_root {
my $arg = shift; # name doesn't matter
$arg **= 1/3;
return $arg;

}

The my is simply a modifier on something you might assign to. So when you do assign to variables in its
argument list, my doesn’t change whether those variables are viewed as a scalar or an array. So

my ($foo) = <STDIN>; # WRONG?
my @FOO = <STDIN>;

both supply a list context to the right-hand side, while

my $foo = <STDIN>;

supplies a scalar context. But the following declares only one variable:

my $foo, $bar = 1; # WRONG

That has the same effect as

my $foo;
$bar = 1;

The declared variable is not introduced (is not visible) until after the current statement. Thus,

my $x = $x;

can be used to initialize a new $x with the value of the old $x, and the expression

my $x = 123 and $x == 123

perl v5.26.1 2018-11-19 83

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

is false unless the old $x happened to have the value 123.

Lexical scopes of control structures are not bounded precisely by the braces that delimit their controlled
blocks; control expressions are part of that scope, too. Thus in the loop

while (my $line = <>) {
$line = lc $line;

} continue {
print $line;

}

the scope of $line extends from its declaration throughout the rest of the loop construct (including the
continue clause), but not beyond it. Similarly, in the conditional

if ((my $answer = <STDIN>) =˜ /ˆyes$/i) {
user_agrees();

} elsif ($answer =˜ /ˆno$/i) {
user_disagrees();

} else {
chomp $answer;
die "'$answer' is neither 'yes' nor 'no'";

}

the scope of $answer extends from its declaration through the rest of that conditional, including any
elsif and else clauses, but not beyond it. See ‘‘Simple Statements’’ in perlsyn for information on the
scope of variables in statements with modifiers.

The foreach loop defaults to scoping its index variable dynamically in the manner of local. Howev er,
if the index variable is prefixed with the keyword my, or if there is already a lexical by that name in scope,
then a new lexical is created instead. Thus in the loop

for my $i (1, 2, 3) {
some_function();

}

the scope of $i extends to the end of the loop, but not beyond it, rendering the value of $i inaccessible
within some_function().

Some users may wish to encourage the use of lexically scoped variables. As an aid to catching implicit
uses to package variables, which are always global, if you say

use strict 'vars';

then any variable mentioned from there to the end of the enclosing block must either refer to a lexical
variable, be predeclared via our or use vars, or else must be fully qualified with the package name. A
compilation error results otherwise. An inner block may countermand this with no strict 'vars'.

A my has both a compile-time and a run-time effect. At compile time, the compiler takes notice of it. The
principal usefulness of this is to quiet use strict 'vars', but it is also essential for generation of
closures as detailed in perlref. Actual initialization is delayed until run time, though, so it gets executed at
the appropriate time, such as each time through a loop, for example.

Variables declared with my are not part of any package and are therefore never fully qualified with the
package name. In particular, you’re not allowed to try to make a package variable (or other global) lexical:

my $pack::var; # ERROR! Illegal syntax

In fact, a dynamic variable (also known as package or global variables) are still accessible using the fully
qualified :: notation even while a lexical of the same name is also visible:

package main;
local $x = 10;
my $x = 20;
print "$x and $::x\n";

That will print out 20 and 10.

You may declare my variables at the outermost scope of a file to hide any such identifiers from the world
outside that file. This is similar in spirit to C’s static variables when they are used at the file level. To do

84 2018-11-19 perl v5.26.1

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

this with a subroutine requires the use of a closure (an anonymous function that accesses enclosing
lexicals). If you want to create a private subroutine that cannot be called from outside that block, it can
declare a lexical variable containing an anonymous sub reference:

my $secret_version = '1.001−beta';
my $secret_sub = sub { print $secret_version };
&$secret_sub();

As long as the reference is never returned by any function within the module, no outside module can see the
subroutine, because its name is not in any package’s symbol table. Remember that it’s not REALLY called
$some_pack::secret_version or anything; it’s just $secret_version, unqualified and
unqualifiable.

This does not work with object methods, however; all object methods have to be in the symbol table of
some package to be found. See ‘‘Function Templates’’ in perlref for something of a work-around to this.

Persistent Private Variables
There are two ways to build persistent private variables in Perl 5.10. First, you can simply use the state
feature. Or, you can use closures, if you want to stay compatible with releases older than 5.10.

Persistent variables via state()

Beginning with Perl 5.10.0, you can declare variables with the state keyword in place of my. For that to
work, though, you must have enabled that feature beforehand, either by using the feature pragma, or by
using −E on one-liners (see feature). Beginning with Perl 5.16, the CORE::state form does not require
the feature pragma.

The state keyword creates a lexical variable (following the same scoping rules as my) that persists from
one subroutine call to the next. If a state variable resides inside an anonymous subroutine, then each copy
of the subroutine has its own copy of the state variable. However, the value of the state variable will still
persist between calls to the same copy of the anonymous subroutine. (Don’t forget that sub { ... }
creates a new subroutine each time it is executed.)

For example, the following code maintains a private counter, incremented each time the gimme_another()
function is called:

use feature 'state';
sub gimme_another { state $x; return ++$x }

And this example uses anonymous subroutines to create separate counters:

use feature 'state';
sub create_counter {

return sub { state $x; return ++$x }
}

Also, since $x is lexical, it can’t be reached or modified by any Perl code outside.

When combined with variable declaration, simple scalar assignment to state variables (as in state $x
= 42) is executed only the first time. When such statements are evaluated subsequent times, the
assignment is ignored. The behavior of this sort of assignment to non-scalar variables is undefined.

Persistent variables with closures

Just because a lexical variable is lexically (also called statically) scoped to its enclosing block, eval, or do
FILE, this doesn’t mean that within a function it works like a C static. It normally works more like a C
auto, but with implicit garbage collection.

Unlike local variables in C or C++, Perl’s lexical variables don’t necessarily get recycled just because their
scope has exited. If something more permanent is still aware of the lexical, it will stick around. So long as
something else references a lexical, that lexical won’t be freed — which is as it should be. You wouldn’t
want memory being free until you were done using it, or kept around once you were done. Automatic
garbage collection takes care of this for you.

This means that you can pass back or save away references to lexical variables, whereas to return a pointer
to a C auto is a grave error. It also gives us a way to simulate C’s function statics. Here’s a mechanism for
giving a function private variables with both lexical scoping and a static lifetime. If you do want to create
something like C’s static variables, just enclose the whole function in an extra block, and put the static
variable outside the function but in the block.

perl v5.26.1 2018-11-19 85

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

{
my $secret_val = 0;
sub gimme_another {

return ++$secret_val;
}

}
$secret_val now becomes unreachable by the outside
world, but retains its value between calls to gimme_another

If this function is being sourced in from a separate file via require or use, then this is probably just fine.
If it’s all in the main program, you’ll need to arrange for the my to be executed early, either by putting the
whole block above your main program, or more likely, placing merely a BEGIN code block around it to
make sure it gets executed before your program starts to run:

BEGIN {
my $secret_val = 0;
sub gimme_another {

return ++$secret_val;
}

}

See ‘‘BEGIN, UNITCHECK, CHECK, INIT and END’’ in perlmod about the special triggered code blocks,
BEGIN, UNITCHECK, CHECK, INIT and END.

If declared at the outermost scope (the file scope), then lexicals work somewhat like C’s file statics. They
are available to all functions in that same file declared below them, but are inaccessible from outside that
file. This strategy is sometimes used in modules to create private variables that the whole module can see.

Temporary Values via local()
WARNING: In general, you should be using my instead of local, because it’s faster and safer. Exceptions
to this include the global punctuation variables, global filehandles and formats, and direct manipulation of
the Perl symbol table itself. local is mostly used when the current value of a variable must be visible to
called subroutines.

Synopsis:

localization of values

local $foo; # make $foo dynamically local
local (@wid, %get); # make list of variables local
local $foo = "flurp"; # make $foo dynamic, and init it
local @oof = @bar; # make @oof dynamic, and init it

local $hash{key} = "val"; # sets a local value for this hash entry
delete local $hash{key}; # delete this entry for the current block
local ($cond ? $v1 : $v2); # several types of lvalues support

localization

localization of symbols

local *FH; # localize $FH, @FH, %FH, &FH ...
local *merlyn = *randal; # now $merlyn is really $randal, plus

@merlyn is really @randal, etc
local *merlyn = 'randal'; # SAME THING: promote 'randal' to *randal
local *merlyn = \$randal; # just alias $merlyn, not @merlyn etc

A local modifies its listed variables to be ‘‘local’’ to the enclosing block, eval, or do FILE−−and to
any subroutine called from within that block. A local just gives temporary values to global (meaning
package) variables. It does not create a local variable. This is known as dynamic scoping. Lexical scoping
is done with my, which works more like C’s auto declarations.

Some types of lvalues can be localized as well: hash and array elements and slices, conditionals (provided
that their result is always localizable), and symbolic references. As for simple variables, this creates new,
dynamically scoped values.

86 2018-11-19 perl v5.26.1

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

If more than one variable or expression is given to local, they must be placed in parentheses. This
operator works by saving the current values of those variables in its argument list on a hidden stack and
restoring them upon exiting the block, subroutine, or eval. This means that called subroutines can also
reference the local variable, but not the global one. The argument list may be assigned to if desired, which
allows you to initialize your local variables. (If no initializer is given for a particular variable, it is created
with an undefined value.)

Because local is a run-time operator, it gets executed each time through a loop. Consequently, it’s more
efficient to localize your variables outside the loop.

Grammatical note on local()

A local is simply a modifier on an lvalue expression. When you assign to a localized variable, the
local doesn’t change whether its list is viewed as a scalar or an array. So

local($foo) = <STDIN>;
local @FOO = <STDIN>;

both supply a list context to the right-hand side, while

local $foo = <STDIN>;

supplies a scalar context.

Localization of special variables

If you localize a special variable, you’ll be giving a new value to it, but its magic won’t go away. That
means that all side-effects related to this magic still work with the localized value.

This feature allows code like this to work :

Read the whole contents of FILE in $slurp
{ local $/ = undef; $slurp = <FILE>; }

Note, however, that this restricts localization of some values ; for example, the following statement dies, as
of perl 5.10.0, with an error Modification of a read-only value attempted, because the $1 variable is
magical and read-only :

local $1 = 2;

One exception is the default scalar variable: starting with perl 5.14 local($_) will always strip all magic
from $_, to make it possible to safely reuse $_ in a subroutine.

WARNING: Localization of tied arrays and hashes does not currently work as described. This will be fixed
in a future release of Perl; in the meantime, avoid code that relies on any particular behavior of localising
tied arrays or hashes (localising individual elements is still okay). See ‘‘Localising Tied Arrays and Hashes
Is Broken’’ in perl58delta for more details.

Localization of globs

The construct

local *name;

creates a whole new symbol table entry for the glob name in the current package. That means that all
variables in its glob slot ($name, @name, %name, &name, and the name filehandle) are dynamically reset.

This implies, among other things, that any magic eventually carried by those variables is locally lost. In
other words, saying local */ will not have any effect on the internal value of the input record separator.

Localization of elements of composite types

It’s also worth taking a moment to explain what happens when you localize a member of a composite
type (i.e. an array or hash element). In this case, the element is localized by name. This means that
when the scope of the local() ends, the saved value will be restored to the hash element whose key was
named in the local(), or the array element whose index was named in the local(). If that element
was deleted while the local() was in effect (e.g. by a delete() from a hash or a shift() of an
array), it will spring back into existence, possibly extending an array and filling in the skipped elements
with undef. For instance, if you say

perl v5.26.1 2018-11-19 87

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

%hash = ('This' => 'is', 'a' => 'test');
@ary = (0..5);
{

local($ary[5]) = 6;
local($hash{'a'}) = 'drill';
while (my $e = pop(@ary)) {

print "$e . . .\n";
last unless $e > 3;

}
if (@ary) {

$hash{'only a'} = 'test';
delete $hash{'a'};

}
}
print join(' ', map { "$_ $hash{$_}" } sort keys %hash),".\n";
print "The array has ",scalar(@ary)," elements: ",

join(', ', map { defined $_ ? $_ : 'undef' } @ary),"\n";

Perl will print

6 . . .
4 . . .
3 . . .
This is a test only a test.
The array has 6 elements: 0, 1, 2, undef, undef, 5

The behavior of local() on non-existent members of composite types is subject to change in future.

Localized deletion of elements of composite types

You can use the delete local $array[$idx] and delete local $hash{key} constructs to
delete a composite type entry for the current block and restore it when it ends. They return the array/hash
value before the localization, which means that they are respectively equivalent to

do {
my $val = $array[$idx];
local $array[$idx];
delete $array[$idx];
$val

}

and

do {
my $val = $hash{key};
local $hash{key};
delete $hash{key};
$val

}

except that for those the local is scoped to the do block. Slices are also accepted.

my %hash = (
a => [7, 8, 9],
b => 1,
)

{
my $a = delete local $hash{a};
$a is [7, 8, 9]
%hash is (b => 1)

{
my @nums = delete local @$a[0, 2]
@nums is (7, 9)

88 2018-11-19 perl v5.26.1

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

$a is [undef, 8]

$a[0] = 999; # will be erased when the scope ends
}
$a is back to [7, 8, 9]

}
%hash is back to its original state

Lvalue subroutines
It is possible to return a modifiable value from a subroutine. To do this, you have to declare the subroutine
to return an lvalue.

my $val;
sub canmod : lvalue {

$val; # or: return $val;
}
sub nomod {

$val;
}

canmod() = 5; # assigns to $val
nomod() = 5; # ERROR

The scalar/list context for the subroutine and for the right-hand side of assignment is determined as if the
subroutine call is replaced by a scalar. For example, consider:

data(2,3) = get_data(3,4);

Both subroutines here are called in a scalar context, while in:

(data(2,3)) = get_data(3,4);

and in:

(data(2),data(3)) = get_data(3,4);

all the subroutines are called in a list context.

Lvalue subroutines are convenient, but you have to keep in mind that, when used with objects, they may
violate encapsulation. A normal mutator can check the supplied argument before setting the attribute it is
protecting, an lvalue subroutine cannot. If you require any special processing when storing and retrieving
the values, consider using the CPAN module Sentinel or something similar.

Lexical Subroutines
Beginning with Perl 5.18, you can declare a private subroutine with my or state. As with state variables,
the state keyword is only available under use feature 'state' or use 5.010 or higher.

Prior to Perl 5.26, lexical subroutines were deemed experimental and were available only under the use
feature 'lexical_subs' pragma. They also produced a warning unless the
‘‘experimental::lexical_subs’’ warnings category was disabled.

These subroutines are only visible within the block in which they are declared, and only after that
declaration:

Include these two lines if your code is intended to run under Perl
versions earlier than 5.26.
no warnings "experimental::lexical_subs";
use feature 'lexical_subs';

foo(); # calls the package/global subroutine
state sub foo {

foo(); # also calls the package subroutine
}
foo(); # calls "state" sub
my $ref = \&foo; # take a reference to "state" sub

perl v5.26.1 2018-11-19 89

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

my sub bar { ... }
bar(); # calls "my" sub

To use a lexical subroutine from inside the subroutine itself, you must predeclare it. The sub foo
{...} subroutine definition syntax respects any previous my sub; or state sub; declaration.

my sub baz; # predeclaration
sub baz { # define the "my" sub

baz(); # recursive call
}

state sub vs my sub

What is the difference between ‘‘state’’ subs and ‘‘my’’ subs? Each time that execution enters a block when
‘‘my’’ subs are declared, a new copy of each sub is created. ‘‘State’’ subroutines persist from one execution
of the containing block to the next.

So, in general, ‘‘state’’ subroutines are faster. But ‘‘my’’ subs are necessary if you want to create closures:

sub whatever {
my $x = shift;
my sub inner {

... do something with $x ...
}
inner();

}

In this example, a new $x is created when whatever is called, and also a new inner, which can see the
new $x. A ‘‘state’’ sub will only see the $x from the first call to whatever.

our subroutines

Like our $variable, our sub creates a lexical alias to the package subroutine of the same name.

The two main uses for this are to switch back to using the package sub inside an inner scope:

sub foo { ... }

sub bar {
my sub foo { ... }
{

need to use the outer foo here
our sub foo;
foo();

}
}

and to make a subroutine visible to other packages in the same scope:

package MySneakyModule;

our sub do_something { ... }

sub do_something_with_caller {
package DB;
() = caller 1; # sets @DB::args
do_something(@args); # uses MySneakyModule::do_something

}

Passing Symbol Table Entries (typeglobs)
WARNING: The mechanism described in this section was originally the only way to simulate pass-by-
reference in older versions of Perl. While it still works fine in modern versions, the new reference
mechanism is generally easier to work with. See below.

Sometimes you don’t want to pass the value of an array to a subroutine but rather the name of it, so that the
subroutine can modify the global copy of it rather than working with a local copy. In perl you can refer to
all objects of a particular name by prefixing the name with a star: *foo. This is often known as a
‘‘typeglob’’, because the star on the front can be thought of as a wildcard match for all the funny prefix

90 2018-11-19 perl v5.26.1

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

characters on variables and subroutines and such.

When evaluated, the typeglob produces a scalar value that represents all the objects of that name, including
any filehandle, format, or subroutine. When assigned to, it causes the name mentioned to refer to whatever
* value was assigned to it. Example:

sub doubleary {
local(*someary) = @_;
foreach $elem (@someary) {

$elem *= 2;
}

}
doubleary(*foo);
doubleary(*bar);

Scalars are already passed by reference, so you can modify scalar arguments without using this mechanism
by referring explicitly to $_[0] etc. You can modify all the elements of an array by passing all the
elements as scalars, but you have to use the * mechanism (or the equivalent reference mechanism) to
push, pop, or change the size of an array. It will certainly be faster to pass the typeglob (or reference).

Even if you don’t want to modify an array, this mechanism is useful for passing multiple arrays in a single
LIST, because normally the LIST mechanism will merge all the array values so that you can’t extract out the
individual arrays. For more on typeglobs, see ‘‘Typeglobs and Filehandles’’ in perldata.

When to Still Use local()
Despite the existence of my, there are still three places where the local operator still shines. In fact, in
these three places, you must use local instead of my.

1. You need to give a global variable a temporary value, especially $_.

The global variables, like @ARGV or the punctuation variables, must be localized with local().
This block reads in /etc/motd, and splits it up into chunks separated by lines of equal signs, which are
placed in @Fields.

{
local @ARGV = ("/etc/motd");
local $/ = undef;
local $_ = <>;
@Fields = split /ˆ\s*=+\s*$/;

}

It particular, it’s important to localize $_ in any routine that assigns to it. Look out for implicit
assignments in while conditionals.

2. You need to create a local file or directory handle or a local function.

A function that needs a filehandle of its own must use local() on a complete typeglob. This can be
used to create new symbol table entries:

sub ioqueue {
local (*READER, *WRITER); # not my!
pipe (READER, WRITER) or die "pipe: $!";
return (*READER, *WRITER);

}
($head, $tail) = ioqueue();

See the Symbol module for a way to create anonymous symbol table entries.

Because assignment of a reference to a typeglob creates an alias, this can be used to create what is
effectively a local function, or at least, a local alias.

perl v5.26.1 2018-11-19 91

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

{
local *grow = \&shrink; # only until this block exits
grow(); # really calls shrink()
move(); # if move() grow()s, it shrink()s too

}
grow(); # get the real grow() again

See ‘‘Function Templates’’ in perlref for more about manipulating functions by name in this way.

3. You want to temporarily change just one element of an array or hash.

You can localize just one element of an aggregate. Usually this is done on dynamics:

{
local $SIG{INT} = 'IGNORE';
funct(); # uninterruptible

}
interruptibility automatically restored here

But it also works on lexically declared aggregates.

Pass by Reference
If you want to pass more than one array or hash into a function — or return them from it — and have them
maintain their integrity, then you’re going to have to use an explicit pass-by-reference. Before you do that,
you need to understand references as detailed in perlref. This section may not make much sense to you
otherwise.

Here are a few simple examples. First, let’s pass in several arrays to a function and have it pop all of then,
returning a new list of all their former last elements:

@tailings = popmany (\@a, \@b, \@c, \@d);

sub popmany {
my $aref;
my @retlist;
foreach $aref (@_) {

push @retlist, pop @$aref;
}
return @retlist;

}

Here’s how you might write a function that returns a list of keys occurring in all the hashes passed to it:

@common = inter(\%foo, \%bar, \%joe);
sub inter {

my ($k, $href, %seen); # locals
foreach $href (@_) {

while ($k = each %$href) {
$seen{$k}++;

}
}
return grep { $seen{$_} == @_ } keys %seen;

}

So far, we’re using just the normal list return mechanism. What happens if you want to pass or return a
hash? Well, if you’re using only one of them, or you don’t mind them concatenating, then the normal
calling convention is ok, although a little expensive.

Where people get into trouble is here:

(@a, @b) = func(@c, @d);
or

(%a, %b) = func(%c, %d);

That syntax simply won’t work. It sets just @a or %a and clears the @b or %b. Plus the function didn’t get
passed into two separate arrays or hashes: it got one long list in @_, as always.

92 2018-11-19 perl v5.26.1

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

If you can arrange for everyone to deal with this through references, it’s cleaner code, although not so nice
to look at. Here’s a function that takes two array references as arguments, returning the two array elements
in order of how many elements they hav e in them:

($aref, $bref) = func(\@c, \@d);
print "@$aref has more than @$bref\n";
sub func {

my ($cref, $dref) = @_;
if (@$cref > @$dref) {

return ($cref, $dref);
} else {

return ($dref, $cref);
}

}

It turns out that you can actually do this also:

(*a, *b) = func(\@c, \@d);
print "@a has more than @b\n";
sub func {

local (*c, *d) = @_;
if (@c > @d) {

return (\@c, \@d);
} else {

return (\@d, \@c);
}

}

Here we’re using the typeglobs to do symbol table aliasing. It’s a tad subtle, though, and also won’t work if
you’re using my variables, because only globals (even in disguise as locals) are in the symbol table.

If you’re passing around filehandles, you could usually just use the bare typeglob, like *STDOUT, but
typeglobs references work, too. For example:

splutter(*STDOUT);
sub splutter {

my $fh = shift;
print $fh "her um well a hmmm\n";

}

$rec = get_rec(*STDIN);
sub get_rec {

my $fh = shift;
return scalar <$fh>;

}

If you’re planning on generating new filehandles, you could do this. Notice to pass back just the bare *FH,
not its reference.

sub openit {
my $path = shift;
local *FH;
return open (FH, $path) ? *FH : undef;

}

Prototypes
Perl supports a very limited kind of compile-time argument checking using function prototyping. This can
be declared in either the PROT O section or with a prototype attribute. If you declare either of

sub mypush (\@@)
sub mypush :prototype(\@@)

then mypush() takes arguments exactly like push() does.

If subroutine signatures are enabled (see ‘‘Signatures’’), then the shorter PROT O syntax is unavailable,
because it would clash with signatures. In that case, a prototype can only be declared in the form of an

perl v5.26.1 2018-11-19 93

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

attribute.

The function declaration must be visible at compile time. The prototype affects only interpretation of new-
style calls to the function, where new-style is defined as not using the & character. In other words, if you
call it like a built-in function, then it behaves like a built-in function. If you call it like an old-fashioned
subroutine, then it behaves like an old-fashioned subroutine. It naturally falls out from this rule that
prototypes have no influence on subroutine references like \&foo or on indirect subroutine calls like
&{$subref} or $subref−>().

Method calls are not influenced by prototypes either, because the function to be called is indeterminate at
compile time, since the exact code called depends on inheritance.

Because the intent of this feature is primarily to let you define subroutines that work like built-in functions,
here are prototypes for some other functions that parse almost exactly like the corresponding built-in.

Declared as Called as

sub mylink ($$) mylink $old, $new
sub myvec ($$$) myvec $var, $offset, 1
sub myindex ($$;$) myindex &getstring, "substr"
sub mysyswrite ($$$;$) mysyswrite $buf, 0, length($buf) − $off, $off
sub myreverse (@) myreverse $a, $b, $c
sub myjoin ($@) myjoin ":", $a, $b, $c
sub mypop (\@) mypop @array
sub mysplice (\@$$@) mysplice @array, 0, 2, @pushme
sub mykeys (\[%@]) mykeys %{$hashref}
sub myopen (*;$) myopen HANDLE, $name
sub mypipe (**) mypipe READHANDLE, WRITEHANDLE
sub mygrep (&@) mygrep { /foo/ } $a, $b, $c
sub myrand (;$) myrand 42
sub mytime () mytime

Any backslashed prototype character represents an actual argument that must start with that character
(optionally preceded by my, our or local), with the exception of $, which will accept any scalar lvalue
expression, such as $foo = 7 or my_function()−>[0]. The value passed as part of @_ will be a
reference to the actual argument given in the subroutine call, obtained by applying \ to that argument.

You can use the \[] backslash group notation to specify more than one allowed argument type. For
example:

sub myref (\[$@%&*])

will allow calling myref() as

myref $var
myref @array
myref %hash
myref &sub
myref *glob

and the first argument of myref() will be a reference to a scalar, an array, a hash, a code, or a glob.

Unbackslashed prototype characters have special meanings. Any unbackslashed @ or % eats all remaining
arguments, and forces list context. An argument represented by $ forces scalar context. An & requires an
anonymous subroutine, which, if passed as the first argument, does not require the sub keyword or a
subsequent comma.

A * allows the subroutine to accept a bareword, constant, scalar expression, typeglob, or a reference to a
typeglob in that slot. The value will be available to the subroutine either as a simple scalar, or (in the latter
two cases) as a reference to the typeglob. If you wish to always convert such arguments to a typeglob
reference, use Symbol::qualify_to_ref() as follows:

use Symbol 'qualify_to_ref';

sub foo (*) {
my $fh = qualify_to_ref(shift, caller);

94 2018-11-19 perl v5.26.1

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

...
}

The + prototype is a special alternative to $ that will act like \[@%] when given a literal array or hash
variable, but will otherwise force scalar context on the argument. This is useful for functions which should
accept either a literal array or an array reference as the argument:

sub mypush (+@) {
my $aref = shift;
die "Not an array or arrayref" unless ref $aref eq 'ARRAY';
push @$aref, @_;

}

When using the + prototype, your function must check that the argument is of an acceptable type.

A semicolon (;) separates mandatory arguments from optional arguments. It is redundant before @ or %,
which gobble up everything else.

As the last character of a prototype, or just before a semicolon, a @ or a %, you can use _ in place of $: if
this argument is not provided, $_ will be used instead.

Note how the last three examples in the table above are treated specially by the parser. mygrep() is
parsed as a true list operator, myrand() is parsed as a true unary operator with unary precedence the same
as rand(), and mytime() is truly without arguments, just like time(). That is, if you say

mytime +2;

you’ll get mytime() + 2, not mytime(2), which is how it would be parsed without a prototype. If
you want to force a unary function to have the same precedence as a list operator, add ; to the end of the
prototype:

sub mygetprotobynumber($;);
mygetprotobynumber $a > $b; # parsed as mygetprotobynumber($a > $b)

The interesting thing about & is that you can generate new syntax with it, provided it’s in the initial
position:

sub try (&@) {
my($try,$catch) = @_;
eval { &$try };
if ($@) {

local $_ = $@;
&$catch;

}
}
sub catch (&) { $_[0] }

try {
die "phooey";

} catch {
/phooey/ and print "unphooey\n";

};

That prints "unphooey". (Yes, there are still unresolved issues having to do with visibility of @_. I’m
ignoring that question for the moment. (But note that if we make @_ lexically scoped, those anonymous
subroutines can act like closures... (Gee, is this sounding a little Lispish? (Never mind.))))

And here’s a reimplementation of the Perl grep operator:

perl v5.26.1 2018-11-19 95

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

sub mygrep (&@) {
my $code = shift;
my @result;
foreach $_ (@_) {

push(@result, $_) if &$code;
}
@result;

}

Some folks would prefer full alphanumeric prototypes. Alphanumerics have been intentionally left out of
prototypes for the express purpose of someday in the future adding named, formal parameters. The current
mechanism’s main goal is to let module writers provide better diagnostics for module users. Larry feels the
notation quite understandable to Perl programmers, and that it will not intrude greatly upon the meat of the
module, nor make it harder to read. The line noise is visually encapsulated into a small pill that’s easy to
swallow.

If you try to use an alphanumeric sequence in a prototype you will generate an optional warning − ‘‘Illegal
character in prototype...’’. Unfortunately earlier versions of Perl allowed the prototype to be used as long as
its prefix was a valid prototype. The warning may be upgraded to a fatal error in a future version of Perl
once the majority of offending code is fixed.

It’s probably best to prototype new functions, not retrofit prototyping into older ones. That’s because you
must be especially careful about silent impositions of differing list versus scalar contexts. For example, if
you decide that a function should take just one parameter, like this:

sub func ($) {
my $n = shift;
print "you gave me $n\n";

}

and someone has been calling it with an array or expression returning a list:

func(@foo);
func($text =˜ /\w+/g);

Then you’ve just supplied an automatic scalar in front of their argument, which can be more than a bit
surprising. The old @foo which used to hold one thing doesn’t get passed in. Instead, func() now gets
passed in a 1; that is, the number of elements in @foo. And the m//g gets called in scalar context so
instead of a list of words it returns a boolean result and advances pos($text). Ouch!

If a sub has both a PROT O and a BLOCK, the prototype is not applied until after the BLOCK is completely
defined. This means that a recursive function with a prototype has to be predeclared for the prototype to
take effect, like so:

sub foo($$);
sub foo($$) {

foo 1, 2;
}

This is all very powerful, of course, and should be used only in moderation to make the world a better
place.

Constant Functions
Functions with a prototype of () are potential candidates for inlining. If the result after optimization and
constant folding is either a constant or a lexically-scoped scalar which has no other references, then it will
be used in place of function calls made without &. Calls made using & are never inlined. (See constant.pm
for an easy way to declare most constants.)

The following functions would all be inlined:

sub pi () { 3.14159 } # Not exact, but close.
sub PI () { 4 * atan2 1, 1 } # As good as it gets,

and it's inlined, too!
sub ST_DEV () { 0 }
sub ST_INO () { 1 }

96 2018-11-19 perl v5.26.1

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

sub FLAG_FOO () { 1 << 8 }
sub FLAG_BAR () { 1 << 9 }
sub FLAG_MASK () { FLAG_FOO | FLAG_BAR }

sub OPT_BAZ () { not (0x1B58 & FLAG_MASK) }

sub N () { int(OPT_BAZ) / 3 }

sub FOO_SET () { 1 if FLAG_MASK & FLAG_FOO }
sub FOO_SET2 () { if (FLAG_MASK & FLAG_FOO) { 1 } }

(Be aware that the last example was not always inlined in Perl 5.20 and earlier, which did not behave
consistently with subroutines containing inner scopes.) You can countermand inlining by using an explicit
return:

sub baz_val () {
if (OPT_BAZ) {

return 23;
}
else {

return 42;
}

}
sub bonk_val () { return 12345 }

As alluded to earlier you can also declare inlined subs dynamically at BEGIN time if their body consists of a
lexically-scoped scalar which has no other references. Only the first example here will be inlined:

BEGIN {
my $var = 1;
no strict 'refs';
*INLINED = sub () { $var };

}

BEGIN {
my $var = 1;
my $ref = \$var;
no strict 'refs';
*NOT_INLINED = sub () { $var };

}

A not so obvious caveat with this (see [RT #79908]) is that the variable will be immediately inlined, and
will stop behaving like a normal lexical variable, e.g. this will print 79907, not 79908:

BEGIN {
my $x = 79907;
*RT_79908 = sub () { $x };
$x++;

}
print RT_79908(); # prints 79907

As of Perl 5.22, this buggy behavior, while preserved for backward compatibility, is detected and emits a
deprecation warning. If you want the subroutine to be inlined (with no warning), make sure the variable is
not used in a context where it could be modified aside from where it is declared.

perl v5.26.1 2018-11-19 97

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

Fine, no warning
BEGIN {

my $x = 54321;
*INLINED = sub () { $x };

}
Warns. Future Perl versions will stop inlining it.
BEGIN {

my $x;
$x = 54321;
*ALSO_INLINED = sub () { $x };

}

Perl 5.22 also introduces the experimental ‘‘const’’ attribute as an alternative. (Disable the
‘‘experimental::const_attr’’ warnings if you want to use it.) When applied to an anonymous subroutine, it
forces the sub to be called when the sub expression is evaluated. The return value is captured and turned
into a constant subroutine:

my $x = 54321;
*INLINED = sub : const { $x };
$x++;

The return value of INLINED in this example will always be 54321, regardless of later modifications to
$x. You can also put any arbitrary code inside the sub, at it will be executed immediately and its return
value captured the same way.

If you really want a subroutine with a () prototype that returns a lexical variable you can easily force it to
not be inlined by adding an explicit return:

BEGIN {
my $x = 79907;
*RT_79908 = sub () { return $x };
$x++;

}
print RT_79908(); # prints 79908

The easiest way to tell if a subroutine was inlined is by using B::Deparse. Consider this example of two
subroutines returning 1, one with a () prototype causing it to be inlined, and one without (with deparse
output truncated for clarity):

$ perl −MO=Deparse −le 'sub ONE { 1 } if (ONE) { print ONE if ONE }'
sub ONE {

1;
}
if (ONE) {

print ONE() if ONE ;
}
$ perl −MO=Deparse −le 'sub ONE () { 1 } if (ONE) { print ONE if ONE }'
sub ONE () { 1 }
do {

print 1
};

If you redefine a subroutine that was eligible for inlining, you’ll get a warning by default. You can use this
warning to tell whether or not a particular subroutine is considered inlinable, since it’s different than the
warning for overriding non-inlined subroutines:

$ perl −e 'sub one () {1} sub one () {2}'
Constant subroutine one redefined at −e line 1.
$ perl −we 'sub one {1} sub one {2}'
Subroutine one redefined at −e line 1.

The warning is considered severe enough not to be affected by the −w switch (or its absence) because
previously compiled invocations of the function will still be using the old value of the function. If you need
to be able to redefine the subroutine, you need to ensure that it isn’t inlined, either by dropping the ()
prototype (which changes calling semantics, so beware) or by thwarting the inlining mechanism in some

98 2018-11-19 perl v5.26.1

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

other way, e.g. by adding an explicit return, as mentioned above:

sub not_inlined () { return 23 }

Overriding Built-in Functions
Many built-in functions may be overridden, though this should be tried only occasionally and for good
reason. Typically this might be done by a package attempting to emulate missing built-in functionality on a
non-Unix system.

Overriding may be done only by importing the name from a module at compile time — ordinary
predeclaration isn’t good enough. However, the use subs pragma lets you, in effect, predeclare subs via
the import syntax, and these names may then override built-in ones:

use subs 'chdir', 'chroot', 'chmod', 'chown';
chdir $somewhere;
sub chdir { ... }

To unambiguously refer to the built-in form, precede the built-in name with the special package qualifier
CORE::. For example, saying CORE::open() always refers to the built-in open(), even if the current
package has imported some other subroutine called &open() from elsewhere. Even though it looks like a
regular function call, it isn’t: the CORE:: prefix in that case is part of Perl’s syntax, and works for any
keyword, regardless of what is in the CORE package. Taking a reference to it, that is, \&CORE::open,
only works for some keywords. See CORE.

Library modules should not in general export built-in names like open or chdir as part of their default
@EXPORT list, because these may sneak into someone else’s namespace and change the semantics
unexpectedly. Instead, if the module adds that name to @EXPORT_OK, then it’s possible for a user to
import the name explicitly, but not implicitly. That is, they could say

use Module 'open';

and it would import the open override. But if they said

use Module;

they would get the default imports without overrides.

The foregoing mechanism for overriding built-in is restricted, quite deliberately, to the package that
requests the import. There is a second method that is sometimes applicable when you wish to override a
built-in everywhere, without regard to namespace boundaries. This is achieved by importing a sub into the
special namespace CORE::GLOBAL::. Here is an example that quite brazenly replaces the glob
operator with something that understands regular expressions.

package REGlob;
require Exporter;
@ISA = 'Exporter';
@EXPORT_OK = 'glob';

sub import {
my $pkg = shift;
return unless @_;
my $sym = shift;
my $where = ($sym =˜ s/ˆGLOBAL_// ? 'CORE::GLOBAL' : caller(0));
$pkg−>export($where, $sym, @_);

}

sub glob {
my $pat = shift;
my @got;
if (opendir my $d, '.') {

@got = grep /$pat/, readdir $d;
closedir $d;

}
return @got;

}
1;

perl v5.26.1 2018-11-19 99

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

And here’s how it could be (ab)used:

#use REGlob 'GLOBAL_glob'; # override glob() in ALL namespaces
package Foo;
use REGlob 'glob'; # override glob() in Foo:: only
print for <ˆ[a−z_]+\.pm\$>; # show all pragmatic modules

The initial comment shows a contrived, even dangerous example. By overriding glob globally, you would
be forcing the new (and subversive) behavior for the glob operator for every namespace, without the
complete cognizance or cooperation of the modules that own those namespaces. Naturally, this should be
done with extreme caution — if it must be done at all.

The REGlob example above does not implement all the support needed to cleanly override perl’s glob
operator. The built-in glob has different behaviors depending on whether it appears in a scalar or list
context, but our REGlob doesn’t. Indeed, many perl built-in have such context sensitive behaviors, and
these must be adequately supported by a properly written override. For a fully functional example of
overriding glob, study the implementation of File::DosGlob in the standard library.

When you override a built-in, your replacement should be consistent (if possible) with the built-in native
syntax. You can achieve this by using a suitable prototype. To get the prototype of an overridable built-in,
use the prototype function with an argument of "CORE::builtin_name" (see ‘‘prototype’’ in
perlfunc).

Note however that some built-ins can’t hav e their syntax expressed by a prototype (such as system or
chomp). If you override them you won’t be able to fully mimic their original syntax.

The built-ins do, require and glob can also be overridden, but due to special magic, their original
syntax is preserved, and you don’t hav e to define a prototype for their replacements. (You can’t override
the do BLOCK syntax, though).

require has special additional dark magic: if you invoke your require replacement as require
Foo::Bar, it will actually receive the argument "Foo/Bar.pm" in @_. See ‘‘require’’ in perlfunc.

And, as you’ll have noticed from the previous example, if you override glob, the <*> glob operator is
overridden as well.

In a similar fashion, overriding the readline function also overrides the equivalent I/O operator
<FILEHANDLE>. Also, overriding readpipe also overrides the operators `` and qx//.

Finally, some built-ins (e.g. exists or grep) can’t be overridden.

Autoloading
If you call a subroutine that is undefined, you would ordinarily get an immediate, fatal error complaining
that the subroutine doesn’t exist. (Likewise for subroutines being used as methods, when the method
doesn’t exist in any base class of the class’s package.) However, if an AUTOLOAD subroutine is defined in
the package or packages used to locate the original subroutine, then that AUTOLOAD subroutine is called
with the arguments that would have been passed to the original subroutine. The fully qualified name of the
original subroutine magically appears in the global $AUTOLOAD variable of the same package as the
AUTOLOAD routine. The name is not passed as an ordinary argument because, er, well, just because, that’s
why. (As an exception, a method call to a nonexistent import or unimport method is just skipped
instead. Also, if the AUTOLOAD subroutine is an XSUB, there are other ways to retrieve the subroutine
name. See ‘‘Autoloading with XSUBs’’ in perlguts for details.)

Many AUTOLOAD routines load in a definition for the requested subroutine using eval(), then execute that
subroutine using a special form of goto() that erases the stack frame of the AUTOLOAD routine without a
trace. (See the source to the standard module documented in AutoLoader, for example.) But an
AUTOLOAD routine can also just emulate the routine and never define it. For example, let’s pretend that a
function that wasn’t defined should just invoke system with those arguments. All you’d do is:

100 2018-11-19 perl v5.26.1

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

sub AUTOLOAD {
my $program = $AUTOLOAD;
$program =˜ s/.*:://;
system($program, @_);

}
date();
who('am', 'i');
ls('−l');

In fact, if you predeclare functions you want to call that way, you don’t even need parentheses:

use subs qw(date who ls);
date;
who "am", "i";
ls '−l';

A more complete example of this is the Shell module on CPAN, which can treat undefined subroutine calls
as calls to external programs.

Mechanisms are available to help modules writers split their modules into autoloadable files. See the
standard AutoLoader module described in AutoLoader and in AutoSplit, the standard SelfLoader modules
in SelfLoader, and the document on adding C functions to Perl code in perlxs.

Subroutine Attributes
A subroutine declaration or definition may have a list of attributes associated with it. If such an attribute
list is present, it is broken up at space or colon boundaries and treated as though a use attributes had
been seen. See attributes for details about what attributes are currently supported. Unlike the limitation
with the obsolescent use attrs, the sub : ATTRLIST syntax works to associate the attributes with a
pre-declaration, and not just with a subroutine definition.

The attributes must be valid as simple identifier names (without any punctuation other than the ’_’
character). They may have a parameter list appended, which is only checked for whether its parentheses
(’(’,’)’) nest properly.

Examples of valid syntax (even though the attributes are unknown):

sub fnord (&\%) : switch(10,foo(7,3)) : expensive;
sub plugh () : Ugly('\(") :Bad;
sub xyzzy : _5x5 { ... }

Examples of invalid syntax:

sub fnord : switch(10,foo(); # ()−string not balanced
sub snoid : Ugly('('); # ()−string not balanced
sub xyzzy : 5x5; # "5x5" not a valid identifier
sub plugh : Y2::north; # "Y2::north" not a simple identifier
sub snurt : foo + bar; # "+" not a colon or space

The attribute list is passed as a list of constant strings to the code which associates them with the
subroutine. In particular, the second example of valid syntax above currently looks like this in terms of
how it’s parsed and invoked:

use attributes __PACKAGE_ _, \&plugh, q[Ugly('\(")], 'Bad';

For further details on attribute lists and their manipulation, see attributes and Attribute::Handlers.

SEE ALSO
See ‘‘Function Templates’’ in perlref for more about references and closures. See perlxs if you’d like to
learn about calling C subroutines from Perl. See perlembed if you’d like to learn about calling Perl
subroutines from C. See perlmod to learn about bundling up your functions in separate files. See
perlmodlib to learn what library modules come standard on your system. See perlootut to learn how to
make object method calls.

perl v5.26.1 2018-11-19 101

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

NAME
perlfunc − Perl builtin functions

DESCRIPTION
The functions in this section can serve as terms in an expression. They fall into two major categories: list
operators and named unary operators. These differ in their precedence relationship with a following
comma. (See the precedence table in perlop.) List operators take more than one argument, while unary
operators can never take more than one argument. Thus, a comma terminates the argument of a unary
operator, but merely separates the arguments of a list operator. A unary operator generally provides scalar
context to its argument, while a list operator may provide either scalar or list contexts for its arguments. If
it does both, scalar arguments come first and list argument follow, and there can only ever be one such list
argument. For instance, splice has three scalar arguments followed by a list, whereas
gethostbyname has four scalar arguments.

In the syntax descriptions that follow, list operators that expect a list (and provide list context for elements
of the list) are shown with LIST as an argument. Such a list may consist of any combination of scalar
arguments or list values; the list values will be included in the list as if each individual element were
interpolated at that point in the list, forming a longer single-dimensional list value. Commas should
separate literal elements of the LIST.

Any function in the list below may be used either with or without parentheses around its arguments. (The
syntax descriptions omit the parentheses.) If you use parentheses, the simple but occasionally surprising
rule is this: It looks like a function, therefore it is a function, and precedence doesn’t matter. Otherwise it’s
a list operator or unary operator, and precedence does matter. Whitespace between the function and left
parenthesis doesn’t count, so sometimes you need to be careful:

print 1+2+4; # Prints 7.
print(1+2) + 4; # Prints 3.
print (1+2)+4; # Also prints 3!
print +(1+2)+4; # Prints 7.
print ((1+2)+4); # Prints 7.

If you run Perl with the use warnings pragma, it can warn you about this. For example, the third line
above produces:

print (...) interpreted as function at − line 1.
Useless use of integer addition in void context at − line 1.

A few functions take no arguments at all, and therefore work as neither unary nor list operators. These
include such functions as time and endpwent. For example, time+86_400 always means time() +
86_400.

For functions that can be used in either a scalar or list context, nonabortive failure is generally indicated in
scalar context by returning the undefined value, and in list context by returning the empty list.

Remember the following important rule: There is no rule that relates the behavior of an expression in list
context to its behavior in scalar context, or vice versa. It might do two totally different things. Each
operator and function decides which sort of value would be most appropriate to return in scalar context.
Some operators return the length of the list that would have been returned in list context. Some operators
return the first value in the list. Some operators return the last value in the list. Some operators return a
count of successful operations. In general, they do what you want, unless you want consistency.

A named array in scalar context is quite different from what would at first glance appear to be a list in
scalar context. You can’t get a list like (1,2,3) into being in scalar context, because the compiler knows
the context at compile time. It would generate the scalar comma operator there, not the list concatenation
version of the comma. That means it was never a list to start with.

In general, functions in Perl that serve as wrappers for system calls (‘‘syscalls’’) of the same name (like
chown (2), fork (2), closedir (2), etc.) return true when they succeed and undef otherwise, as is usually
mentioned in the descriptions below. This is different from the C interfaces, which return −1 on failure.
Exceptions to this rule include wait, waitpid, and syscall. System calls also set the special $!
variable on failure. Other functions do not, except accidentally.

Extension modules can also hook into the Perl parser to define new kinds of keyword-headed expression.
These may look like functions, but may also look completely different. The syntax following the keyword
is defined entirely by the extension. If you are an implementor, see ‘‘PL_keyword_plugin’’ in perlapi for

102 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

the mechanism. If you are using such a module, see the module’s documentation for details of the syntax
that it defines.

Perl Functions by Category
Here are Perl’s functions (including things that look like functions, like some keywords and named
operators) arranged by category. Some functions appear in more than one place.

Functions for SCALARs or strings
chomp, chop, chr, crypt, fc, hex, index, lc, lcfirst, length, oct, ord, pack, q//,
qq//, reverse, rindex, sprintf, substr, tr///, uc, ucfirst, y///

fc is available only if the "fc" feature is enabled or if it is prefixed with CORE::. The "fc"
feature is enabled automatically with a use v5.16 (or higher) declaration in the current scope.

Regular expressions and pattern matching
m//, pos, qr//, quotemeta, s///, split, study

Numeric functions
abs, atan2, cos, exp, hex, int, log, oct, rand, sin, sqrt, srand

Functions for real @ARRAYs
each, keys, pop, push, shift, splice, unshift, values

Functions for list data
grep, join, map, qw//, reverse, sort, unpack

Functions for real %HASHes
delete, each, exists, keys, values

Input and output functions
binmode, close, closedir, dbmclose, dbmopen, die, eof, fileno, flock, format,
getc, print, printf, read, readdir, readline, rewinddir, say, seek, seekdir,
select, syscall, sysread, sysseek, syswrite, tell, telldir, truncate, warn,
write

say is available only if the "say" feature is enabled or if it is prefixed with CORE::. The "say"
feature is enabled automatically with a use v5.10 (or higher) declaration in the current scope.

Functions for fixed-length data or records
pack, read, syscall, sysread, sysseek, syswrite, unpack, vec

Functions for filehandles, files, or directories
−X, chdir, chmod, chown, chroot, fcntl, glob, ioctl, link, lstat, mkdir, open,
opendir, readlink, rename, rmdir, select, stat, symlink, sysopen, umask,
unlink, utime

Ke ywords related to the control flow of your Perl program
break, caller, continue, die, do, dump, eval, evalbytes, exit, __FILE_ _, goto,
last, __LINE_ _, next, __PACKAGE_ _, redo, return, sub, __SUB_ _, wantarray

break is available only if you enable the experimental "switch" feature or use the CORE:: prefix.
The "switch" feature also enables the default, given and when statements, which are
documented in ‘‘Switch Statements’’ in perlsyn. The "switch" feature is enabled automatically
with a use v5.10 (or higher) declaration in the current scope. In Perl v5.14 and earlier, continue
required the "switch" feature, like the other keywords.

evalbytes is only available with the "evalbytes" feature (see feature) or if prefixed with
CORE::. __SUB_ _ is only available with the "current_sub" feature or if prefixed with
CORE::. Both the "evalbytes" and "current_sub" features are enabled automatically with a
use v5.16 (or higher) declaration in the current scope.

Ke ywords related to scoping
caller, import, local, my, our, package, state, use

state is available only if the "state" feature is enabled or if it is prefixed with CORE::. The
"state" feature is enabled automatically with a use v5.10 (or higher) declaration in the current
scope.

perl v5.26.1 2018-11-19 103

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Miscellaneous functions
defined, formline, lock, prototype, reset, scalar, undef

Functions for processes and process groups
alarm, exec, fork, getpgrp, getppid, getpriority, kill, pipe, qx//, readpipe,
setpgrp, setpriority, sleep, system, times, wait, waitpid

Ke ywords related to Perl modules
do, import, no, package, require, use

Ke ywords related to classes and object-orientation
bless, dbmclose, dbmopen, package, ref, tie, tied, untie, use

Low-level socket functions
accept, bind, connect, getpeername, getsockname, getsockopt, listen, recv,
send, setsockopt, shutdown, socket, socketpair

System V interprocess communication functions
msgctl, msgget, msgrcv, msgsnd, semctl, semget, semop, shmctl, shmget, shmread,
shmwrite

Fetching user and group info
endgrent, endhostent, endnetent, endpwent, getgrent, getgrgid, getgrnam,
getlogin, getpwent, getpwnam, getpwuid, setgrent, setpwent

Fetching network info
endprotoent, endservent, gethostbyaddr, gethostbyname, gethostent,
getnetbyaddr, getnetbyname, getnetent, getprotobyname, getprotobynumber,
getprotoent, getservbyname, getservbyport, getservent, sethostent,
setnetent, setprotoent, setservent

Time-related functions
gmtime, localtime, time, times

Non-function keywords
and, AUTOLOAD, BEGIN, CHECK, cmp, CORE, __DATA_ _, default, DESTROY, else,
elseif, elsif, END, __END_ _, eq, for, foreach, ge, given, gt, if, INIT, le, lt, ne,
not, or, UNITCHECK, unless, until, when, while, x, xor

Portability
Perl was born in Unix and can therefore access all common Unix system calls. In non-Unix environments,
the functionality of some Unix system calls may not be available or details of the available functionality
may differ slightly. The Perl functions affected by this are:

−X, binmode, chmod, chown, chroot, crypt, dbmclose, dbmopen, dump, endgrent,
endhostent, endnetent, endprotoent, endpwent, endservent, exec, fcntl, flock,
fork, getgrent, getgrgid, gethostbyname, gethostent, getlogin, getnetbyaddr,
getnetbyname, getnetent, getppid, getpgrp, getpriority, getprotobynumber,
getprotoent, getpwent, getpwnam, getpwuid, getservbyport, getservent,
getsockopt, glob, ioctl, kill, link, lstat, msgctl, msgget, msgrcv, msgsnd, open,
pipe, readlink, rename, select, semctl, semget, semop, setgrent, sethostent,
setnetent, setpgrp, setpriority, setprotoent, setpwent, setservent, setsockopt,
shmctl, shmget, shmread, shmwrite, socket, socketpair, stat, symlink, syscall,
sysopen, system, times, truncate, umask, unlink, utime, wait, waitpid

For more information about the portability of these functions, see perlport and other available platform-
specific documentation.

Alphabetical Listing of Perl Functions
−X FILEHANDLE

−X EXPR

−X DIRHANDLE

−X A file test, where X is one of the letters listed below. This unary operator takes one argument, either a
filename, a filehandle, or a dirhandle, and tests the associated file to see if something is true about it.
If the argument is omitted, tests $_, except for −t, which tests STDIN. Unless otherwise documented,
it returns 1 for true and '' for false. If the file doesn’t exist or can’t be examined, it returns undef

104 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

and sets $! (errno). Despite the funny names, precedence is the same as any other named unary
operator. The operator may be any of:

−r File is readable by effective uid/gid.
−w File is writable by effective uid/gid.
−x File is executable by effective uid/gid.
−o File is owned by effective uid.

−R File is readable by real uid/gid.
−W File is writable by real uid/gid.
−X File is executable by real uid/gid.
−O File is owned by real uid.

−e File exists.
−z File has zero size (is empty).
−s File has nonzero size (returns size in bytes).

−f File is a plain file.
−d File is a directory.
−l File is a symbolic link (false if symlinks aren't

supported by the file system).
−p File is a named pipe (FIFO), or Filehandle is a pipe.
−S File is a socket.
−b File is a block special file.
−c File is a character special file.
−t Filehandle is opened to a tty.

−u File has setuid bit set.
−g File has setgid bit set.
−k File has sticky bit set.

−T File is an ASCII or UTF−8 text file (heuristic guess).
−B File is a "binary" file (opposite of −T).

−M Script start time minus file modification time, in days.
−A Same for access time.
−C Same for inode change time (Unix, may differ for other

platforms)

Example:

while (<>) {
chomp;
next unless −f $_; # ignore specials
#...

}

Note that −s/a/b/ does not do a negated substitution. Saying −exp($foo) still works as
expected, however: only single letters following a minus are interpreted as file tests.

These operators are exempt from the ‘‘looks like a function rule’’ described above. That is, an opening
parenthesis after the operator does not affect how much of the following code constitutes the
argument. Put the opening parentheses before the operator to separate it from code that follows (this
applies only to operators with higher precedence than unary operators, of course):

−s($file) + 1024 # probably wrong; same as −s($file + 1024)
(−s $file) + 1024 # correct

The interpretation of the file permission operators −r, −R, −w, −W, −x, and −X is by default based
solely on the mode of the file and the uids and gids of the user. There may be other reasons you can’t
actually read, write, or execute the file: for example network filesystem access controls, ACLs (access
control lists), read-only filesystems, and unrecognized executable formats. Note that the use of these

perl v5.26.1 2018-11-19 105

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

six specific operators to verify if some operation is possible is usually a mistake, because it may be
open to race conditions.

Also note that, for the superuser on the local filesystems, the −r, −R, −w, and −W tests always return 1,
and −x and −X return 1 if any execute bit is set in the mode. Scripts run by the superuser may thus
need to do a stat to determine the actual mode of the file, or temporarily set their effective uid to
something else.

If you are using ACLs, there is a pragma called filetest that may produce more accurate results
than the bare stat mode bits. When under use filetest 'access', the above-mentioned
filetests test whether the permission can(not) be granted using the access (2) family of system calls.
Also note that the −x and −X tests may under this pragma return true even if there are no execute
permission bits set (nor any extra execute permission ACLs). This strangeness is due to the
underlying system calls’ definitions. Note also that, due to the implementation of use filetest
'access', the _ special filehandle won’t cache the results of the file tests when this pragma is in
effect. Read the documentation for the filetest pragma for more information.

The −T and −B tests work as follows. The first block or so of the file is examined to see if it is valid
UTF−8 that includes non-ASCII characters. If so, it’s a −T file. Otherwise, that same portion of the
file is examined for odd characters such as strange control codes or characters with the high bit set. If
more than a third of the characters are strange, it’s a −B file; otherwise it’s a −T file. Also, any file
containing a zero byte in the examined portion is considered a binary file. (If executed within the
scope of a use locale which includes LC_CTYPE, odd characters are anything that isn’t a printable nor
space in the current locale.) If −T or −B is used on a filehandle, the current IO buffer is examined
rather than the first block. Both −T and −B return true on an empty file, or a file at EOF when testing a
filehandle. Because you have to read a file to do the −T test, on most occasions you want to use a −f
against the file first, as in next unless −f $file && −T $file.

If any of the file tests (or either the stat or lstat operator) is given the special filehandle consisting
of a solitary underline, then the stat structure of the previous file test (or stat operator) is used,
saving a system call. (This doesn’t work with −t, and you need to remember that lstat and −l
leave values in the stat structure for the symbolic link, not the real file.) (Also, if the stat buffer was
filled by an lstat call, −T and −B will reset it with the results of stat _). Example:

print "Can do.\n" if −r $a || −w _ || −x _;

stat($filename);
print "Readable\n" if −r _;
print "Writable\n" if −w _;
print "Executable\n" if −x _;
print "Setuid\n" if −u _;
print "Setgid\n" if −g _;
print "Sticky\n" if −k _;
print "Text\n" if −T _;
print "Binary\n" if −B _;

As of Perl 5.10.0, as a form of purely syntactic sugar, you can stack file test operators, in a way that
−f −w −x $file is equivalent to −x $file && −w _ && −f _. (This is only fancy syntax:
if you use the return value of −f $file as an argument to another filetest operator, no special magic
will happen.)

Portability issues: ‘‘−X’’ in perlport.

To avoid confusing would-be users of your code with mysterious syntax errors, put something like this
at the top of your script:

use 5.010; # so filetest ops can stack

abs VALUE

abs Returns the absolute value of its argument. If VALUE is omitted, uses $_.

accept NEWSOCKET,GENERICSOCKET

Accepts an incoming socket connect, just as accept (2) does. Returns the packed address if it
succeeded, false otherwise. See the example in ‘‘Sockets: Client/Server Communication’’ in perlipc.

106 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

On systems that support a close-on-exec flag on files, the flag will be set for the newly opened file
descriptor, as determined by the value of $ˆF. See ‘‘$ˆF’’ in perlvar.

alarm SECONDS

alarm
Arranges to have a SIGALRM delivered to this process after the specified number of wallclock seconds
has elapsed. If SECONDS is not specified, the value stored in $_ is used. (On some machines,
unfortunately, the elapsed time may be up to one second less or more than you specified because of
how seconds are counted, and process scheduling may delay the delivery of the signal even further.)

Only one timer may be counting at once. Each call disables the previous timer, and an argument of 0
may be supplied to cancel the previous timer without starting a new one. The returned value is the
amount of time remaining on the previous timer.

For delays of finer granularity than one second, the Time::HiRes module (from CPAN, and starting
from Perl 5.8 part of the standard distribution) provides ualarm. You may also use Perl’s four-
argument version of select leaving the first three arguments undefined, or you might be able to use
the syscall interface to access setitimer (2) if your system supports it. See perlfaq8 for details.

It is usually a mistake to intermix alarm and sleep calls, because sleep may be internally
implemented on your system with alarm.

If you want to use alarm to time out a system call you need to use an eval/die pair. You can’t rely
on the alarm causing the system call to fail with $! set to EINTR because Perl sets up signal handlers
to restart system calls on some systems. Using eval/die always works, modulo the caveats given in
‘‘Signals’’ in perlipc.

eval {
local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required
alarm $timeout;
my $nread = sysread $socket, $buffer, $size;
alarm 0;

};
if ($@) {

die unless $@ eq "alarm\n"; # propagate unexpected errors
timed out

}
else {

didn't
}

For more information see perlipc.

Portability issues: ‘‘alarm’’ in perlport.

atan2 Y,X
Returns the arctangent of Y/X in the range −PI to PI.

For the tangent operation, you may use the Math::Trig::tan function, or use the familiar
relation:

sub tan { sin($_[0]) / cos($_[0]) }

The return value for atan2(0,0) is implementation-defined; consult your atan2 (3) manpage for
more information.

Portability issues: ‘‘atan2’’ in perlport.

bind SOCKET,NAME

Binds a network address to a socket, just as bind (2) does. Returns true if it succeeded, false
otherwise. NAME should be a packed address of the appropriate type for the socket. See the examples
in ‘‘Sockets: Client/Server Communication’’ in perlipc.

binmode FILEHANDLE, LAYER

binmode FILEHANDLE

Arranges for FILEHANDLE to be read or written in ‘‘binary’’ or ‘‘text’’ mode on systems where the
run-time libraries distinguish between binary and text files. If FILEHANDLE is an expression, the

perl v5.26.1 2018-11-19 107

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

value is taken as the name of the filehandle. Returns true on success, otherwise it returns undef and
sets $! (errno).

On some systems (in general, DOS− and Windows-based systems) binmode is necessary when you’re
not working with a text file. For the sake of portability it is a good idea always to use it when
appropriate, and never to use it when it isn’t appropriate. Also, people can set their I/O to be by
default UTF8−encoded Unicode, not bytes.

In other words: regardless of platform, use binmode on binary data, like images, for example.

If LAYER is present it is a single string, but may contain multiple directives. The directives alter the
behaviour of the filehandle. When LAYER is present, using binmode on a text file makes sense.

If LAYER is omitted or specified as :raw the filehandle is made suitable for passing binary data. This
includes turning off possible CRLF translation and marking it as bytes (as opposed to Unicode
characters). Note that, despite what may be implied in ‘‘Programming Perl’’ (the Camel, 3rd edition)
or elsewhere, :raw is not simply the inverse of :crlf. Other layers that would affect the binary
nature of the stream are also disabled. See PerlIO, perlrun, and the discussion about the PERLIO

environment variable.

The :bytes, :crlf, :utf8, and any other directives of the form :..., are called I/O layers. The
open pragma can be used to establish default I/O layers.

The LAYER parameter of the binmode function is described as ‘‘DISCIPLINE’’ in ‘‘Programming Perl,
3rd Edition’’. However, since the publishing of this book, by many known as ‘‘Camel III’’, the
consensus of the naming of this functionality has moved from ‘‘discipline’’ to ‘‘layer’’. All
documentation of this version of Perl therefore refers to ‘‘layers’’ rather than to ‘‘disciplines’’. Now
back to the regularly scheduled documentation...

To mark FILEHANDLE as UTF−8, use :utf8 or :encoding(UTF−8). :utf8 just marks the data
as UTF−8 without further checking, while :encoding(UTF−8) checks the data for actually being
valid UTF−8. More details can be found in PerlIO::encoding.

In general, binmode should be called after open but before any I/O is done on the filehandle.
Calling binmode normally flushes any pending buffered output data (and perhaps pending input data)
on the handle. An exception to this is the :encoding layer that changes the default character
encoding of the handle. The :encoding layer sometimes needs to be called in mid-stream, and it
doesn’t flush the stream. :encoding also implicitly pushes on top of itself the :utf8 layer because
internally Perl operates on UTF8−encoded Unicode characters.

The operating system, device drivers, C libraries, and Perl run-time system all conspire to let the
programmer treat a single character (\n) as the line terminator, irrespective of external representation.
On many operating systems, the native text file representation matches the internal representation, but
on some platforms the external representation of \n is made up of more than one character.

All variants of Unix, Mac OS (old and new), and Stream_LF files on VMS use a single character to end
each line in the external representation of text (even though that single character is CARRIAGE

RETURN on old, pre-Darwin flavors of Mac OS, and is LINE FEED on Unix and most VMS files). In
other systems like OS/2, DOS, and the various flavors of MS-Windows, your program sees a \n as a
simple \cJ, but what’s stored in text files are the two characters \cM\cJ. That means that if you
don’t use binmode on these systems, \cM\cJ sequences on disk will be converted to \n on input,
and any \n in your program will be converted back to \cM\cJ on output. This is what you want for
text files, but it can be disastrous for binary files.

Another consequence of using binmode (on some systems) is that special end-of-file markers will be
seen as part of the data stream. For systems from the Microsoft family this means that, if your binary
data contain \cZ, the I/O subsystem will regard it as the end of the file, unless you use binmode.

binmode is important not only for readline and print operations, but also when using read,
seek, sysread, syswrite and tell (see perlport for more details). See the $/ and $\ variables
in perlvar for how to manually set your input and output line-termination sequences.

Portability issues: ‘‘binmode’’ in perlport.

108 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

bless REF,CLASSNAME

bless REF

This function tells the thingy referenced by REF that it is now an object in the CLASSNAME package.
If CLASSNAME is omitted, the current package is used. Because a bless is often the last thing in a
constructor, it returns the reference for convenience. Always use the two-argument version if a
derived class might inherit the method doing the blessing. See perlobj for more about the blessing
(and blessings) of objects.

Consider always blessing objects in CLASSNAMEs that are mixed case. Namespaces with all
lowercase names are considered reserved for Perl pragmas. Builtin types have all uppercase names.
To prevent confusion, you may wish to avoid such package names as well. Make sure that
CLASSNAME is a true value.

See ‘‘Perl Modules’’ in perlmod.

break
Break out of a given block.

break is available only if the "switch" feature is enabled or if it is prefixed with CORE::. The
"switch" feature is enabled automatically with a use v5.10 (or higher) declaration in the current
scope.

caller EXPR

caller
Returns the context of the current pure perl subroutine call. In scalar context, returns the caller’s
package name if there is a caller (that is, if we’re in a subroutine or eval or require) and the
undefined value otherwise. caller never returns XS subs and they are skipped. The next pure perl sub
will appear instead of the XS sub in caller’s return values. In list context, caller returns

0 1 2
my ($package, $filename, $line) = caller;

With EXPR, it returns some extra information that the debugger uses to print a stack trace. The value
of EXPR indicates how many call frames to go back before the current one.

0 1 2 3 4
my ($package, $filename, $line, $subroutine, $hasargs,

5 6 7 8 9 10
$wantarray, $evaltext, $is_require, $hints, $bitmask, $hinthash)

= caller($i);

Here, $subroutine is the function that the caller called (rather than the function containing the
caller). Note that $subroutine may be (eval) if the frame is not a subroutine call, but an eval.
In such a case additional elements $evaltext and $is_require are set: $is_require is true
if the frame is created by a require or use statement, $evaltext contains the text of the eval
EXPR statement. In particular, for an eval BLOCK statement, $subroutine is (eval), but
$evaltext is undefined. (Note also that each use statement creates a require frame inside an
eval EXPR frame.) $subroutine may also be (unknown) if this particular subroutine happens
to have been deleted from the symbol table. $hasargs is true if a new instance of @_ was set up for
the frame. $hints and $bitmask contain pragmatic hints that the caller was compiled with.
$hints corresponds to $ˆH, and $bitmask corresponds to ${ˆWARNING_BITS}. The $hints
and $bitmask values are subject to change between versions of Perl, and are not meant for external
use.

$hinthash is a reference to a hash containing the value of %ˆH when the caller was compiled, or
undef if %ˆH was empty. Do not modify the values of this hash, as they are the actual values stored
in the optree.

Furthermore, when called from within the DB package in list context, and with an argument, caller
returns more detailed information: it sets the list variable @DB::args to be the arguments with which
the subroutine was invoked.

Be aware that the optimizer might have optimized call frames away before caller had a chance to
get the information. That means that caller(N) might not return information about the call frame

perl v5.26.1 2018-11-19 109

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

you expect it to, for N > 1. In particular, @DB::args might have information from the previous
time caller was called.

Be aware that setting @DB::args is best effort, intended for debugging or generating backtraces, and
should not be relied upon. In particular, as @_ contains aliases to the caller’s arguments, Perl does not
take a copy of @_, so @DB::args will contain modifications the subroutine makes to @_ or its
contents, not the original values at call time. @DB::args, like @_, does not hold explicit references
to its elements, so under certain cases its elements may have become freed and reallocated for other
variables or temporary values. Finally, a side effect of the current implementation is that the effects of
shift @_ can normally be undone (but not pop @_ or other splicing, and not if a reference to @_
has been taken, and subject to the caveat about reallocated elements), so @DB::args is actually a
hybrid of the current state and initial state of @_. Buyer beware.

chdir EXPR

chdir FILEHANDLE

chdir DIRHANDLE

chdir
Changes the working directory to EXPR, if possible. If EXPR is omitted, changes to the directory
specified by $ENV{HOME}, if set; if not, changes to the directory specified by $ENV{LOGDIR}.
(Under VMS, the variable $ENV{'SYS$LOGIN'} is also checked, and used if it is set.) If neither is
set, chdir does nothing and fails. It returns true on success, false otherwise. See the example under
die.

On systems that support fchdir (2), you may pass a filehandle or directory handle as the argument. On
systems that don’t support fchdir (2), passing handles raises an exception.

chmod LIST

Changes the permissions of a list of files. The first element of the list must be the numeric mode,
which should probably be an octal number, and which definitely should not be a string of octal digits:
0644 is okay, but "0644" is not. Returns the number of files successfully changed. See also oct if
all you have is a string.

my $cnt = chmod 0755, "foo", "bar";
chmod 0755, @executables;
my $mode = "0644"; chmod $mode, "foo"; # !!! sets mode to

−−w−−−−r−T
my $mode = "0644"; chmod oct($mode), "foo"; # this is better
my $mode = 0644; chmod $mode, "foo"; # this is best

On systems that support fchmod (2), you may pass filehandles among the files. On systems that don’t
support fchmod (2), passing filehandles raises an exception. Filehandles must be passed as globs or
glob references to be recognized; barewords are considered filenames.

open(my $fh, "<", "foo");
my $perm = (stat $fh)[2] & 07777;
chmod($perm | 0600, $fh);

You can also import the symbolic S_I* constants from the Fcntl module:

use Fcntl qw(:mode);
chmod S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH, @executables;
Identical to the chmod 0755 of the example above.

Portability issues: ‘‘chmod’’ in perlport.

chomp VARIABLE

chomp(LIST)
chomp

This safer version of chop removes any trailing string that corresponds to the current value of $/
(also known as $INPUT_RECORD_SEPARATOR in the English module). It returns the total
number of characters removed from all its arguments. It’s often used to remove the newline from the
end of an input record when you’re worried that the final record may be missing its newline. When in
paragraph mode ($/ = ''), it removes all trailing newlines from the string. When in slurp mode
($/ = undef) or fixed-length record mode ($/ is a reference to an integer or the like; see perlvar),

110 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

chomp won’t remove anything. If VARIABLE is omitted, it chomps $_. Example:

while (<>) {
chomp; # avoid \n on last field
my @array = split(/:/);
...

}

If VARIABLE is a hash, it chomps the hash’s values, but not its keys, resetting the each iterator in the
process.

You can actually chomp anything that’s an lvalue, including an assignment:

chomp(my $cwd = `pwd`);
chomp(my $answer = <STDIN>);

If you chomp a list, each element is chomped, and the total number of characters removed is returned.

Note that parentheses are necessary when you’re chomping anything that is not a simple variable.
This is because chomp $cwd = `pwd`; is interpreted as (chomp $cwd) = `pwd`;, rather
than as chomp($cwd = `pwd`) which you might expect. Similarly, chomp $a, $b is
interpreted as chomp($a), $b rather than as chomp($a, $b).

chop VARIABLE

chop(LIST)
chop

Chops off the last character of a string and returns the character chopped. It is much more efficient
than s/.$//s because it neither scans nor copies the string. If VARIABLE is omitted, chops $_. If
VARIABLE is a hash, it chops the hash’s values, but not its keys, resetting the each iterator in the
process.

You can actually chop anything that’s an lvalue, including an assignment.

If you chop a list, each element is chopped. Only the value of the last chop is returned.

Note that chop returns the last character. To return all but the last character, use
substr($string, 0, −1).

See also chomp.

chown LIST

Changes the owner (and group) of a list of files. The first two elements of the list must be the numeric
uid and gid, in that order. A value of −1 in either position is interpreted by most systems to leave that
value unchanged. Returns the number of files successfully changed.

my $cnt = chown $uid, $gid, 'foo', 'bar';
chown $uid, $gid, @filenames;

On systems that support fchown (2), you may pass filehandles among the files. On systems that don’t
support fchown (2), passing filehandles raises an exception. Filehandles must be passed as globs or
glob references to be recognized; barewords are considered filenames.

Here’s an example that looks up nonnumeric uids in the passwd file:

print "User: ";
chomp(my $user = <STDIN>);
print "Files: ";
chomp(my $pattern = <STDIN>);

my ($login,$pass,$uid,$gid) = getpwnam($user)
or die "$user not in passwd file";

my @ary = glob($pattern); # expand filenames
chown $uid, $gid, @ary;

On most systems, you are not allowed to change the ownership of the file unless you’re the superuser,
although you should be able to change the group to any of your secondary groups. On insecure

perl v5.26.1 2018-11-19 111

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

systems, these restrictions may be relaxed, but this is not a portable assumption. On POSIX systems,
you can detect this condition this way:

use POSIX qw(sysconf _PC_CHOWN_RESTRICTED);
my $can_chown_giveaway = ! sysconf(_PC_CHOWN_RESTRICTED);

Portability issues: ‘‘chown’’ in perlport.

chr NUMBER

chr Returns the character represented by that NUMBER in the character set. For example, chr(65) is
"A" in either ASCII or Unicode, and chr(0x263a) is a Unicode smiley face.

Negative values give the Unicode replacement character (chr (0xfffd)), except under the bytes pragma,
where the low eight bits of the value (truncated to an integer) are used.

If NUMBER is omitted, uses $_.

For the reverse, use ord.

Note that characters from 128 to 255 (inclusive) are by default internally not encoded as UTF−8 for
backward compatibility reasons.

See perlunicode for more about Unicode.

chroot FILENAME

chroot
This function works like the system call by the same name: it makes the named directory the new root
directory for all further pathnames that begin with a / by your process and all its children. (It doesn’t
change your current working directory, which is unaffected.) For security reasons, this call is
restricted to the superuser. If FILENAME is omitted, does a chroot to $_.

NOTE: It is good security practice to do chdir("/") (chdir to the root directory) immediately
after a chroot.

Portability issues: ‘‘chroot’’ in perlport.

close FILEHANDLE

close
Closes the file or pipe associated with the filehandle, flushes the IO buffers, and closes the system file
descriptor. Returns true if those operations succeed and if no error was reported by any PerlIO layer.
Closes the currently selected filehandle if the argument is omitted.

You don’t hav e to close FILEHANDLE if you are immediately going to do another open on it, because
open closes it for you. (See open.) However, an explicit close on an input file resets the line
counter ($.), while the implicit close done by open does not.

If the filehandle came from a piped open, close returns false if one of the other syscalls involved
fails or if its program exits with non-zero status. If the only problem was that the program exited non-
zero, $! will be set to 0. Closing a pipe also waits for the process executing on the pipe to exit — in
case you wish to look at the output of the pipe afterwards — and implicitly puts the exit status value of
that command into $? and ${ˆCHILD_ERROR_NATIVE}.

If there are multiple threads running, close on a filehandle from a piped open returns true without
waiting for the child process to terminate, if the filehandle is still open in another thread.

Closing the read end of a pipe before the process writing to it at the other end is done writing results in
the writer receiving a SIGPIPE. If the other end can’t handle that, be sure to read all the data before
closing the pipe.

Example:

112 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

open(OUTPUT, '|sort >foo') # pipe to sort
or die "Can't start sort: $!";

#... # print stuff to output
close OUTPUT # wait for sort to finish

or warn $! ? "Error closing sort pipe: $!"
: "Exit status $? from sort";

open(INPUT, 'foo') # get sort's results
or die "Can't open 'foo' for input: $!";

FILEHANDLE may be an expression whose value can be used as an indirect filehandle, usually the real
filehandle name or an autovivified handle.

closedir DIRHANDLE

Closes a directory opened by opendir and returns the success of that system call.

connect SOCKET,NAME

Attempts to connect to a remote socket, just like connect (2). Returns true if it succeeded, false
otherwise. NAME should be a packed address of the appropriate type for the socket. See the examples
in ‘‘Sockets: Client/Server Communication’’ in perlipc.

continue BLOCK

continue
When followed by a BLOCK, continue is actually a flow control statement rather than a function. If
there is a continue BLOCK attached to a BLOCK (typically in a while or foreach), it is always
executed just before the conditional is about to be evaluated again, just like the third part of a for
loop in C. Thus it can be used to increment a loop variable, even when the loop has been continued
via the next statement (which is similar to the C continue statement).

last, next, or redo may appear within a continue block; last and redo behave as if they had
been executed within the main block. So will next, but since it will execute a continue block, it
may be more entertaining.

while (EXPR) {
redo always comes here
do_something;

} continue {
next always comes here
do_something_else;
then back the top to re−check EXPR

}
last always comes here

Omitting the continue section is equivalent to using an empty one, logically enough, so next goes
directly back to check the condition at the top of the loop.

When there is no BLOCK, continue is a function that falls through the current when or default
block instead of iterating a dynamically enclosing foreach or exiting a lexically enclosing given.
In Perl 5.14 and earlier, this form of continue was only available when the "switch" feature was
enabled. See feature and ‘‘Switch Statements’’ in perlsyn for more information.

cos EXPR

cos Returns the cosine of EXPR (expressed in radians). If EXPR is omitted, takes the cosine of $_.

For the inverse cosine operation, you may use the Math::Trig::acos function, or use this
relation:

sub acos { atan2(sqrt(1 − $_[0] * $_[0]), $_[0]) }

crypt PLAINTEXT,SALT

Creates a digest string exactly like the crypt (3) function in the C library (assuming that you actually
have a version there that has not been extirpated as a potential munition).

crypt is a one-way hash function. The PLAINTEXT and SALT are turned into a short string, called a
digest, which is returned. The same PLAINTEXT and SALT will always return the same string, but
there is no (known) way to get the original PLAINTEXT from the hash. Small changes in the
PLAINTEXT or SALT will result in large changes in the digest.

perl v5.26.1 2018-11-19 113

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

There is no decrypt function. This function isn’t all that useful for cryptography (for that, look for
Crypt modules on your nearby CPAN mirror) and the name ‘‘crypt’’ is a bit of a misnomer. Instead it
is primarily used to check if two pieces of text are the same without having to transmit or store the text
itself. An example is checking if a correct password is given. The digest of the password is stored,
not the password itself. The user types in a password that is crypt’d with the same salt as the stored
digest. If the two digests match, the password is correct.

When verifying an existing digest string you should use the digest as the salt (like crypt($plain,
$digest) eq $digest). The SALT used to create the digest is visible as part of the digest. This
ensures crypt will hash the new string with the same salt as the digest. This allows your code to
work with the standard crypt and with more exotic implementations. In other words, assume
nothing about the returned string itself nor about how many bytes of SALT may matter.

Traditionally the result is a string of 13 bytes: two first bytes of the salt, followed by 11 bytes from the
set [./0−9A−Za−z], and only the first eight bytes of PLAINTEXT mattered. But alternative hashing
schemes (like MD5), higher level security schemes (like C2), and implementations on non-Unix
platforms may produce different strings.

When choosing a new salt create a random two character string whose characters come from the set
[./0−9A−Za−z] (like join '', ('.', '/', 0..9, 'A'..'Z', 'a'..'z')[rand
64, rand 64]). This set of characters is just a recommendation; the characters allowed in the salt
depend solely on your system’s crypt library, and Perl can’t restrict what salts crypt accepts.

Here’s an example that makes sure that whoever runs this program knows their password:

my $pwd = (getpwuid($<))[1];

system "stty −echo";
print "Password: ";
chomp(my $word = <STDIN>);
print "\n";
system "stty echo";

if (crypt($word, $pwd) ne $pwd) {
die "Sorry...\n";

} else {
print "ok\n";

}

Of course, typing in your own password to whoever asks you for it is unwise.

The crypt function is unsuitable for hashing large quantities of data, not least of all because you
can’t get the information back. Look at the Digest module for more robust algorithms.

If using crypt on a Unicode string (which potentially has characters with codepoints above 255),
Perl tries to make sense of the situation by trying to downgrade (a copy of) the string back to an eight-
bit byte string before calling crypt (on that copy). If that works, good. If not, crypt dies with
Wide character in crypt.

Portability issues: ‘‘crypt’’ in perlport.

dbmclose HASH

[This function has been largely superseded by the untie function.]

Breaks the binding between a DBM file and a hash.

Portability issues: ‘‘dbmclose’’ in perlport.

dbmopen HASH,DBNAME,MASK

[This function has been largely superseded by the tie function.]

This binds a dbm (3), ndbm (3), sdbm (3), gdbm (3), or Berkeley DB file to a hash. HASH is the name
of the hash. (Unlike normal open, the first argument is not a filehandle, even though it looks like
one). DBNAME is the name of the database (without the .dir or .pag extension if any). If the database
does not exist, it is created with protection specified by MASK (as modified by the umask). To
prevent creation of the database if it doesn’t exist, you may specify a MODE of 0, and the function will

114 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

return a false value if it can’t find an existing database. If your system supports only the older DBM

functions, you may make only one dbmopen call in your program. In older versions of Perl, if your
system had neither DBM nor ndbm, calling dbmopen produced a fatal error; it now falls back to
sdbm (3).

If you don’t hav e write access to the DBM file, you can only read hash variables, not set them. If you
want to test whether you can write, either use file tests or try setting a dummy hash entry inside an
eval to trap the error.

Note that functions such as keys and values may return huge lists when used on large DBM files.
You may prefer to use the each function to iterate over large DBM files. Example:

print out history file offsets
dbmopen(%HIST,'/usr/lib/news/history',0666);
while (($key,$val) = each %HIST) {

print $key, ' = ', unpack('L',$val), "\n";
}
dbmclose(%HIST);

See also AnyDBM_File for a more general description of the pros and cons of the various dbm
approaches, as well as DB_File for a particularly rich implementation.

You can control which DBM library you use by loading that library before you call dbmopen:

use DB_File;
dbmopen(%NS_Hist, "$ENV{HOME}/.netscape/history.db")

or die "Can't open netscape history file: $!";

Portability issues: ‘‘dbmopen’’ in perlport.

defined EXPR

defined
Returns a Boolean value telling whether EXPR has a value other than the undefined value undef. If
EXPR is not present, $_ is checked.

Many operations return undef to indicate failure, end of file, system error, uninitialized variable, and
other exceptional conditions. This function allows you to distinguish undef from other values. (A
simple Boolean test will not distinguish among undef, zero, the empty string, and "0", which are all
equally false.) Note that since undef is a valid scalar, its presence doesn’t necessarily indicate an
exceptional condition: pop returns undef when its argument is an empty array, or when the element
to return happens to be undef.

You may also use defined(&func) to check whether subroutine func has ever been defined. The
return value is unaffected by any forward declarations of func. A subroutine that is not defined may
still be callable: its package may have an AUTOLOAD method that makes it spring into existence the
first time that it is called; see perlsub.

Use of defined on aggregates (hashes and arrays) is no longer supported. It used to report whether
memory for that aggregate had ever been allocated. You should instead use a simple test for size:

if (@an_array) { print "has array elements\n" }
if (%a_hash) { print "has hash members\n" }

When used on a hash element, it tells you whether the value is defined, not whether the key exists in
the hash. Use exists for the latter purpose.

Examples:

print if defined $switch{D};
print "$val\n" while defined($val = pop(@ary));
die "Can't readlink $sym: $!"

unless defined($value = readlink $sym);
sub foo { defined &$bar ? $bar−>(@_) : die "No bar"; }
$debugging = 0 unless defined $debugging;

Note: Many folks tend to overuse defined and are then surprised to discover that the number 0 and
"" (the zero-length string) are, in fact, defined values. For example, if you say

perl v5.26.1 2018-11-19 115

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

"ab" =˜ /a(.*)b/;

The pattern match succeeds and $1 is defined, although it matched ‘‘nothing’’. It didn’t really fail to
match anything. Rather, it matched something that happened to be zero characters long. This is all
very above-board and honest. When a function returns an undefined value, it’s an admission that it
couldn’t giv e you an honest answer. So you should use defined only when questioning the integrity
of what you’re trying to do. At other times, a simple comparison to 0 or "" is what you want.

See also undef, exists, ref.

delete EXPR

Given an expression that specifies an element or slice of a hash, delete deletes the specified
elements from that hash so that exists on that element no longer returns true. Setting a hash
element to the undefined value does not remove its key, but deleting it does; see exists.

In list context, returns the value or values deleted, or the last such element in scalar context. The
return list’s length always matches that of the argument list: deleting non-existent elements returns the
undefined value in their corresponding positions.

delete may also be used on arrays and array slices, but its behavior is less straightforward.
Although exists will return false for deleted entries, deleting array elements never changes indices
of existing values; use shift or splice for that. However, if any deleted elements fall at the end of
an array, the array’s size shrinks to the position of the highest element that still tests true for exists,
or to 0 if none do. In other words, an array won’t hav e trailing nonexistent elements after a delete.

WARNING: Calling delete on array values is strongly discouraged. The notion of deleting or
checking the existence of Perl array elements is not conceptually coherent, and can lead to surprising
behavior.

Deleting from %ENV modifies the environment. Deleting from a hash tied to a DBM file deletes the
entry from the DBM file. Deleting from a tied hash or array may not necessarily return anything; it
depends on the implementation of the tied package’s DELETE method, which may do whatever it
pleases.

The delete local EXPR construct localizes the deletion to the current block at run time. Until
the block exits, elements locally deleted temporarily no longer exist. See ‘‘Localized deletion of
elements of composite types’’ in perlsub.

my %hash = (foo => 11, bar => 22, baz => 33);
my $scalar = delete $hash{foo}; # $scalar is 11
$scalar = delete @hash{qw(foo bar)}; # $scalar is 22
my @array = delete @hash{qw(foo baz)}; # @array is (undef,33)

The following (inefficiently) deletes all the values of %HASH and @ARRAY:

foreach my $key (keys %HASH) {
delete $HASH{$key};

}

foreach my $index (0 .. $#ARRAY) {
delete $ARRAY[$index];

}

And so do these:

delete @HASH{keys %HASH};

delete @ARRAY[0 .. $#ARRAY];

But both are slower than assigning the empty list or undefining %HASH or @ARRAY, which is the
customary way to empty out an aggregate:

%HASH = (); # completely empty %HASH
undef %HASH; # forget %HASH ever existed

@ARRAY = (); # completely empty @ARRAY

116 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

undef @ARRAY; # forget @ARRAY ever existed

The EXPR can be arbitrarily complicated provided its final operation is an element or slice of an
aggregate:

delete $ref−>[$x][$y]{$key};
delete @{$ref−>[$x][$y]}{$key1, $key2, @morekeys};

delete $ref−>[$x][$y][$index];
delete @{$ref−>[$x][$y]}[$index1, $index2, @moreindices];

die LIST

die raises an exception. Inside an eval the error message is stuffed into $@ and the eval is
terminated with the undefined value. If the exception is outside of all enclosing evals, then the
uncaught exception prints LIST to STDERR and exits with a non-zero value. If you need to exit the
process with a specific exit code, see exit.

Equivalent examples:

die "Can't cd to spool: $!\n" unless chdir '/usr/spool/news';
chdir '/usr/spool/news' or die "Can't cd to spool: $!\n"

If the last element of LIST does not end in a newline, the current script line number and input line
number (if any) are also printed, and a newline is supplied. Note that the ‘‘input line number’’ (also
known as ‘‘chunk’’) is subject to whatever notion of ‘‘line’’ happens to be currently in effect, and is
also available as the special variable $.. See ‘‘$/’’ in perlvar and ‘‘$.’’ in perlvar.

Hint: sometimes appending ", stopped" to your message will cause it to make better sense when
the string "at foo line 123" is appended. Suppose you are running script ‘‘canasta’’.

die "/etc/games is no good";
die "/etc/games is no good, stopped";

produce, respectively

/etc/games is no good at canasta line 123.
/etc/games is no good, stopped at canasta line 123.

If the output is empty and $@ already contains a value (typically from a previous eval) that value is
reused after appending "\t...propagated". This is useful for propagating exceptions:

eval { ... };
die unless $@ =˜ /Expected exception/;

If the output is empty and $@ contains an object reference that has a PROPAGATE method, that
method will be called with additional file and line number parameters. The return value replaces the
value in $@; i.e., as if $@ = eval { $@−>PROPAGATE(__FILE_ _, __LINE_ _) }; were
called.

If $@ is empty, then the string "Died" is used.

If an uncaught exception results in interpreter exit, the exit code is determined from the values of $!
and $? with this pseudocode:

exit $! if $!; # errno
exit $? >> 8 if $? >> 8; # child exit status
exit 255; # last resort

As with exit, $? is set prior to unwinding the call stack; any DESTROY or END handlers can then
alter this value, and thus Perl’s exit code.

The intent is to squeeze as much possible information about the likely cause into the limited space of
the system exit code. However, as $! is the value of C’s errno, which can be set by any system call,
this means that the value of the exit code used by die can be non-predictable, so should not be relied
upon, other than to be non-zero.

You can also call die with a reference argument, and if this is trapped within an eval, $@ contains
that reference. This permits more elaborate exception handling using objects that maintain arbitrary

perl v5.26.1 2018-11-19 117

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

state about the exception. Such a scheme is sometimes preferable to matching particular string values
of $@ with regular expressions. Because $@ is a global variable and eval may be used within object
implementations, be careful that analyzing the error object doesn’t replace the reference in the global
variable. It’s easiest to make a local copy of the reference before any manipulations. Here’s an
example:

use Scalar::Util "blessed";

eval { ... ; die Some::Module::Exception−>new(FOO => "bar") };
if (my $ev_err = $@) {

if (blessed($ev_err)
&& $ev_err−>isa("Some::Module::Exception")) {
handle Some::Module::Exception

}
else {

handle all other possible exceptions
}

}

Because Perl stringifies uncaught exception messages before display, you’ll probably want to overload
stringification operations on exception objects. See overload for details about that.

You can arrange for a callback to be run just before the die does its deed, by setting the
$SIG{_ _DIE_ _} hook. The associated handler is called with the error text and can change the
error message, if it sees fit, by calling die again. See ‘‘%SIG’’ in perlvar for details on setting %SIG
entries, and eval for some examples. Although this feature was to be run only right before your
program was to exit, this is not currently so: the $SIG{_ _DIE_ _} hook is currently called even
inside evaled blocks/strings! If one wants the hook to do nothing in such situations, put

die @_ if $ˆS;

as the first line of the handler (see ‘‘$ˆS’’ in perlvar). Because this promotes strange action at a
distance, this counterintuitive behavior may be fixed in a future release.

See also exit, warn, and the Carp module.

do BLOCK

Not really a function. Returns the value of the last command in the sequence of commands indicated
by BLOCK. When modified by the while or until loop modifier, executes the BLOCK once before
testing the loop condition. (On other statements the loop modifiers test the conditional first.)

do BLOCK does not count as a loop, so the loop control statements next, last, or redo cannot be
used to leave or restart the block. See perlsyn for alternative strategies.

do EXPR

Uses the value of EXPR as a filename and executes the contents of the file as a Perl script:

load the exact specified file (./ and ../ special−cased)
do '/foo/stat.pl';
do './stat.pl';
do '../foo/stat.pl';

search for the named file within @INC
do 'stat.pl';
do 'foo/stat.pl';

do './stat.pl' is largely like

eval `cat stat.pl`;

except that it’s more concise, runs no external processes, and keeps track of the current filename for
error messages. It also differs in that code evaluated with do FILE cannot see lexicals in the
enclosing scope; eval STRING does. It’s the same, however, in that it does reparse the file every
time you call it, so you probably don’t want to do this inside a loop.

Using do with a relative path (except for ./ and ../), like

118 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

do 'foo/stat.pl';

will search the @INC directories, and update %INC if the file is found. See ‘‘@INC’’ in perlvar and
‘‘%INC’’ in perlvar for these variables. In particular, note that whilst historically @INC contained ’.’
(the current directory) making these two cases equivalent, that is no longer necessarily the case, as ’.’
is not included in @INC by default in perl versions 5.26.0 onwards. Instead, perl will now warn:

do "stat.pl" failed, '.' is no longer in @INC;
did you mean do "./stat.pl"?

If do can read the file but cannot compile it, it returns undef and sets an error message in $@. If do
cannot read the file, it returns undef and sets $! to the error. Always check $@ first, as compilation
could fail in a way that also sets $!. If the file is successfully compiled, do returns the value of the
last expression evaluated.

Inclusion of library modules is better done with the use and require operators, which also do
automatic error checking and raise an exception if there’s a problem.

You might like to use do to read in a program configuration file. Manual error checking can be done
this way:

Read in config files: system first, then user.
Beware of using relative pathnames here.
for $file ("/share/prog/defaults.rc",

"$ENV{HOME}/.someprogrc")
{

unless ($return = do $file) {
warn "couldn't parse $file: $@" if $@;
warn "couldn't do $file: $!" unless defined $return;
warn "couldn't run $file" unless $return;

}
}

dump LABEL

dump EXPR

dump
This function causes an immediate core dump. See also the −u command-line switch in perlrun,
which does the same thing. Primarily this is so that you can use the undump program (not supplied)
to turn your core dump into an executable binary after having initialized all your variables at the
beginning of the program. When the new binary is executed it will begin by executing a goto
LABEL (with all the restrictions that goto suffers). Think of it as a goto with an intervening core
dump and reincarnation. If LABEL is omitted, restarts the program from the top. The dump EXPR
form, available starting in Perl 5.18.0, allows a name to be computed at run time, being otherwise
identical to dump LABEL.

WARNING: Any files opened at the time of the dump will not be open any more when the program is
reincarnated, with possible resulting confusion by Perl.

This function is now largely obsolete, mostly because it’s very hard to convert a core file into an
executable. That’s why you should now inv oke it as CORE::dump() if you don’t want to be warned
against a possible typo.

Unlike most named operators, this has the same precedence as assignment. It is also exempt from the
looks-like-a-function rule, so dump ("foo")."bar" will cause ‘‘bar’’ to be part of the argument
to dump.

Portability issues: ‘‘dump’’ in perlport.

each HASH

each ARRAY

When called on a hash in list context, returns a 2−element list consisting of the key and value for the
next element of a hash. In Perl 5.12 and later only, it will also return the index and value for the next
element of an array so that you can iterate over it; older Perls consider this a syntax error. When
called in scalar context, returns only the key (not the value) in a hash, or the index in an array.

perl v5.26.1 2018-11-19 119

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Hash entries are returned in an apparently random order. The actual random order is specific to a
given hash; the exact same series of operations on two hashes may result in a different order for each
hash. Any insertion into the hash may change the order, as will any deletion, with the exception that
the most recent key returned by each or keys may be deleted without changing the order. So long
as a given hash is unmodified you may rely on keys, values and each to repeatedly return the
same order as each other. See ‘‘Algorithmic Complexity Attacks’’ in perlsec for details on why hash
order is randomized. Aside from the guarantees provided here the exact details of Perl’s hash
algorithm and the hash traversal order are subject to change in any release of Perl.

After each has returned all entries from the hash or array, the next call to each returns the empty list
in list context and undef in scalar context; the next call following that one restarts iteration. Each
hash or array has its own internal iterator, accessed by each, keys, and values. The iterator is
implicitly reset when each has reached the end as just described; it can be explicitly reset by calling
keys or values on the hash or array. If you add or delete a hash’s elements while iterating over it,
the effect on the iterator is unspecified; for example, entries may be skipped or duplicated — so don’t
do that. Exception: It is always safe to delete the item most recently returned by each, so the
following code works properly:

while (my ($key, $value) = each %hash) {
print $key, "\n";
delete $hash{$key}; # This is safe

}

Tied hashes may have a different ordering behaviour to perl’s hash implementation.

This prints out your environment like the printenv (1) program, but in a different order:

while (my ($key,$value) = each %ENV) {
print "$key=$value\n";

}

Starting with Perl 5.14, an experimental feature allowed each to take a scalar expression. This
experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

As of Perl 5.18 you can use a bare each in a while loop, which will set $_ on every iteration.

while (each %ENV) {
print "$_=$ENV{$_}\n";

}

To avoid confusing would-be users of your code who are running earlier versions of Perl with
mysterious syntax errors, put this sort of thing at the top of your file to signal that your code will work
only on Perls of a recent vintage:

use 5.012; # so keys/values/each work on arrays
use 5.018; # so each assigns to $_ in a lone while test

See also keys, values, and sort.

eof FILEHANDLE

eof ()
eof Returns 1 if the next read on FILEHANDLE will return end of file or if FILEHANDLE is not open.

FILEHANDLE may be an expression whose value gives the real filehandle. (Note that this function
actually reads a character and then ungetcs it, so isn’t useful in an interactive context.) Do not read
from a terminal file (or call eof(FILEHANDLE) on it) after end-of-file is reached. File types such as
terminals may lose the end-of-file condition if you do.

An eof without an argument uses the last file read. Using eof() with empty parentheses is
different. It refers to the pseudo file formed from the files listed on the command line and accessed via
the <> operator. Since <> isn’t explicitly opened, as a normal filehandle is, an eof() before <> has
been used will cause @ARGV to be examined to determine if input is available. Similarly, an eof()
after <> has returned end-of-file will assume you are processing another @ARGV list, and if you
haven’t set @ARGV, will read input from STDIN; see ‘‘I/O Operators’’ in perlop.

In a while (<>) loop, eof or eof(ARGV) can be used to detect the end of each file, whereas
eof() will detect the end of the very last file only. Examples:

120 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

reset line numbering on each input file
while (<>) {

next if /ˆ\s*#/; # skip comments
print "$.\t$_";

} continue {
close ARGV if eof; # Not eof()!

}

insert dashes just before last line of last file
while (<>) {

if (eof()) { # check for end of last file
print "−−−−−−−−−−−−−−\n";

}
print;
last if eof(); # needed if we're reading from a terminal

}

Practical hint: you almost never need to use eof in Perl, because the input operators typically return
undef when they run out of data or encounter an error.

eval EXPR

eval BLOCK

eval
eval in all its forms is used to execute a little Perl program, trapping any errors encountered so they
don’t crash the calling program.

Plain eval with no argument is just eval EXPR, where the expression is understood to be contained
in $_. Thus there are only two real eval forms; the one with an EXPR is often called ‘‘string eval’’.
In a string eval, the value of the expression (which is itself determined within scalar context) is first
parsed, and if there were no errors, executed as a block within the lexical context of the current Perl
program. This form is typically used to delay parsing and subsequent execution of the text of EXPR

until run time. Note that the value is parsed every time the eval executes.

The other form is called ‘‘block eval’’. It is less general than string eval, but the code within the
BLOCK is parsed only once (at the same time the code surrounding the eval itself was parsed) and
executed within the context of the current Perl program. This form is typically used to trap exceptions
more efficiently than the first, while also providing the benefit of checking the code within BLOCK at
compile time. BLOCK is parsed and compiled just once. Since errors are trapped, it often is used to
check if a given feature is available.

In both forms, the value returned is the value of the last expression evaluated inside the mini-program;
a return statement may also be used, just as with subroutines. The expression providing the return
value is evaluated in void, scalar, or list context, depending on the context of the eval itself. See
wantarray for more on how the evaluation context can be determined.

If there is a syntax error or runtime error, or a die statement is executed, eval returns undef in
scalar context, or an empty list in list context, and $@ is set to the error message. (Prior to 5.16, a bug
caused undef to be returned in list context for syntax errors, but not for runtime errors.) If there was
no error, $@ is set to the empty string. A control flow operator like last or goto can bypass the
setting of $@. Bew are that using eval neither silences Perl from printing warnings to STDERR, nor
does it stuff the text of warning messages into $@. To do either of those, you have to use the
$SIG{_ _WARN_ _} facility, or turn off warnings inside the BLOCK or EXPR using
no warnings 'all'. See warn, perlvar, and warnings.

Note that, because eval traps otherwise-fatal errors, it is useful for determining whether a particular
feature (such as socket or symlink) is implemented. It is also Perl’s exception-trapping
mechanism, where the die operator is used to raise exceptions.

Before Perl 5.14, the assignment to $@ occurred before restoration of localized variables, which means
that for your code to run on older versions, a temporary is required if you want to mask some, but not
all errors:

perl v5.26.1 2018-11-19 121

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

alter $@ on nefarious repugnancy only
{

my $e;
{
local $@; # protect existing $@
eval { test_repugnancy() };
$@ =˜ /nefarious/ and die $@; # Perl 5.14 and higher only
$@ =˜ /nefarious/ and $e = $@;

}
die $e if defined $e

}

There are some different considerations for each form:

String eval
Since the return value of EXPR is executed as a block within the lexical context of the current Perl
program, any outer lexical variables are visible to it, and any package variable settings or
subroutine and format definitions remain afterwards.

Under the ‘‘unicode_eval’’ feature
If this feature is enabled (which is the default under a use 5.16 or higher declaration),
EXPR is considered to be in the same encoding as the surrounding program. Thus if
use utf8 is in effect, the string will be treated as being UTF−8 encoded. Otherwise, the
string is considered to be a sequence of independent bytes. Bytes that correspond to ASCII-
range code points will have their normal meanings for operators in the string. The treatment
of the other bytes depends on if the 'unicode_strings" feature is in effect.

In a plain eval without an EXPR argument, being in use utf8 or not is irrelevant; the
UTF−8ness of $_ itself determines the behavior.

Any use utf8 or no utf8 declarations within the string have no effect, and source
filters are forbidden. (unicode_strings, howev er, can appear within the string.) See
also the evalbytes operator, which works properly with source filters.

Variables defined outside the eval and used inside it retain their original UTF−8ness.
Everything inside the string follows the normal rules for a Perl program with the given state
of use utf8.

Outside the ‘‘unicode_eval’’ feature
In this case, the behavior is problematic and is not so easily described. Here are two bugs
that cannot easily be fixed without breaking existing programs:

• It can lose track of whether something should be encoded as UTF−8 or not.

• Source filters activated within eval leak out into whichever file scope is currently
being compiled. To giv e an example with the CPAN module Semi::Semicolons:

BEGIN { eval "use Semi::Semicolons; # not filtered" }
filtered here!

evalbytes fixes that to work the way one would expect:

use feature "evalbytes";
BEGIN { evalbytes "use Semi::Semicolons; # filtered" }
not filtered

Problems can arise if the string expands a scalar containing a floating point number. That scalar
can expand to letters, such as "NaN" or "Infinity"; or, within the scope of a use locale,
the decimal point character may be something other than a dot (such as a comma). None of these
are likely to parse as you are likely expecting.

You should be especially careful to remember what’s being looked at when:

eval $x; # CASE 1
eval "$x"; # CASE 2

eval '$x'; # CASE 3

122 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

eval { $x }; # CASE 4

eval "\$$x++"; # CASE 5
$$x++; # CASE 6

Cases 1 and 2 above behave identically: they run the code contained in the variable $x.
(Although case 2 has misleading double quotes making the reader wonder what else might be
happening (nothing is).) Cases 3 and 4 likewise behave in the same way: they run the code
'$x', which does nothing but return the value of $x. (Case 4 is preferred for purely visual
reasons, but it also has the advantage of compiling at compile-time instead of at run-time.) Case
5 is a place where normally you would like to use double quotes, except that in this particular
situation, you can just use symbolic references instead, as in case 6.

An eval '' executed within a subroutine defined in the DB package doesn’t see the usual
surrounding lexical scope, but rather the scope of the first non-DB piece of code that called it.
You don’t normally need to worry about this unless you are writing a Perl debugger.

The final semicolon, if any, may be omitted from the value of EXPR.

Block eval
If the code to be executed doesn’t vary, you may use the eval-BLOCK form to trap run-time
errors without incurring the penalty of recompiling each time. The error, if any, is still returned
in $@. Examples:

make divide−by−zero nonfatal
eval { $answer = $a / $b; }; warn $@ if $@;

same thing, but less efficient
eval '$answer = $a / $b'; warn $@ if $@;

a compile−time error
eval { $answer = }; # WRONG

a run−time error
eval '$answer ='; # sets $@

If you want to trap errors when loading an XS module, some problems with the binary interface
(such as Perl version skew) may be fatal even with eval unless $ENV{PERL_DL_NONLAZY}
is set. See perlrun.

Using the eval {} form as an exception trap in libraries does have some issues. Due to the
current arguably broken state of __DIE_ _ hooks, you may wish not to trigger any __DIE_ _
hooks that user code may have installed. You can use the local $SIG{__DIE_ _} construct
for this purpose, as this example shows:

a private exception trap for divide−by−zero
eval { local $SIG{'__DIE_ _'}; $answer = $a / $b; };
warn $@ if $@;

This is especially significant, given that __DIE_ _ hooks can call die again, which has the
effect of changing their error messages:

__DIE_ _ hooks may modify error messages
{

local $SIG{'__DIE_ _'} =
sub { (my $x = $_[0]) =˜ s/foo/bar/g; die $x };

eval { die "foo lives here" };
print $@ if $@; # prints "bar lives here"

}

Because this promotes action at a distance, this counterintuitive behavior may be fixed in a future
release.

eval BLOCK does not count as a loop, so the loop control statements next, last, or redo
cannot be used to leave or restart the block.

perl v5.26.1 2018-11-19 123

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

The final semicolon, if any, may be omitted from within the BLOCK.

evalbytes EXPR

evalbytes
This function is similar to a string eval, except it always parses its argument (or $_ if EXPR is omitted)
as a string of independent bytes.

If called when use utf8 is in effect, the string will be assumed to be encoded in UTF−8, and
evalbytes will make a temporary copy to work from, downgraded to non−UTF−8. If this is not
possible (because one or more characters in it require UTF−8), the evalbytes will fail with the error
stored in $@.

Bytes that correspond to ASCII-range code points will have their normal meanings for operators in the
string. The treatment of the other bytes depends on if the 'unicode_strings" feature is in effect.

Of course, variables that are UTF−8 and are referred to in the string retain that:

my $a = "\x{100}";
evalbytes 'print ord $a, "\n"';

prints

256

and $@ is empty.

Source filters activated within the evaluated code apply to the code itself.

evalbytes is available starting in Perl v5.16. To access it, you must say CORE::evalbytes, but
you can omit the CORE:: if the "evalbytes" feature is enabled. This is enabled automatically
with a use v5.16 (or higher) declaration in the current scope.

exec LIST

exec PROGRAM LIST

The exec function executes a system command and never returns; use system instead of exec if
you want it to return. It fails and returns false only if the command does not exist and it is executed
directly instead of via your system’s command shell (see below).

Since it’s a common mistake to use exec instead of system, Perl warns you if exec is called in
void context and if there is a following statement that isn’t die, warn, or exit (if warnings are
enabled — but you always do that, right?). If you really want to follow an exec with some other
statement, you can use one of these styles to avoid the warning:

exec ('foo') or print STDERR "couldn't exec foo: $!";
{ exec ('foo') }; print STDERR "couldn't exec foo: $!";

If there is more than one argument in LIST, this calls execvp (3) with the arguments in LIST. If there is
only one element in LIST, the argument is checked for shell metacharacters, and if there are any, the
entire argument is passed to the system’s command shell for parsing (this is /bin/sh −c on Unix
platforms, but varies on other platforms). If there are no shell metacharacters in the argument, it is
split into words and passed directly to execvp, which is more efficient. Examples:

exec '/bin/echo', 'Your arguments are: ', @ARGV;
exec "sort $outfile | uniq";

If you don’t really want to execute the first argument, but want to lie to the program you are executing
about its own name, you can specify the program you actually want to run as an ‘‘indirect object’’
(without a comma) in front of the LIST, as in exec PROGRAM LIST. (This always forces
interpretation of the LIST as a multivalued list, even if there is only a single scalar in the list.)
Example:

my $shell = '/bin/csh';
exec $shell '−sh'; # pretend it's a login shell

or, more directly,

exec {'/bin/csh'} '−sh'; # pretend it's a login shell

When the arguments get executed via the system shell, results are subject to its quirks and capabilities.

124 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

See ‘‘‘STRING‘’’ in perlop for details.

Using an indirect object with exec or system is also more secure. This usage (which also works
fine with system) forces interpretation of the arguments as a multivalued list, even if the list had just
one argument. That way you’re safe from the shell expanding wildcards or splitting up words with
whitespace in them.

my @args = ("echo surprise");

exec @args; # subject to shell escapes
if @args == 1

exec { $args[0] } @args; # safe even with one−arg list

The first version, the one without the indirect object, ran the echo program, passing it "surprise"
an argument. The second version didn’t; it tried to run a program named ‘‘echo surprise’’, didn’t find
it, and set $? to a non-zero value indicating failure.

On Windows, only the exec PROGRAM LIST indirect object syntax will reliably avoid using the
shell; exec LIST, even with more than one element, will fall back to the shell if the first spawn fails.

Perl attempts to flush all files opened for output before the exec, but this may not be supported on
some platforms (see perlport). To be safe, you may need to set $| ($AUTOFLUSH in English) or call
the autoflush method of IO::Handle on any open handles to avoid lost output.

Note that exec will not call your END blocks, nor will it invoke DESTROY methods on your objects.

Portability issues: ‘‘exec’’ in perlport.

exists EXPR

Given an expression that specifies an element of a hash, returns true if the specified element in the
hash has ever been initialized, even if the corresponding value is undefined.

print "Exists\n" if exists $hash{$key};
print "Defined\n" if defined $hash{$key};
print "True\n" if $hash{$key};

exists may also be called on array elements, but its behavior is much less obvious and is strongly tied
to the use of delete on arrays.

WARNING: Calling exists on array values is strongly discouraged. The notion of deleting or
checking the existence of Perl array elements is not conceptually coherent, and can lead to surprising
behavior.

print "Exists\n" if exists $array[$index];
print "Defined\n" if defined $array[$index];
print "True\n" if $array[$index];

A hash or array element can be true only if it’s defined and defined only if it exists, but the reverse
doesn’t necessarily hold true.

Given an expression that specifies the name of a subroutine, returns true if the specified subroutine has
ev er been declared, even if it is undefined. Mentioning a subroutine name for exists or defined does
not count as declaring it. Note that a subroutine that does not exist may still be callable: its package
may have an AUTOLOAD method that makes it spring into existence the first time that it is called; see
perlsub.

print "Exists\n" if exists &subroutine;
print "Defined\n" if defined &subroutine;

Note that the EXPR can be arbitrarily complicated as long as the final operation is a hash or array key
lookup or subroutine name:

if (exists $ref−>{A}−>{B}−>{$key}) { }
if (exists $hash{A}{B}{$key}) { }

if (exists $ref−>{A}−>{B}−>[$ix]) { }
if (exists $hash{A}{B}[$ix]) { }

perl v5.26.1 2018-11-19 125

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

if (exists &{$ref−>{A}{B}{$key}}) { }

Although the most deeply nested array or hash element will not spring into existence just because its
existence was tested, any intervening ones will. Thus $ref−>{"A"} and $ref−>{"A"}−>{"B"}
will spring into existence due to the existence test for the $key element above. This happens
anywhere the arrow operator is used, including even here:

undef $ref;
if (exists $ref−>{"Some key"}) { }
print $ref; # prints HASH(0x80d3d5c)

This surprising autovivification in what does not at first — or even second — glance appear to be an
lvalue context may be fixed in a future release.

Use of a subroutine call, rather than a subroutine name, as an argument to exists is an error.

exists ⊂ # OK
exists &sub(); # Error

exit EXPR

exit Evaluates EXPR and exits immediately with that value. Example:

my $ans = <STDIN>;
exit 0 if $ans =˜ /ˆ[Xx]/;

See also die. If EXPR is omitted, exits with 0 status. The only universally recognized values for
EXPR are 0 for success and 1 for error; other values are subject to interpretation depending on the
environment in which the Perl program is running. For example, exiting 69 (EX_UNAVAILABLE) from
a sendmail incoming-mail filter will cause the mailer to return the item undelivered, but that’s not true
ev erywhere.

Don’t use exit to abort a subroutine if there’s any chance that someone might want to trap whatever
error happened. Use die instead, which can be trapped by an eval.

The exit function does not always exit immediately. It calls any defined END routines first, but these
END routines may not themselves abort the exit. Likewise any object destructors that need to be called
are called before the real exit. END routines and destructors can change the exit status by modifying
$?. If this is a problem, you can call POSIX::_exit($status) to avoid END and destructor
processing. See perlmod for details.

Portability issues: ‘‘exit’’ in perlport.

exp EXPR

exp Returns e (the natural logarithm base) to the power of EXPR. If EXPR is omitted, gives exp($_).

fc EXPR

fc Returns the casefolded version of EXPR. This is the internal function implementing the \F escape in
double-quoted strings.

Casefolding is the process of mapping strings to a form where case differences are erased; comparing
two strings in their casefolded form is effectively a way of asking if two strings are equal, regardless of
case.

Roughly, if you ever found yourself writing this

lc($this) eq lc($that) # Wrong!
or

uc($this) eq uc($that) # Also wrong!
or

$this =˜ /ˆ\Q$that\E\z/i # Right!

Now you can write

fc($this) eq fc($that)

And get the correct results.

Perl only implements the full form of casefolding, but you can access the simple folds using

126 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

"casefold()" in Unicode::UCD and "prop_invmap()" in Unicode::UCD. For further information on
casefolding, refer to the Unicode Standard, specifically sections 3.13 Default Case
Operations, 4.2 Case−Normative, and 5.18 Case Mappings, available at
<http://www.unicode.org/versions/latest/>, as well as the Case Charts available at
<http://www.unicode.org/charts/case/>.

If EXPR is omitted, uses $_.

This function behaves the same way under various pragmas, such as within
"use feature 'unicode_strings", as lc does, with the single exception of fc of LATIN

CAPITAL LETTER SHARP S (U+1E9E) within the scope of use locale. The foldcase of this
character would normally be "ss", but as explained in the lc section, case changes that cross the
255/256 boundary are problematic under locales, and are hence prohibited. Therefore, this function
under locale returns instead the string "\x{17F}\x{17F}", which is the LATIN SMALL LETTER

LONG S. Since that character itself folds to "s", the string of two of them together should be
equivalent to a single U+1E9E when foldcased.

While the Unicode Standard defines two additional forms of casefolding, one for Turkic languages and
one that never maps one character into multiple characters, these are not provided by the Perl core.
However, the CPAN module Unicode::Casing may be used to provide an implementation.

fc is available only if the "fc" feature is enabled or if it is prefixed with CORE::. The "fc"
feature is enabled automatically with a use v5.16 (or higher) declaration in the current scope.

fcntl FILEHANDLE,FUNCTION,SCALAR

Implements the fcntl (2) function. You’ll probably have to say

use Fcntl;

first to get the correct constant definitions. Argument processing and value returned work just like
ioctl below. For example:

use Fcntl;
my $flags = fcntl($filehandle, F_GETFL, 0)

or die "Can't fcntl F_GETFL: $!";

You don’t hav e to check for defined on the return from fcntl. Like ioctl, it maps a 0 return
from the system call into "0 but true" in Perl. This string is true in boolean context and 0 in
numeric context. It is also exempt from the normal Argument "..." isn't numeric
warnings on improper numeric conversions.

Note that fcntl raises an exception if used on a machine that doesn’t implement fcntl (2). See the
Fcntl module or your fcntl (2) manpage to learn what functions are available on your system.

Here’s an example of setting a filehandle named $REMOTE to be non-blocking at the system level.
You’ll have to negotiate $| on your own, though.

use Fcntl qw(F_GETFL F_SETFL O_NONBLOCK);

my $flags = fcntl($REMOTE, F_GETFL, 0)
or die "Can't get flags for the socket: $!\n";

fcntl($REMOTE, F_SETFL, $flags | O_NONBLOCK)
or die "Can't set flags for the socket: $!\n";

Portability issues: ‘‘fcntl’’ in perlport.

_ _FILE_ _
A special token that returns the name of the file in which it occurs.

fileno FILEHANDLE

Returns the file descriptor for a filehandle, or undefined if the filehandle is not open. If there is no real
file descriptor at the OS level, as can happen with filehandles connected to memory objects via open
with a reference for the third argument, −1 is returned.

This is mainly useful for constructing bitmaps for select and low-level POSIX tty-handling
operations. If FILEHANDLE is an expression, the value is taken as an indirect filehandle, generally its

perl v5.26.1 2018-11-19 127

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

name.

You can use this to find out whether two handles refer to the same underlying descriptor:

if (fileno($this) != −1 && fileno($this) == fileno($that)) {
print "\$this and \$that are dups\n";

} elsif (fileno($this) != −1 && fileno($that) != −1) {
print "\$this and \$that have different " .

"underlying file descriptors\n";
} else {

print "At least one of \$this and \$that does " .
"not have a real file descriptor\n";

}

The behavior of fileno on a directory handle depends on the operating system. On a system with
dirfd (3) or similar, fileno on a directory handle returns the underlying file descriptor associated
with the handle; on systems with no such support, it returns the undefined value, and sets $! (errno).

flock FILEHANDLE,OPERATION

Calls flock (2), or an emulation of it, on FILEHANDLE. Returns true for success, false on failure.
Produces a fatal error if used on a machine that doesn’t implement flock (2), fcntl (2) locking, or
lockf (3). flock is Perl’s portable file-locking interface, although it locks entire files only, not
records.

Tw o potentially non-obvious but traditional flock semantics are that it waits indefinitely until the
lock is granted, and that its locks are merely advisory. Such discretionary locks are more flexible, but
offer fewer guarantees. This means that programs that do not also use flock may modify files
locked with flock. See perlport, your port’s specific documentation, and your system-specific local
manpages for details. It’s best to assume traditional behavior if you’re writing portable programs.
(But if you’re not, you should as always feel perfectly free to write for your own system’s
idiosyncrasies (sometimes called ‘‘features’’). Slavish adherence to portability concerns shouldn’t get
in the way of your getting your job done.)

OPERATION is one of LOCK_SH, LOCK_EX, or LOCK_UN, possibly combined with LOCK_NB. These
constants are traditionally valued 1, 2, 8 and 4, but you can use the symbolic names if you import them
from the Fcntl module, either individually, or as a group using the :flock tag. LOCK_SH requests a
shared lock, LOCK_EX requests an exclusive lock, and LOCK_UN releases a previously requested lock.
If LOCK_NB is bitwise-or’ed with LOCK_SH or LOCK_EX, then flock returns immediately rather
than blocking waiting for the lock; check the return status to see if you got it.

To avoid the possibility of miscoordination, Perl now flushes FILEHANDLE before locking or
unlocking it.

Note that the emulation built with lockf (3) doesn’t provide shared locks, and it requires that
FILEHANDLE be open with write intent. These are the semantics that lockf (3) implements. Most if
not all systems implement lockf (3) in terms of fcntl (2) locking, though, so the differing semantics
shouldn’t bite too many people.

Note that the fcntl (2) emulation of flock (3) requires that FILEHANDLE be open with read intent to use
LOCK_SH and requires that it be open with write intent to use LOCK_EX.

Note also that some versions of flock cannot lock things over the network; you would need to use
the more system-specific fcntl for that. If you like you can force Perl to ignore your system’s
flock (2) function, and so provide its own fcntl (2)−based emulation, by passing the switch
−Ud_flock to the Configure program when you configure and build a new Perl.

Here’s a mailbox appender for BSD systems.

import LOCK_* and SEEK_END constants
use Fcntl qw(:flock SEEK_END);

sub lock {
my ($fh) = @_;
flock($fh, LOCK_EX) or die "Cannot lock mailbox − $!\n";

128 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

and, in case someone appended while we were waiting...
seek($fh, 0, SEEK_END) or die "Cannot seek − $!\n";

}

sub unlock {
my ($fh) = @_;
flock($fh, LOCK_UN) or die "Cannot unlock mailbox − $!\n";

}

open(my $mbox, ">>", "/usr/spool/mail/$ENV{'USER'}")
or die "Can't open mailbox: $!";

lock($mbox);
print $mbox $msg,"\n\n";
unlock($mbox);

On systems that support a real flock (2), locks are inherited across fork calls, whereas those that must
resort to the more capricious fcntl (2) function lose their locks, making it seriously harder to write
servers.

See also DB_File for other flock examples.

Portability issues: ‘‘flock’’ in perlport.

fork
Does a fork (2) system call to create a new process running the same program at the same point. It
returns the child pid to the parent process, 0 to the child process, or undef if the fork is unsuccessful.
File descriptors (and sometimes locks on those descriptors) are shared, while everything else is copied.
On most systems supporting fork (2), great care has gone into making it extremely efficient (for
example, using copy-on-write technology on data pages), making it the dominant paradigm for
multitasking over the last few decades.

Perl attempts to flush all files opened for output before forking the child process, but this may not be
supported on some platforms (see perlport). To be safe, you may need to set $| ($AUTOFLUSH in
English) or call the autoflush method of IO::Handle on any open handles to avoid duplicate
output.

If you fork without ever waiting on your children, you will accumulate zombies. On some systems,
you can avoid this by setting $SIG{CHLD} to "IGNORE". See also perlipc for more examples of
forking and reaping moribund children.

Note that if your forked child inherits system file descriptors like STDIN and STDOUT that are actually
connected by a pipe or socket, even if you exit, then the remote server (such as, say, a CGI script or a
backgrounded job launched from a remote shell) won’t think you’re done. You should reopen those to
/dev/null if it’s any issue.

On some platforms such as Windows, where the fork (2) system call is not available, Perl can be built
to emulate fork in the Perl interpreter. The emulation is designed, at the level of the Perl program, to
be as compatible as possible with the ‘‘Unix’’ fork (2). However it has limitations that have to be
considered in code intended to be portable. See perlfork for more details.

Portability issues: ‘‘fork’’ in perlport.

format
Declare a picture format for use by the write function. For example:

format Something =
Test: @<<<<<<<< @||||| @>>>>>

$str, $%, '$' . int($num)
.

$str = "widget";
$num = $cost/$quantity;
$˜ = 'Something';

perl v5.26.1 2018-11-19 129

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

write;

See perlform for many details and examples.

formline PICTURE,LIST

This is an internal function used by formats, though you may call it, too. It formats (see perlform) a
list of values according to the contents of PICTURE, placing the output into the format output
accumulator, $ˆA (or $ACCUMULATOR in English). Eventually, when a write is done, the contents
of $ˆA are written to some filehandle. You could also read $ˆA and then set $ˆA back to "". Note
that a format typically does one formline per line of form, but the formline function itself
doesn’t care how many newlines are embedded in the PICTURE. This means that the ˜ and ˜˜ tokens
treat the entire PICTURE as a single line. You may therefore need to use multiple formlines to
implement a single record format, just like the format compiler.

Be careful if you put double quotes around the picture, because an @ character may be taken to mean
the beginning of an array name. formline always returns true. See perlform for other examples.

If you are trying to use this instead of write to capture the output, you may find it easier to open a
filehandle to a scalar (open my $fh, ">", \$output) and write to that instead.

getc FILEHANDLE

getc
Returns the next character from the input file attached to FILEHANDLE, or the undefined value at end
of file or if there was an error (in the latter case $! is set). If FILEHANDLE is omitted, reads from
STDIN. This is not particularly efficient. However, it cannot be used by itself to fetch single
characters without waiting for the user to hit enter. For that, try something more like:

if ($BSD_STYLE) {
system "stty cbreak </dev/tty >/dev/tty 2>&1";

}
else {

system "stty", '−icanon', 'eol', "\001";
}

my $key = getc(STDIN);

if ($BSD_STYLE) {
system "stty −cbreak </dev/tty >/dev/tty 2>&1";

}
else {

system 'stty', 'icanon', 'eol', 'ˆ@'; # ASCII NUL
}
print "\n";

Determination of whether $BSD_STYLE should be set is left as an exercise to the reader.

The POSIX::getattr function can do this more portably on systems purporting POSIX

compliance. See also the Term::ReadKey module on CPAN.

getlogin
This implements the C library function of the same name, which on most systems returns the current
login from /etc/utmp, if any. If it returns the empty string, use getpwuid.

my $login = getlogin || getpwuid($<) || "Kilroy";

Do not consider getlogin for authentication: it is not as secure as getpwuid.

Portability issues: ‘‘getlogin’’ in perlport.

getpeername SOCKET

Returns the packed sockaddr address of the other end of the SOCKET connection.

130 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

use Socket;
my $hersockaddr = getpeername($sock);
my ($port, $iaddr) = sockaddr_in($hersockaddr);
my $herhostname = gethostbyaddr($iaddr, AF_INET);
my $herstraddr = inet_ntoa($iaddr);

getpgrp PID

Returns the current process group for the specified PID. Use a PID of 0 to get the current process
group for the current process. Will raise an exception if used on a machine that doesn’t implement
getpgrp (2). If PID is omitted, returns the process group of the current process. Note that the POSIX

version of getpgrp does not accept a PID argument, so only PID==0 is truly portable.

Portability issues: ‘‘getpgrp’’ in perlport.

getppid
Returns the process id of the parent process.

Note for Linux users: Between v5.8.1 and v5.16.0 Perl would work around non-POSIX thread
semantics the minority of Linux systems (and Debian GNU/kFreeBSD systems) that used
LinuxThreads, this emulation has since been removed. See the documentation for $$ for details.

Portability issues: ‘‘getppid’’ in perlport.

getpriority WHICH,WHO

Returns the current priority for a process, a process group, or a user. (See getpriority (2).) Will raise a
fatal exception if used on a machine that doesn’t implement getpriority (2).

Portability issues: ‘‘getpriority’’ in perlport.

getpwnam NAME

getgrnam NAME

gethostbyname NAME

getnetbyname NAME

getprotobyname NAME

getpwuid UID

getgrgid GID

getservbyname NAME,PROT O

gethostbyaddr ADDR,ADDRTYPE

getnetbyaddr ADDR,ADDRTYPE

getprotobynumber NUMBER

getservbyport PORT,PROT O

getpwent
getgrent
gethostent
getnetent
getprotoent
getservent
setpwent
setgrent
sethostent STAY OPEN

setnetent STAY OPEN

setprotoent STAY OPEN

setservent STAY OPEN

endpwent
endgrent
endhostent
endnetent
endprotoent
endservent

These routines are the same as their counterparts in the system C library. In list context, the return
values from the various get routines are as follows:

perl v5.26.1 2018-11-19 131

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

0 1 2 3 4
my ($name, $passwd, $gid, $members) = getgr*
my ($name, $aliases, $addrtype, $net) = getnet*
my ($name, $aliases, $port, $proto) = getserv*
my ($name, $aliases, $proto) = getproto*
my ($name, $aliases, $addrtype, $length, @addrs) = gethost*
my ($name, $passwd, $uid, $gid, $quota,

$comment, $gcos, $dir, $shell, $expire) = getpw*
5 6 7 8 9

(If the entry doesn’t exist, the return value is a single meaningless true value.)

The exact meaning of the $gcos field varies but it usually contains the real name of the user (as
opposed to the login name) and other information pertaining to the user. Bew are, however, that in
many system users are able to change this information and therefore it cannot be trusted and therefore
the $gcos is tainted (see perlsec). The $passwd and $shell, user’s encrypted password and login
shell, are also tainted, for the same reason.

In scalar context, you get the name, unless the function was a lookup by name, in which case you get
the other thing, whatever it is. (If the entry doesn’t exist you get the undefined value.) For example:

my $uid = getpwnam($name);
my $name = getpwuid($num);
my $name = getpwent();
my $gid = getgrnam($name);
my $name = getgrgid($num);
my $name = getgrent();
etc.

In getpw*() the fields $quota, $comment, and $expire are special in that they are unsupported
on many systems. If the $quota is unsupported, it is an empty scalar. If it is supported, it usually
encodes the disk quota. If the $comment field is unsupported, it is an empty scalar. If it is supported
it usually encodes some administrative comment about the user. In some systems the $quota field
may be $change or $age, fields that have to do with password aging. In some systems the
$comment field may be $class. The $expire field, if present, encodes the expiration period of
the account or the password. For the availability and the exact meaning of these fields in your system,
please consult getpwnam (3) and your system’s pwd.h file. You can also find out from within Perl
what your $quota and $comment fields mean and whether you have the $expire field by using
the Config module and the values d_pwquota, d_pwage, d_pwchange, d_pwcomment, and
d_pwexpire. Shadow password files are supported only if your vendor has implemented them in
the intuitive fashion that calling the regular C library routines gets the shadow versions if you’re
running under privilege or if there exists the shadow (3) functions as found in System V (this includes
Solaris and Linux). Those systems that implement a proprietary shadow password facility are unlikely
to be supported.

The $members value returned by getgr*() is a space-separated list of the login names of the members
of the group.

For the gethost*() functions, if the h_errno variable is supported in C, it will be returned to you via
$? if the function call fails. The @addrs value returned by a successful call is a list of raw addresses
returned by the corresponding library call. In the Internet domain, each address is four bytes long; you
can unpack it by saying something like:

my ($w,$x,$y,$z) = unpack('W4',$addr[0]);

The Socket library makes this slightly easier:

use Socket;
my $iaddr = inet_aton("127.1"); # or whatever address
my $name = gethostbyaddr($iaddr, AF_INET);

or going the other way
my $straddr = inet_ntoa($iaddr);

132 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

In the opposite way, to resolve a hostname to the IP address you can write this:

use Socket;
my $packed_ip = gethostbyname("www.perl.org");
my $ip_address;
if (defined $packed_ip) {

$ip_address = inet_ntoa($packed_ip);
}

Make sure gethostbyname is called in SCALAR context and that its return value is checked for
definedness.

The getprotobynumber function, even though it only takes one argument, has the precedence of a
list operator, so bew are:

getprotobynumber $number eq 'icmp' # WRONG
getprotobynumber($number eq 'icmp') # actually means this
getprotobynumber($number) eq 'icmp' # better this way

If you get tired of remembering which element of the return list contains which return value, by-name
interfaces are provided in standard modules: File::stat, Net::hostent, Net::netent,
Net::protoent, Net::servent, Time::gmtime, Time::localtime, and
User::grent. These override the normal built-ins, supplying versions that return objects with the
appropriate names for each field. For example:

use File::stat;
use User::pwent;
my $is_his = (stat($filename)−>uid == pwent($whoever)−>uid);

Even though it looks as though they’re the same method calls (uid), they aren’t, because a
File::stat object is different from a User::pwent object.

Portability issues: ‘‘getpwnam’’ in perlport to ‘‘endservent’’ in perlport.

getsockname SOCKET

Returns the packed sockaddr address of this end of the SOCKET connection, in case you don’t know
the address because you have sev eral different IPs that the connection might have come in on.

use Socket;
my $mysockaddr = getsockname($sock);
my ($port, $myaddr) = sockaddr_in($mysockaddr);
printf "Connect to %s [%s]\n",

scalar gethostbyaddr($myaddr, AF_INET),
inet_ntoa($myaddr);

getsockopt SOCKET,LEVEL,OPTNAME

Queries the option named OPTNAME associated with SOCKET at a given LEVEL. Options may exist at
multiple protocol levels depending on the socket type, but at least the uppermost socket level
SOL_SOCKET (defined in the Socket module) will exist. To query options at another level the
protocol number of the appropriate protocol controlling the option should be supplied. For example,
to indicate that an option is to be interpreted by the TCP protocol, LEVEL should be set to the protocol
number of TCP, which you can get using getprotobyname.

The function returns a packed string representing the requested socket option, or undef on error, with
the reason for the error placed in $!. Just what is in the packed string depends on LEVEL and
OPTNAME; consult getsockopt (2) for details. A common case is that the option is an integer, in which
case the result is a packed integer, which you can decode using unpack with the i (or I) format.

Here’s an example to test whether Nagle’s algorithm is enabled on a socket:

use Socket qw(:all);

defined(my $tcp = getprotobyname("tcp"))
or die "Could not determine the protocol number for tcp";

my $tcp = IPPROTO_TCP; # Alternative
my $packed = getsockopt($socket, $tcp, TCP_NODELAY)

perl v5.26.1 2018-11-19 133

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

or die "getsockopt TCP_NODELAY: $!";
my $nodelay = unpack("I", $packed);
print "Nagle's algorithm is turned ",

$nodelay ? "off\n" : "on\n";

Portability issues: ‘‘getsockopt’’ in perlport.

glob EXPR

glob
In list context, returns a (possibly empty) list of filename expansions on the value of EXPR such as the
standard Unix shell /bin/csh would do. In scalar context, glob iterates through such filename
expansions, returning undef when the list is exhausted. This is the internal function implementing the
<*.c> operator, but you can use it directly. If EXPR is omitted, $_ is used. The <*.c> operator is
discussed in more detail in ‘‘I/O Operators’’ in perlop.

Note that glob splits its arguments on whitespace and treats each segment as separate pattern. As
such, glob("*.c *.h") matches all files with a .c or .h extension. The expression glob(".*
*") matches all files in the current working directory. If you want to glob filenames that might
contain whitespace, you’ll have to use extra quotes around the spacey filename to protect it. For
example, to glob filenames that have an e followed by a space followed by an f, use one of:

my @spacies = <"*e f*">;
my @spacies = glob '"*e f*"';
my @spacies = glob q("*e f*");

If you had to get a variable through, you could do this:

my @spacies = glob "'*${var}e f*'";
my @spacies = glob qq("*${var}e f*");

If non-empty braces are the only wildcard characters used in the glob, no filenames are matched, but
potentially many strings are returned. For example, this produces nine strings, one for each pairing of
fruits and colors:

my @many = glob "{apple,tomato,cherry}={green,yellow,red}";

This operator is implemented using the standard File::Glob extension. See File::Glob for details,
including bsd_glob, which does not treat whitespace as a pattern separator.

Portability issues: ‘‘glob’’ in perlport.

gmtime EXPR

gmtime
Works just like localtime but the returned values are localized for the standard Greenwich time
zone.

Note: When called in list context, $isdst, the last value returned by gmtime, is always 0. There is
no Daylight Saving Time in GMT.

Portability issues: ‘‘gmtime’’ in perlport.

goto LABEL

goto EXPR

goto &NAME
The goto LABEL form finds the statement labeled with LABEL and resumes execution there. It
can’t be used to get out of a block or subroutine given to sort. It can be used to go almost anywhere
else within the dynamic scope, including out of subroutines, but it’s usually better to use some other
construct such as last or die. The author of Perl has never felt the need to use this form of goto
(in Perl, that is; C is another matter). (The difference is that C does not offer named loops combined
with loop control. Perl does, and this replaces most structured uses of goto in other languages.)

The goto EXPR form expects to evaluate EXPR to a code reference or a label name. If it evaluates
to a code reference, it will be handled like goto &NAME, below. This is especially useful for
implementing tail recursion via goto __SUB_ _.

If the expression evaluates to a label name, its scope will be resolved dynamically. This allows for
computed gotos per FORTRAN, but isn’t necessarily recommended if you’re optimizing for

134 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

maintainability:

goto ("FOO", "BAR", "GLARCH")[$i];

As shown in this example, goto EXPR is exempt from the ‘‘looks like a function’’ rule. A pair of
parentheses following it does not (necessarily) delimit its argument. goto("NE")."XT" is
equivalent to goto NEXT. Also, unlike most named operators, this has the same precedence as
assignment.

Use of goto LABEL or goto EXPR to jump into a construct is deprecated and will issue a warning.
Even then, it may not be used to go into any construct that requires initialization, such as a subroutine
or a foreach loop. It also can’t be used to go into a construct that is optimized away.

The goto &NAME form is quite different from the other forms of goto. In fact, it isn’t a goto in the
normal sense at all, and doesn’t hav e the stigma associated with other gotos. Instead, it exits the
current subroutine (losing any changes set by local) and immediately calls in its place the named
subroutine using the current value of @_. This is used by AUTOLOAD subroutines that wish to load
another subroutine and then pretend that the other subroutine had been called in the first place (except
that any modifications to @_ in the current subroutine are propagated to the other subroutine.) After
the goto, not even caller will be able to tell that this routine was called first.

NAME needn’t be the name of a subroutine; it can be a scalar variable containing a code reference or a
block that evaluates to a code reference.

grep BLOCK LIST

grep EXPR,LIST

This is similar in spirit to, but not the same as, grep (1) and its relatives. In particular, it is not limited
to using regular expressions.

Evaluates the BLOCK or EXPR for each element of LIST (locally setting $_ to each element) and
returns the list value consisting of those elements for which the expression evaluated to true. In scalar
context, returns the number of times the expression was true.

my @foo = grep(!/ˆ#/, @bar); # weed out comments

or equivalently,

my @foo = grep {!/ˆ#/} @bar; # weed out comments

Note that $_ is an alias to the list value, so it can be used to modify the elements of the LIST. While
this is useful and supported, it can cause bizarre results if the elements of LIST are not variables.
Similarly, grep returns aliases into the original list, much as a for loop’s index variable aliases the list
elements. That is, modifying an element of a list returned by grep (for example, in a foreach, map
or another grep) actually modifies the element in the original list. This is usually something to be
avoided when writing clear code.

See also map for a list composed of the results of the BLOCK or EXPR.

hex EXPR

hex Interprets EXPR as a hex string and returns the corresponding numeric value. If EXPR is omitted, uses
$_.

print hex '0xAf'; # prints '175'
print hex 'aF'; # same
$valid_input =˜ /\A(?:0?[xX])?(?:_?[0−9a−fA−F])*\z/

A hex string consists of hex digits and an optional 0x or x prefix. Each hex digit may be preceded by
a single underscore, which will be ignored. Any other character triggers a warning and causes the rest
of the string to be ignored (even leading whitespace, unlike oct). Only integers can be represented,
and integer overflow triggers a warning.

To convert strings that might start with any of 0, 0x, or 0b, see oct. To present something as hex,
look into printf, sprintf, and unpack.

import LIST

There is no builtin import function. It is just an ordinary method (subroutine) defined (or inherited)
by modules that wish to export names to another module. The use function calls the import

perl v5.26.1 2018-11-19 135

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

method for the package used. See also use, perlmod, and Exporter.

index STR,SUBSTR,POSITION

index STR,SUBSTR

The index function searches for one string within another, but without the wildcard-like behavior of a
full regular-expression pattern match. It returns the position of the first occurrence of SUBSTR in STR

at or after POSITION. If POSITION is omitted, starts searching from the beginning of the string.
POSITION before the beginning of the string or after its end is treated as if it were the beginning or the
end, respectively. POSITION and the return value are based at zero. If the substring is not found,
index returns −1.

int EXPR

int Returns the integer portion of EXPR. If EXPR is omitted, uses $_. You should not use this function
for rounding: one because it truncates towards 0, and two because machine representations of floating-
point numbers can sometimes produce counterintuitive results. For example,
int(−6.725/0.025) produces −268 rather than the correct −269; that’s because it’s really more
like −268.99999999999994315658 instead. Usually, the sprintf, printf, or the
POSIX::floor and POSIX::ceil functions will serve you better than will int.

ioctl FILEHANDLE,FUNCTION,SCALAR

Implements the ioctl (2) function. You’ll probably first have to say

require "sys/ioctl.ph"; # probably in
$Config{archlib}/sys/ioctl.ph

to get the correct function definitions. If sys/ioctl.ph doesn’t exist or doesn’t hav e the correct
definitions you’ll have to roll your own, based on your C header files such as <sys/ioctl.h>. (There is
a Perl script called h2ph that comes with the Perl kit that may help you in this, but it’s nontrivial.)
SCALAR will be read and/or written depending on the FUNCTION; a C pointer to the string value of
SCALAR will be passed as the third argument of the actual ioctl call. (If SCALAR has no string
value but does have a numeric value, that value will be passed rather than a pointer to the string value.
To guarantee this to be true, add a 0 to the scalar before using it.) The pack and unpack functions
may be needed to manipulate the values of structures used by ioctl.

The return value of ioctl (and fcntl) is as follows:

if OS returns: then Perl returns:
−1 undefined value
0 string "0 but true"

anything else that number

Thus Perl returns true on success and false on failure, yet you can still easily determine the actual
value returned by the operating system:

my $retval = ioctl(...) || −1;
printf "System returned %d\n", $retval;

The special string "0 but true" is exempt from Argument "..." isn't numeric
warnings on improper numeric conversions.

Portability issues: ‘‘ioctl’’ in perlport.

join EXPR,LIST

Joins the separate strings of LIST into a single string with fields separated by the value of EXPR, and
returns that new string. Example:

my $rec = join(':', $login,$passwd,$uid,$gid,$gcos,$home,$shell);

Beware that unlike split, join doesn’t take a pattern as its first argument. Compare split.

keys HASH

keys ARRAY

Called in list context, returns a list consisting of all the keys of the named hash, or in Perl 5.12 or later
only, the indices of an array. Perl releases prior to 5.12 will produce a syntax error if you try to use an
array argument. In scalar context, returns the number of keys or indices.

Hash entries are returned in an apparently random order. The actual random order is specific to a

136 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

given hash; the exact same series of operations on two hashes may result in a different order for each
hash. Any insertion into the hash may change the order, as will any deletion, with the exception that
the most recent key returned by each or keys may be deleted without changing the order. So long
as a given hash is unmodified you may rely on keys, values and each to repeatedly return the
same order as each other. See ‘‘Algorithmic Complexity Attacks’’ in perlsec for details on why hash
order is randomized. Aside from the guarantees provided here the exact details of Perl’s hash
algorithm and the hash traversal order are subject to change in any release of Perl. Tied hashes may
behave differently to Perl’s hashes with respect to changes in order on insertion and deletion of items.

As a side effect, calling keys resets the internal iterator of the HASH or ARRAY (see each). In
particular, calling keys in void context resets the iterator with no other overhead.

Here is yet another way to print your environment:

my @keys = keys %ENV;
my @values = values %ENV;
while (@keys) {

print pop(@keys), '=', pop(@values), "\n";
}

or how about sorted by key:

foreach my $key (sort(keys %ENV)) {
print $key, '=', $ENV{$key}, "\n";

}

The returned values are copies of the original keys in the hash, so modifying them will not affect the
original hash. Compare values.

To sort a hash by value, you’ll need to use a sort function. Here’s a descending numeric sort of a
hash by its values:

foreach my $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {
printf "%4d %s\n", $hash{$key}, $key;

}

Used as an lvalue, keys allows you to increase the number of hash buckets allocated for the given
hash. This can gain you a measure of efficiency if you know the hash is going to get big. (This is
similar to pre-extending an array by assigning a larger number to $#array.) If you say

keys %hash = 200;

then %hash will have at least 200 buckets allocated for it−−256 of them, in fact, since it rounds up to
the next power of two. These buckets will be retained even if you do %hash = (), use undef
%hash if you want to free the storage while %hash is still in scope. You can’t shrink the number of
buckets allocated for the hash using keys in this way (but you needn’t worry about doing this by
accident, as trying has no effect). keys @array in an lvalue context is a syntax error.

Starting with Perl 5.14, an experimental feature allowed keys to take a scalar expression. This
experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

To avoid confusing would-be users of your code who are running earlier versions of Perl with
mysterious syntax errors, put this sort of thing at the top of your file to signal that your code will work
only on Perls of a recent vintage:

use 5.012; # so keys/values/each work on arrays

See also each, values, and sort.

kill SIGNAL, LIST

kill SIGNAL

Sends a signal to a list of processes. Returns the number of arguments that were successfully used to
signal (which is not necessarily the same as the number of processes actually killed, e.g. where a
process group is killed).

perl v5.26.1 2018-11-19 137

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

my $cnt = kill 'HUP', $child1, $child2;
kill 'KILL', @goners;

SIGNAL may be either a signal name (a string) or a signal number. A signal name may start with a
SIG prefix, thus FOO and SIGFOO refer to the same signal. The string form of SIGNAL is
recommended for portability because the same signal may have different numbers in different
operating systems.

A list of signal names supported by the current platform can be found in $Config{sig_name},
which is provided by the Config module. See Config for more details.

A neg ative signal name is the same as a negative signal number, killing process groups instead of
processes. For example, kill '−KILL', $pgrp and kill −9, $pgrp will send SIGKILL to
the entire process group specified. That means you usually want to use positive not negative signals.

If SIGNAL is either the number 0 or the string ZERO (or SIGZERO), no signal is sent to the process,
but kill checks whether it’s possible to send a signal to it (that means, to be brief, that the process is
owned by the same user, or we are the super-user). This is useful to check that a child process is still
alive (ev en if only as a zombie) and hasn’t changed its UID. See perlport for notes on the portability of
this construct.

The behavior of kill when a PROCESS number is zero or negative depends on the operating system.
For example, on POSIX-conforming systems, zero will signal the current process group, −1 will signal
all processes, and any other negative PROCESS number will act as a negative signal number and kill
the entire process group specified.

If both the SIGNAL and the PROCESS are negative, the results are undefined. A warning may be
produced in a future version.

See ‘‘Signals’’ in perlipc for more details.

On some platforms such as Windows where the fork (2) system call is not available, Perl can be built
to emulate fork at the interpreter level. This emulation has limitations related to kill that have to be
considered, for code running on Windows and in code intended to be portable.

See perlfork for more details.

If there is no LIST of processes, no signal is sent, and the return value is 0. This form is sometimes
used, however, because it causes tainting checks to be run. But see ‘‘Laundering and Detecting
Tainted Data’’ in perlsec.

Portability issues: ‘‘kill’’ in perlport.

last LABEL

last EXPR

last The last command is like the break statement in C (as used in loops); it immediately exits the loop
in question. If the LABEL is omitted, the command refers to the innermost enclosing loop. The last
EXPR form, available starting in Perl 5.18.0, allows a label name to be computed at run time, and is
otherwise identical to last LABEL. The continue block, if any, is not executed:

LINE: while (<STDIN>) {
last LINE if /ˆ$/; # exit when done with header
#...

}

last cannot be used to exit a block that returns a value such as eval {}, sub {}, or do {}, and
should not be used to exit a grep or map operation.

Note that a block by itself is semantically identical to a loop that executes once. Thus last can be
used to effect an early exit out of such a block.

See also continue for an illustration of how last, next, and redo work.

Unlike most named operators, this has the same precedence as assignment. It is also exempt from the
looks-like-a-function rule, so last ("foo")."bar" will cause ‘‘bar’’ to be part of the argument
to last.

138 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

lc EXPR

lc Returns a lowercased version of EXPR. This is the internal function implementing the \L escape in
double-quoted strings.

If EXPR is omitted, uses $_.

What gets returned depends on several factors:

If use bytes is in effect:
The results follow ASCII rules. Only the characters A−Z change, to a−z respectively.

Otherwise, if use locale for LC_CTYPE is in effect:
Respects current LC_CTYPE locale for code points < 256; and uses Unicode rules for the
remaining code points (this last can only happen if the UTF8 flag is also set). See perllocale.

Starting in v5.20, Perl uses full Unicode rules if the locale is UTF−8. Otherwise, there is a
deficiency in this scheme, which is that case changes that cross the 255/256 boundary are not
well-defined. For example, the lower case of LATIN CAPITAL LETTER SHARP S (U+1E9E) in
Unicode rules is U+00DF (on ASCII platforms). But under use locale (prior to v5.20 or not
a UTF−8 locale), the lower case of U+1E9E is itself, because 0xDF may not be LATIN SMALL

LETTER SHARP S in the current locale, and Perl has no way of knowing if that character even
exists in the locale, much less what code point it is. Perl returns a result that is above 255 (almost
always the input character unchanged), for all instances (and there aren’t many) where the
255/256 boundary would otherwise be crossed; and starting in v5.22, it raises a locale warning.

Otherwise, If EXPR has the UTF8 flag set:
Unicode rules are used for the case change.

Otherwise, if use feature 'unicode_strings' or use locale ':not_characters'
is in effect:

Unicode rules are used for the case change.

Otherwise:
ASCII rules are used for the case change. The lowercase of any character outside the ASCII range
is the character itself.

lcfirst EXPR

lcfirst
Returns the value of EXPR with the first character lowercased. This is the internal function
implementing the \l escape in double-quoted strings.

If EXPR is omitted, uses $_.

This function behaves the same way under various pragmas, such as in a locale, as lc does.

length EXPR

length
Returns the length in characters of the value of EXPR. If EXPR is omitted, returns the length of $_. If
EXPR is undefined, returns undef.

This function cannot be used on an entire array or hash to find out how many elements these have. For
that, use scalar @array and scalar keys %hash, respectively.

Like all Perl character operations, length normally deals in logical characters, not physical bytes.
For how many bytes a string encoded as UTF−8 would take up, use
length(Encode::encode('UTF−8', EXPR)) (you’ll have to use Encode first). See
Encode and perlunicode.

_ _LINE_ _
A special token that compiles to the current line number.

link OLDFILE,NEWFILE

Creates a new filename linked to the old filename. Returns true for success, false otherwise.

Portability issues: ‘‘link’’ in perlport.

listen SOCKET,QUEUESIZE

Does the same thing that the listen (2) system call does. Returns true if it succeeded, false otherwise.
See the example in ‘‘Sockets: Client/Server Communication’’ in perlipc.

perl v5.26.1 2018-11-19 139

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

local EXPR

You really probably want to be using my instead, because local isn’t what most people think of as
‘‘local’’. See ‘‘Private Variables via my()’’ in perlsub for details.

A local modifies the listed variables to be local to the enclosing block, file, or eval. If more than one
value is listed, the list must be placed in parentheses. See ‘‘Temporary Values via local()’’ in perlsub
for details, including issues with tied arrays and hashes.

The delete local EXPR construct can also be used to localize the deletion of array/hash
elements to the current block. See ‘‘Localized deletion of elements of composite types’’ in perlsub.

localtime EXPR

localtime
Converts a time as returned by the time function to a 9−element list with the time analyzed for the
local time zone. Typically used as follows:

0 1 2 3 4 5 6 7 8
my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =

localtime(time);

All list elements are numeric and come straight out of the C ‘struct tm’. $sec, $min, and $hour are
the seconds, minutes, and hours of the specified time.

$mday is the day of the month and $mon the month in the range 0..11, with 0 indicating January
and 11 indicating December. This makes it easy to get a month name from a list:

my @abbr = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);
print "$abbr[$mon] $mday";
$mon=9, $mday=18 gives "Oct 18"

$year contains the number of years since 1900. To get a 4−digit year write:

$year += 1900;

To get the last two digits of the year (e.g., ‘‘01’’ in 2001) do:

$year = sprintf("%02d", $year % 100);

$wday is the day of the week, with 0 indicating Sunday and 3 indicating Wednesday. $yday is the
day of the year, in the range 0..364 (or 0..365 in leap years.)

$isdst is true if the specified time occurs during Daylight Saving Time, false otherwise.

If EXPR is omitted, localtime uses the current time (as returned by time).

In scalar context, localtime returns the ctime (3) value:

my $now_string = localtime; # e.g., "Thu Oct 13 04:54:34 1994"

The format of this scalar value is not locale-dependent but built into Perl. For GMT instead of local
time use the gmtime builtin. See also the Time::Local module (for converting seconds, minutes,
hours, and such back to the integer value returned by time), and the POSIX module’s strftime and
mktime functions.

To get somewhat similar but locale-dependent date strings, set up your locale environment variables
appropriately (please see perllocale) and try for example:

use POSIX qw(strftime);
my $now_string = strftime "%a %b %e %H:%M:%S %Y", localtime;
or for GMT formatted appropriately for your locale:
my $now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;

Note that %a and %b, the short forms of the day of the week and the month of the year, may not
necessarily be three characters wide.

The Time::gmtime and Time::localtime modules provide a convenient, by-name access mechanism to
the gmtime and localtime functions, respectively.

For a comprehensive date and time representation look at the DateTime module on CPAN.

140 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Portability issues: ‘‘localtime’’ in perlport.

lock THING

This function places an advisory lock on a shared variable or referenced object contained in THING

until the lock goes out of scope.

The value returned is the scalar itself, if the argument is a scalar, or a reference, if the argument is a
hash, array or subroutine.

lock is a ‘‘weak keyword’’; this means that if you’ve defined a function by this name (before any
calls to it), that function will be called instead. If you are not under use threads::shared this
does nothing. See threads::shared.

log EXPR

log Returns the natural logarithm (base e) of EXPR. If EXPR is omitted, returns the log of $_. To get the
log of another base, use basic algebra: The base-N log of a number is equal to the natural log of that
number divided by the natural log of N. For example:

sub log10 {
my $n = shift;
return log($n)/log(10);

}

See also exp for the inverse operation.

lstat FILEHANDLE

lstat EXPR

lstat DIRHANDLE

lstat
Does the same thing as the stat function (including setting the special _ filehandle) but stats a
symbolic link instead of the file the symbolic link points to. If symbolic links are unimplemented on
your system, a normal stat is done. For much more detailed information, please see the
documentation for stat.

If EXPR is omitted, stats $_.

Portability issues: ‘‘lstat’’ in perlport.

m// The match operator. See ‘‘Regexp Quote-Like Operators’’ in perlop.

map BLOCK LIST

map EXPR,LIST

Evaluates the BLOCK or EXPR for each element of LIST (locally setting $_ to each element) and
returns the list value composed of the results of each such evaluation. In scalar context, returns the
total number of elements so generated. Evaluates BLOCK or EXPR in list context, so each element of
LIST may produce zero, one, or more elements in the returned value.

my @chars = map(chr, @numbers);

translates a list of numbers to the corresponding characters.

my @squares = map { $_ * $_ } @numbers;

translates a list of numbers to their squared values.

my @squares = map { $_ > 5 ? ($_ * $_) : () } @numbers;

shows that number of returned elements can differ from the number of input elements. To omit an
element, return an empty list (). This could also be achieved by writing

my @squares = map { $_ * $_ } grep { $_ > 5 } @numbers;

which makes the intention more clear.

Map always returns a list, which can be assigned to a hash such that the elements become key/value
pairs. See perldata for more details.

my %hash = map { get_a_key_for($_) => $_ } @array;

is just a funny way to write

perl v5.26.1 2018-11-19 141

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

my %hash;
foreach (@array) {

$hash{get_a_key_for($_)} = $_;
}

Note that $_ is an alias to the list value, so it can be used to modify the elements of the LIST. While
this is useful and supported, it can cause bizarre results if the elements of LIST are not variables.
Using a regular foreach loop for this purpose would be clearer in most cases. See also grep for a
list composed of those items of the original list for which the BLOCK or EXPR evaluates to true.

{ starts both hash references and blocks, so map { ... could be either the start of map BLOCK LIST

or map EXPR, LIST. Because Perl doesn’t look ahead for the closing } it has to take a guess at which
it’s dealing with based on what it finds just after the {. Usually it gets it right, but if it doesn’t it won’t
realize something is wrong until it gets to the } and encounters the missing (or unexpected) comma.
The syntax error will be reported close to the }, but you’ll need to change something near the { such
as using a unary + or semicolon to give Perl some help:

my %hash = map { "\L$_" => 1 } @array # perl guesses EXPR. wrong
my %hash = map { +"\L$_" => 1 } @array # perl guesses BLOCK. right
my %hash = map {; "\L$_" => 1 } @array # this also works
my %hash = map { ("\L$_" => 1) } @array # as does this
my %hash = map { lc($_) => 1 } @array # and this.
my %hash = map +(lc($_) => 1), @array # this is EXPR and works!

my %hash = map (lc($_), 1), @array # evaluates to (1, @array)

or to force an anon hash constructor use +{:

my @hashes = map +{ lc($_) => 1 }, @array # EXPR, so needs
comma at end

to get a list of anonymous hashes each with only one entry apiece.

mkdir FILENAME,MASK

mkdir FILENAME

mkdir
Creates the directory specified by FILENAME, with permissions specified by MASK (as modified by
umask). If it succeeds it returns true; otherwise it returns false and sets $! (errno). MASK defaults to
0777 if omitted, and FILENAME defaults to $_ if omitted.

In general, it is better to create directories with a permissive MASK and let the user modify that with
their umask than it is to supply a restrictive MASK and give the user no way to be more permissive.
The exceptions to this rule are when the file or directory should be kept private (mail files, for
instance). The documentation for umask discusses the choice of MASK in more detail.

Note that according to the POSIX 1003.1−1996 the FILENAME may have any number of trailing slashes.
Some operating and filesystems do not get this right, so Perl automatically removes all trailing slashes
to keep everyone happy.

To recursively create a directory structure, look at the make_path function of the File::Path module.

msgctl ID,CMD,ARG

Calls the System V IPC function msgctl (2). You’ll probably have to say

use IPC::SysV;

first to get the correct constant definitions. If CMD is IPC_STAT, then ARG must be a variable that
will hold the returned msqid_ds structure. Returns like ioctl: the undefined value for error, "0
but true" for zero, or the actual return value otherwise. See also ‘‘SysV IPC’’ in perlipc and the
documentation for IPC::SysV and IPC::Semaphore.

Portability issues: ‘‘msgctl’’ in perlport.

msgget KEY,FLAGS

Calls the System V IPC function msgget (2). Returns the message queue id, or undef on error. See
also ‘‘SysV IPC’’ in perlipc and the documentation for IPC::SysV and IPC::Msg.

142 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Portability issues: ‘‘msgget’’ in perlport.

msgrcv ID,VAR,SIZE,TYPE,FLAGS

Calls the System V IPC function msgrcv to receive a message from message queue ID into variable
VAR with a maximum message size of SIZE. Note that when a message is received, the message type
as a native long integer will be the first thing in VAR, followed by the actual message. This packing
may be opened with unpack("l! a*"). Taints the variable. Returns true if successful, false on
error. See also ‘‘SysV IPC’’ in perlipc and the documentation for IPC::SysV and IPC::Msg.

Portability issues: ‘‘msgrcv’’ in perlport.

msgsnd ID,MSG,FLAGS

Calls the System V IPC function msgsnd to send the message MSG to the message queue ID. MSG

must begin with the native long integer message type, be followed by the length of the actual message,
and then finally the message itself. This kind of packing can be achieved with pack("l! a*",
$type, $message). Returns true if successful, false on error. See also ‘‘SysV IPC’’ in perlipc
and the documentation for IPC::SysV and IPC::Msg.

Portability issues: ‘‘msgsnd’’ in perlport.

my VARLIST

my TYPE VARLIST

my VARLIST : ATTRS

my TYPE VARLIST : ATTRS

A my declares the listed variables to be local (lexically) to the enclosing block, file, or eval. If more
than one variable is listed, the list must be placed in parentheses.

The exact semantics and interface of TYPE and ATTRS are still evolving. TYPE may be a bareword, a
constant declared with use constant, or __PACKAGE_ _. It is currently bound to the use of the
fields pragma, and attributes are handled using the attributes pragma, or starting from Perl 5.8.0 also
via the Attribute::Handlers module. See ‘‘Private Variables via my()’’ in perlsub for details.

Note that with a parenthesised list, undef can be used as a dummy placeholder, for example to skip
assignment of initial values:

my (undef, $min, $hour) = localtime;

next LABEL

next EXPR

next
The next command is like the continue statement in C; it starts the next iteration of the loop:

LINE: while (<STDIN>) {
next LINE if /ˆ#/; # discard comments
#...

}

Note that if there were a continue block on the above, it would get executed even on discarded
lines. If LABEL is omitted, the command refers to the innermost enclosing loop. The next EXPR
form, available as of Perl 5.18.0, allows a label name to be computed at run time, being otherwise
identical to next LABEL.

next cannot be used to exit a block which returns a value such as eval {}, sub {}, or do {},
and should not be used to exit a grep or map operation.

Note that a block by itself is semantically identical to a loop that executes once. Thus next will exit
such a block early.

See also continue for an illustration of how last, next, and redo work.

Unlike most named operators, this has the same precedence as assignment. It is also exempt from the
looks-like-a-function rule, so next ("foo")."bar" will cause ‘‘bar’’ to be part of the argument
to next.

no MODULE VERSION LIST

perl v5.26.1 2018-11-19 143

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

no MODULE VERSION

no MODULE LIST

no MODULE

no VERSION

See the use function, of which no is the opposite.

oct EXPR

oct Interprets EXPR as an octal string and returns the corresponding value. (If EXPR happens to start off
with 0x, interprets it as a hex string. If EXPR starts off with 0b, it is interpreted as a binary string.
Leading whitespace is ignored in all three cases.) The following will handle decimal, binary, octal,
and hex in standard Perl notation:

$val = oct($val) if $val =˜ /ˆ0/;

If EXPR is omitted, uses $_. To go the other way (produce a number in octal), use sprintf or
printf:

my $dec_perms = (stat("filename"))[2] & 07777;
my $oct_perm_str = sprintf "%o", $perms;

The oct function is commonly used when a string such as 644 needs to be converted into a file
mode, for example. Although Perl automatically converts strings into numbers as needed, this
automatic conversion assumes base 10.

Leading white space is ignored without warning, as too are any trailing non-digits, such as a decimal
point (oct only handles non-negative integers, not negative integers or floating point).

open FILEHANDLE,EXPR

open FILEHANDLE,MODE,EXPR

open FILEHANDLE,MODE,EXPR,LIST

open FILEHANDLE,MODE,REFERENCE

open FILEHANDLE

Opens the file whose filename is given by EXPR, and associates it with FILEHANDLE.

Simple examples to open a file for reading:

open(my $fh, "<", "input.txt")
or die "Can't open < input.txt: $!";

and for writing:

open(my $fh, ">", "output.txt")
or die "Can't open > output.txt: $!";

(The following is a comprehensive reference to open: for a gentler introduction you may consider
perlopentut.)

If FILEHANDLE is an undefined scalar variable (or array or hash element), a new filehandle is
autovivified, meaning that the variable is assigned a reference to a newly allocated anonymous
filehandle. Otherwise if FILEHANDLE is an expression, its value is the real filehandle. (This is
considered a symbolic reference, so use strict "refs" should not be in effect.)

If three (or more) arguments are specified, the open mode (including optional encoding) in the second
argument are distinct from the filename in the third. If MODE is < or nothing, the file is opened for
input. If MODE is >, the file is opened for output, with existing files first being truncated
(‘‘clobbered’’) and nonexisting files newly created. If MODE is >>, the file is opened for appending,
again being created if necessary.

You can put a + in front of the > or < to indicate that you want both read and write access to the file;
thus +< is almost always preferred for read/write updates — the +> mode would clobber the file first.
You can’t usually use either read-write mode for updating textfiles, since they hav e variable-length
records. See the −i switch in perlrun for a better approach. The file is created with permissions of
0666 modified by the process’s umask value.

These various prefixes correspond to the fopen (3) modes of r, r+, w, w+, a, and a+.

In the one− and two-argument forms of the call, the mode and filename should be concatenated (in that

144 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

order), preferably separated by white space. You can — but shouldn’t — omit the mode in these forms
when that mode is <. It is safe to use the two-argument form of open if the filename argument is a
known literal.

For three or more arguments if MODE is |−, the filename is interpreted as a command to which output
is to be piped, and if MODE is −|, the filename is interpreted as a command that pipes output to us. In
the two-argument (and one-argument) form, one should replace dash (−) with the command. See
‘‘Using open() for IPC’’ in perlipc for more examples of this. (You are not allowed to open to a
command that pipes both in and out, but see IPC::Open2, IPC::Open3, and ‘‘Bidirectional
Communication with Another Process’’ in perlipc for alternatives.)

In the form of pipe opens taking three or more arguments, if LIST is specified (extra arguments after
the command name) then LIST becomes arguments to the command invoked if the platform supports
it. The meaning of open with more than three arguments for non-pipe modes is not yet defined, but
experimental ‘‘layers’’ may give extra LIST arguments meaning.

In the two-argument (and one-argument) form, opening <− or − opens STDIN and opening >− opens
STDOUT.

You may (and usually should) use the three-argument form of open to specify I/O layers (sometimes
referred to as ‘‘disciplines’’) to apply to the handle that affect how the input and output are processed
(see open and PerlIO for more details). For example:

open(my $fh, "<:encoding(UTF−8)", $filename)
|| die "Can't open UTF−8 encoded $filename: $!";

opens the UTF8−encoded file containing Unicode characters; see perluniintro. Note that if layers are
specified in the three-argument form, then default layers stored in ${ˆOPEN} (see perlvar; usually set
by the open pragma or the switch −CioD) are ignored. Those layers will also be ignored if you
specify a colon with no name following it. In that case the default layer for the operating system (:raw
on Unix, :crlf on Windows) is used.

Open returns nonzero on success, the undefined value otherwise. If the open involved a pipe, the
return value happens to be the pid of the subprocess.

On some systems (in general, DOS− and Windows-based systems) binmode is necessary when you’re
not working with a text file. For the sake of portability it is a good idea always to use it when
appropriate, and never to use it when it isn’t appropriate. Also, people can set their I/O to be by
default UTF8−encoded Unicode, not bytes.

When opening a file, it’s seldom a good idea to continue if the request failed, so open is frequently
used with die. Even if die won’t do what you want (say, in a CGI script, where you want to format a
suitable error message (but there are modules that can help with that problem)) always check the
return value from opening a file.

The filehandle will be closed when its reference count reaches zero. If it is a lexically scoped variable
declared with my, that usually means the end of the enclosing scope. However, this automatic close
does not check for errors, so it is better to explicitly close filehandles, especially those used for
writing:

close($handle)
|| warn "close failed: $!";

An older style is to use a bareword as the filehandle, as

open(FH, "<", "input.txt")
or die "Can't open < input.txt: $!";

Then you can use FH as the filehandle, in close FH and <FH> and so on. Note that it’s a global
variable, so this form is not recommended in new code.

As a shortcut a one-argument call takes the filename from the global scalar variable of the same name
as the filehandle:

$ARTICLE = 100;
open(ARTICLE) or die "Can't find article $ARTICLE: $!\n";

perl v5.26.1 2018-11-19 145

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Here $ARTICLE must be a global (package) scalar variable − not one declared with my or state.

As a special case the three-argument form with a read/write mode and the third argument being
undef:

open(my $tmp, "+>", undef) or die ...

opens a filehandle to a newly created empty anonymous temporary file. (This happens under any
mode, which makes +> the only useful and sensible mode to use.) You will need to seek to do the
reading.

Perl is built using PerlIO by default. Unless you’ve changed this (such as building Perl with
Configure −Uuseperlio), you can open filehandles directly to Perl scalars via:

open(my $fh, ">", \$variable) || ..

To (re)open STDOUT or STDERR as an in-memory file, close it first:

close STDOUT;
open(STDOUT, ">", \$variable)

or die "Can't open STDOUT: $!";

See perliol for detailed info on PerlIO.

General examples:

open(my $log, ">>", "/usr/spool/news/twitlog");
if the open fails, output is discarded

open(my $dbase, "+<", "dbase.mine") # open for update
or die "Can't open 'dbase.mine' for update: $!";

open(my $dbase, "+<dbase.mine") # ditto
or die "Can't open 'dbase.mine' for update: $!";

open(my $article_fh, "−|", "caesar <$article") # decrypt
article

or die "Can't start caesar: $!";

open(my $article_fh, "caesar <$article |") # ditto
or die "Can't start caesar: $!";

open(my $out_fh, "|−", "sort >Tmp$$") # $$ is our process id
or die "Can't start sort: $!";

in−memory files
open(my $memory, ">", \$var)

or die "Can't open memory file: $!";
print $memory "foo!\n"; # output will appear in $var

You may also, in the Bourne shell tradition, specify an EXPR beginning with >&, in which case the rest
of the string is interpreted as the name of a filehandle (or file descriptor, if numeric) to be duped (as in
dup (2)) and opened. You may use & after >, >>, <, +>, +>>, and +<. The mode you specify should
match the mode of the original filehandle. (Duping a filehandle does not take into account any
existing contents of IO buffers.) If you use the three-argument form, then you can pass either a
number, the name of a filehandle, or the normal ‘‘reference to a glob’’.

Here is a script that saves, redirects, and restores STDOUT and STDERR using various methods:

#!/usr/bin/perl
open(my $oldout, ">&STDOUT") or die "Can't dup STDOUT: $!";
open(OLDERR, ">&", *STDERR) or die "Can't dup STDERR: $!";

open(STDOUT, '>', "foo.out") or die "Can't redirect STDOUT: $!";
open(STDERR, ">&STDOUT") or die "Can't dup STDOUT: $!";

146 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

select STDERR; $| = 1; # make unbuffered
select STDOUT; $| = 1; # make unbuffered

print STDOUT "stdout 1\n"; # this works for
print STDERR "stderr 1\n"; # subprocesses too

open(STDOUT, ">&", $oldout) or die "Can't dup \$oldout: $!";
open(STDERR, ">&OLDERR") or die "Can't dup OLDERR: $!";

print STDOUT "stdout 2\n";
print STDERR "stderr 2\n";

If you specify '<&=X', where X is a file descriptor number or a filehandle, then Perl will do an
equivalent of C’s fdopen (3) of that file descriptor (and not call dup (2)); this is more parsimonious of
file descriptors. For example:

open for input, reusing the fileno of $fd
open(my $fh, "<&=", $fd)

or

open(my $fh, "<&=$fd")

or

open for append, using the fileno of $oldfh
open(my $fh, ">>&=", $oldfh)

Being parsimonious on filehandles is also useful (besides being parsimonious) for example when
something is dependent on file descriptors, like for example locking using flock. If you do just
open(my $A, ">>&", $B), the filehandle $A will not have the same file descriptor as $B, and
therefore flock($A) will not flock($B) nor vice versa. But with open(my $A, ">>&=",
$B), the filehandles will share the same underlying system file descriptor.

Note that under Perls older than 5.8.0, Perl uses the standard C library’s’ fdopen (3) to implement the
= functionality. On many Unix systems, fdopen (3) fails when file descriptors exceed a certain value,
typically 255. For Perls 5.8.0 and later, PerlIO is (most often) the default.

You can see whether your Perl was built with PerlIO by running perl −V:useperlio. If it says
'define', you have PerlIO; otherwise you don’t.

If you open a pipe on the command − (that is, specify either |− or −| with the one− or two-argument
forms of open), an implicit fork is done, so open returns twice: in the parent process it returns the
pid of the child process, and in the child process it returns (a defined) 0. Use defined($pid) or
// to determine whether the open was successful.

For example, use either

my $child_pid = open(my $from_kid, "−|") // die "Can't fork: $!";

or

my $child_pid = open(my $to_kid, "|−") // die "Can't fork: $!";

followed by

perl v5.26.1 2018-11-19 147

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

if ($child_pid) {
am the parent:
either write $to_kid or else read $from_kid
...
waitpid $child_pid, 0;

} else {
am the child; use STDIN/STDOUT normally
...
exit;

}

The filehandle behaves normally for the parent, but I/O to that filehandle is piped from/to the
STDOUT/STDIN of the child process. In the child process, the filehandle isn’t opened — I/O happens
from/to the new STDOUT/STDIN. Typically this is used like the normal piped open when you want to
exercise more control over just how the pipe command gets executed, such as when running setuid and
you don’t want to have to scan shell commands for metacharacters.

The following blocks are more or less equivalent:

open(my $fh, "|tr '[a−z]' '[A−Z]'");
open(my $fh, "|−", "tr '[a−z]' '[A−Z]'");
open(my $fh, "|−") || exec 'tr', '[a−z]', '[A−Z]';
open(my $fh, "|−", "tr", '[a−z]', '[A−Z]');

open(my $fh, "cat −n '$file'|");
open(my $fh, "−|", "cat −n '$file'");
open(my $fh, "−|") || exec "cat", "−n", $file;
open(my $fh, "−|", "cat", "−n", $file);

The last two examples in each block show the pipe as ‘‘list form’’, which is not yet supported on all
platforms. A good rule of thumb is that if your platform has a real fork (in other words, if your
platform is Unix, including Linux and MacOS X), you can use the list form. You would want to use
the list form of the pipe so you can pass literal arguments to the command without risk of the shell
interpreting any shell metacharacters in them. However, this also bars you from opening pipes to
commands that intentionally contain shell metacharacters, such as:

open(my $fh, "|cat −n | expand −4 | lpr")
|| die "Can't open pipeline to lpr: $!";

See ‘‘Safe Pipe Opens’’ in perlipc for more examples of this.

Perl will attempt to flush all files opened for output before any operation that may do a fork, but this
may not be supported on some platforms (see perlport). To be safe, you may need to set $|
($AUTOFLUSH in English) or call the autoflush method of IO::Handle on any open handles.

On systems that support a close-on-exec flag on files, the flag will be set for the newly opened file
descriptor as determined by the value of $ˆF. See ‘‘$ˆF’’ in perlvar.

Closing any piped filehandle causes the parent process to wait for the child to finish, then returns the
status value in $? and ${ˆCHILD_ERROR_NATIVE}.

The filename passed to the one− and two-argument forms of open will have leading and trailing
whitespace deleted and normal redirection characters honored. This property, known as ‘‘magic
open’’, can often be used to good effect. A user could specify a filename of ‘‘rsh cat file |’’, or you
could change certain filenames as needed:

$filename =˜ s/(.*\.gz)\s*$/gzip −dc < $1|/;
open(my $fh, $filename) or die "Can't open $filename: $!";

Use the three-argument form to open a file with arbitrary weird characters in it,

open(my $fh, "<", $file)
|| die "Can't open $file: $!";

otherwise it’s necessary to protect any leading and trailing whitespace:

148 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

$file =˜ s#ˆ(\s)#./$1#;
open(my $fh, "< $file\0")

|| die "Can't open $file: $!";

(this may not work on some bizarre filesystems). One should conscientiously choose between the
magic and three-argument form of open:

open(my $in, $ARGV[0]) || die "Can't open $ARGV[0]: $!";

will allow the user to specify an argument of the form "rsh cat file |", but will not work on a
filename that happens to have a trailing space, while

open(my $in, "<", $ARGV[0])
|| die "Can't open $ARGV[0]: $!";

will have exactly the opposite restrictions. (However, some shells support the syntax perl
your_program.pl <(rsh cat file), which produces a filename that can be opened
normally.)

If you want a ‘‘real’’ C open (2), then you should use the sysopen function, which involves no such
magic (but uses different filemodes than Perl open, which corresponds to C fopen (3)). This is
another way to protect your filenames from interpretation. For example:

use IO::Handle;
sysopen(my $fh, $path, O_RDWR|O_CREAT|O_EXCL)

or die "Can't open $path: $!";
$fh−>autoflush(1);
print $fh "stuff $$\n";
seek($fh, 0, 0);
print "File contains: ", readline($fh);

See seek for some details about mixing reading and writing.

Portability issues: ‘‘open’’ in perlport.

opendir DIRHANDLE,EXPR

Opens a directory named EXPR for processing by readdir, telldir, seekdir, rewinddir,
and closedir. Returns true if successful. DIRHANDLE may be an expression whose value can be
used as an indirect dirhandle, usually the real dirhandle name. If DIRHANDLE is an undefined scalar
variable (or array or hash element), the variable is assigned a reference to a new anonymous dirhandle;
that is, it’s autovivified. DIRHANDLEs have their own namespace separate from FILEHANDLEs.

See the example at readdir.

ord EXPR

ord Returns the numeric value of the first character of EXPR. If EXPR is an empty string, returns 0. If
EXPR is omitted, uses $_. (Note character, not byte.)

For the reverse, see chr. See perlunicode for more about Unicode.

our VARLIST

our TYPE VARLIST

our VARLIST : ATTRS

our TYPE VARLIST : ATTRS

our makes a lexical alias to a package (i.e. global) variable of the same name in the current package
for use within the current lexical scope.

our has the same scoping rules as my or state, meaning that it is only valid within a lexical scope.
Unlike my and state, which both declare new (lexical) variables, our only creates an alias to an
existing variable: a package variable of the same name.

This means that when use strict 'vars' is in effect, our lets you use a package variable
without qualifying it with the package name, but only within the lexical scope of the our declaration.
This applies immediately — even within the same statement.

perl v5.26.1 2018-11-19 149

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

package Foo;
use strict;

$Foo::foo = 23;

{
our $foo; # alias to $Foo::foo
print $foo; # prints 23

}

print $Foo::foo; # prints 23

print $foo; # ERROR: requires explicit package name

This works even if the package variable has not been used before, as package variables spring into
existence when first used.

package Foo;
use strict;

our $foo = 23; # just like $Foo::foo = 23

print $Foo::foo; # prints 23

Because the variable becomes legal immediately under use strict 'vars', so long as there is
no variable with that name is already in scope, you can then reference the package variable again even
within the same statement.

package Foo;
use strict;

my $foo = $foo; # error, undeclared $foo on right−hand side
our $foo = $foo; # no errors

If more than one variable is listed, the list must be placed in parentheses.

our($bar, $baz);

An our declaration declares an alias for a package variable that will be visible across its entire lexical
scope, even across package boundaries. The package in which the variable is entered is determined at
the point of the declaration, not at the point of use. This means the following behavior holds:

package Foo;
our $bar; # declares $Foo::bar for rest of lexical scope
$bar = 20;

package Bar;
print $bar; # prints 20, as it refers to $Foo::bar

Multiple our declarations with the same name in the same lexical scope are allowed if they are in
different packages. If they happen to be in the same package, Perl will emit warnings if you have
asked for them, just like multiple my declarations. Unlike a second my declaration, which will bind
the name to a fresh variable, a second our declaration in the same package, in the same scope, is
merely redundant.

use warnings;
package Foo;
our $bar; # declares $Foo::bar for rest of lexical scope
$bar = 20;

package Bar;
our $bar = 30; # declares $Bar::bar for rest of lexical scope
print $bar; # prints 30

150 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

our $bar; # emits warning but has no other effect
print $bar; # still prints 30

An our declaration may also have a list of attributes associated with it.

The exact semantics and interface of TYPE and ATTRS are still evolving. TYPE is currently bound to
the use of the fields pragma, and attributes are handled using the attributes pragma, or, starting from
Perl 5.8.0, also via the Attribute::Handlers module. See ‘‘Private Variables via my()’’ in perlsub for
details.

Note that with a parenthesised list, undef can be used as a dummy placeholder, for example to skip
assignment of initial values:

our (undef, $min, $hour) = localtime;

our differs from use vars, which allows use of an unqualified name only within the affected
package, but across scopes.

pack TEMPLATE,LIST

Takes a LIST of values and converts it into a string using the rules given by the TEMPLATE. The
resulting string is the concatenation of the converted values. Typically, each converted value looks like
its machine-level representation. For example, on 32−bit machines an integer may be represented by a
sequence of 4 bytes, which will in Perl be presented as a string that’s 4 characters long.

See perlpacktut for an introduction to this function.

The TEMPLATE is a sequence of characters that give the order and type of values, as follows:

a A string with arbitrary binary data, will be null padded.
A A text (ASCII) string, will be space padded.
Z A null−terminated (ASCIZ) string, will be null padded.

b A bit string (ascending bit order inside each byte,
like vec()).

B A bit string (descending bit order inside each byte).
h A hex string (low nybble first).
H A hex string (high nybble first).

c A signed char (8−bit) value.
C An unsigned char (octet) value.
W An unsigned char value (can be greater than 255).

s A signed short (16−bit) value.
S An unsigned short value.

l A signed long (32−bit) value.
L An unsigned long value.

q A signed quad (64−bit) value.
Q An unsigned quad value.

(Quads are available only if your system supports 64−bit
integer values _and_ if Perl has been compiled to support
those. Raises an exception otherwise.)

i A signed integer value.
I A unsigned integer value.

(This 'integer' is _at_least_ 32 bits wide. Its exact
size depends on what a local C compiler calls 'int'.)

n An unsigned short (16−bit) in "network" (big−endian) order.
N An unsigned long (32−bit) in "network" (big−endian) order.
v An unsigned short (16−bit) in "VAX" (little−endian) order.
V An unsigned long (32−bit) in "VAX" (little−endian) order.

perl v5.26.1 2018-11-19 151

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

j A Perl internal signed integer value (IV).
J A Perl internal unsigned integer value (UV).

f A single−precision float in native format.
d A double−precision float in native format.

F A Perl internal floating−point value (NV) in native format
D A float of long−double precision in native format.

(Long doubles are available only if your system supports
long double values _and_ if Perl has been compiled to
support those. Raises an exception otherwise.
Note that there are different long double formats.)

p A pointer to a null−terminated string.
P A pointer to a structure (fixed−length string).

u A uuencoded string.
U A Unicode character number. Encodes to a character in char−

acter mode and UTF−8 (or UTF−EBCDIC in EBCDIC platforms) in
byte mode.

w A BER compressed integer (not an ASN.1 BER, see perlpacktut
for details). Its bytes represent an unsigned integer in
base 128, most significant digit first, with as few digits
as possible. Bit eight (the high bit) is set on each byte
except the last.

x A null byte (a.k.a ASCII NUL, "\000", chr(0))
X Back up a byte.
@ Null−fill or truncate to absolute position, counted from the

start of the innermost ()−group.
. Null−fill or truncate to absolute position specified by

the value.
(Start of a ()−group.

One or more modifiers below may optionally follow certain letters in the TEMPLATE (the second
column lists letters for which the modifier is valid):

! sSlLiI Forces native (short, long, int) sizes instead
of fixed (16−/32−bit) sizes.

! xX Make x and X act as alignment commands.

! nNvV Treat integers as signed instead of unsigned.

! @. Specify position as byte offset in the internal
representation of the packed string. Efficient
but dangerous.

> sSiIlLqQ Force big−endian byte−order on the type.
jJfFdDpP (The "big end" touches the construct.)

< sSiIlLqQ Force little−endian byte−order on the type.
jJfFdDpP (The "little end" touches the construct.)

The > and < modifiers can also be used on () groups to force a particular byte-order on all
components in that group, including all its subgroups.

The following rules apply:

152 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

• Each letter may optionally be followed by a number indicating the repeat count. A numeric
repeat count may optionally be enclosed in brackets, as in pack("C[80]", @arr). The
repeat count gobbles that many values from the LIST when used with all format types other than
a, A, Z, b, B, h, H, @, ., x, X, and P, where it means something else, described below. Supplying
a * for the repeat count instead of a number means to use however many items are left, except
for:

• @, x, and X, where it is equivalent to 0.

• <.>, where it means relative to the start of the string.

• u, where it is equivalent to 1 (or 45, which here is equivalent).

One can replace a numeric repeat count with a template letter enclosed in brackets to use the
packed byte length of the bracketed template for the repeat count.

For example, the template x[L] skips as many bytes as in a packed long, and the template "$t
X[$t] $t" unpacks twice whatever $t (when variable-expanded) unpacks. If the template in
brackets contains alignment commands (such as x![d]), its packed length is calculated as if the
start of the template had the maximal possible alignment.

When used with Z, a * as the repeat count is guaranteed to add a trailing null byte, so the
resulting string is always one byte longer than the byte length of the item itself.

When used with @, the repeat count represents an offset from the start of the innermost () group.

When used with ., the repeat count determines the starting position to calculate the value offset
as follows:

• If the repeat count is 0, it’s relative to the current position.

• If the repeat count is *, the offset is relative to the start of the packed string.

• And if it’s an integer n, the offset is relative to the start of the nth innermost () group, or to
the start of the string if n is bigger then the group level.

The repeat count for u is interpreted as the maximal number of bytes to encode per line of output,
with 0, 1 and 2 replaced by 45. The repeat count should not be more than 65.

• The a, A, and Z types gobble just one value, but pack it as a string of length count, padding with
nulls or spaces as needed. When unpacking, A strips trailing whitespace and nulls, Z strips
ev erything after the first null, and a returns data with no stripping at all.

If the value to pack is too long, the result is truncated. If it’s too long and an explicit count is
provided, Z packs only $count−1 bytes, followed by a null byte. Thus Z always packs a
trailing null, except when the count is 0.

• Likewise, the b and B formats pack a string that’s that many bits long. Each such format
generates 1 bit of the result. These are typically followed by a repeat count like B8 or B64.

Each result bit is based on the least-significant bit of the corresponding input character, i.e., on
ord($char)%2. In particular, characters "0" and "1" generate bits 0 and 1, as do characters
"\000" and "\001".

Starting from the beginning of the input string, each 8−tuple of characters is converted to 1
character of output. With format b, the first character of the 8−tuple determines the least-
significant bit of a character; with format B, it determines the most-significant bit of a character.

If the length of the input string is not evenly divisible by 8, the remainder is packed as if the input
string were padded by null characters at the end. Similarly during unpacking, ‘‘extra’’ bits are
ignored.

If the input string is longer than needed, remaining characters are ignored.

A * for the repeat count uses all characters of the input field. On unpacking, bits are converted to
a string of 0s and 1s.

• The h and H formats pack a string that many nybbles (4−bit groups, representable as hexadecimal
digits, "0".."9" "a".."f") long.

For each such format, pack generates 4 bits of result. With non-alphabetical characters, the

perl v5.26.1 2018-11-19 153

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

result is based on the 4 least-significant bits of the input character, i.e., on ord($char)%16. In
particular, characters "0" and "1" generate nybbles 0 and 1, as do bytes "\000" and "\001".
For characters "a".."f" and "A".."F", the result is compatible with the usual hexadecimal
digits, so that "a" and "A" both generate the nybble 0xA==10. Use only these specific hex
characters with this format.

Starting from the beginning of the template to pack, each pair of characters is converted to 1
character of output. With format h, the first character of the pair determines the least-significant
nybble of the output character; with format H, it determines the most-significant nybble.

If the length of the input string is not even, it behaves as if padded by a null character at the end.
Similarly, ‘‘extra’’ nybbles are ignored during unpacking.

If the input string is longer than needed, extra characters are ignored.

A * for the repeat count uses all characters of the input field. For unpack, nybbles are
converted to a string of hexadecimal digits.

• The p format packs a pointer to a null-terminated string. You are responsible for ensuring that
the string is not a temporary value, as that could potentially get deallocated before you got around
to using the packed result. The P format packs a pointer to a structure of the size indicated by the
length. A null pointer is created if the corresponding value for p or P is undef; similarly with
unpack, where a null pointer unpacks into undef.

If your system has a strange pointer size — meaning a pointer is neither as big as an int nor as big
as a long — it may not be possible to pack or unpack pointers in big− or little-endian byte order.
Attempting to do so raises an exception.

• The / template character allows packing and unpacking of a sequence of items where the packed
structure contains a packed item count followed by the packed items themselves. This is useful
when the structure you’re unpacking has encoded the sizes or repeat counts for some of its fields
within the structure itself as separate fields.

For pack, you write length-item/sequence-item, and the length-item describes how the length
value is packed. Formats likely to be of most use are integer-packing ones like n for Java strings,
w for ASN.1 or SNMP, and N for Sun XDR.

For pack, sequence-item may have a repeat count, in which case the minimum of that and the
number of available items is used as the argument for length-item. If it has no repeat count or
uses a ’*’, the number of available items is used.

For unpack, an internal stack of integer arguments unpacked so far is used. You write
/sequence-item and the repeat count is obtained by popping off the last element from the stack.
The sequence-item must not have a repeat count.

If sequence-item refers to a string type ("A", "a", or "Z"), the length-item is the string length,
not the number of strings. With an explicit repeat count for pack, the packed string is adjusted to
that length. For example:

This code: gives this result:

unpack("W/a", "\004Gurusamy") ("Guru")
unpack("a3/A A*", "007 Bond J ") (" Bond", "J")
unpack("a3 x2 /A A*", "007: Bond, J.") ("Bond, J", ".")

pack("n/a* w/a","hello,","world") "\000\006hello,\005world"
pack("a/W2", ord("a") .. ord("z")) "2ab"

The length-item is not returned explicitly from unpack.

Supplying a count to the length-item format letter is only useful with A, a, or Z. Packing with a
length-item of a or Z may introduce "\000" characters, which Perl does not regard as legal in
numeric strings.

• The integer types s, S, l, and L may be followed by a ! modifier to specify native shorts or
longs. As shown in the example above, a bare l means exactly 32 bits, although the native long

154 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

as seen by the local C compiler may be larger. This is mainly an issue on 64−bit platforms. You
can see whether using ! makes any difference this way:

printf "format s is %d, s! is %d\n",
length pack("s"), length pack("s!");

printf "format l is %d, l! is %d\n",
length pack("l"), length pack("l!");

i! and I! are also allowed, but only for completeness’ sake: they are identical to i and I.

The actual sizes (in bytes) of native shorts, ints, longs, and long longs on the platform where Perl
was built are also available from the command line:

$ perl −V:{short,int,long{,long}}size
shortsize='2';
intsize='4';
longsize='4';
longlongsize='8';

or programmatically via the Config module:

use Config;
print $Config{shortsize}, "\n";
print $Config{intsize}, "\n";
print $Config{longsize}, "\n";
print $Config{longlongsize}, "\n";

$Config{longlongsize} is undefined on systems without long long support.

• The integer formats s, S, i, I, l, L, j, and J are inherently non-portable between processors and
operating systems because they obey native byteorder and endianness. For example, a 4−byte
integer 0x12345678 (305419896 decimal) would be ordered natively (arranged in and handled by
the CPU registers) into bytes as

0x12 0x34 0x56 0x78 # big−endian
0x78 0x56 0x34 0x12 # little−endian

Basically, Intel and VAX CPUs are little-endian, while everybody else, including Motorola
m68k/88k, PPC, Sparc, HP PA, Power, and Cray, are big-endian. Alpha and MIPS can be either:
Digital/Compaq uses (well, used) them in little-endian mode, but SGI/Cray uses them in big-
endian mode.

The names big-endian and little-endian are comic references to the egg-eating habits of the little-
endian Lilliputians and the big-endian Blefuscudians from the classic Jonathan Swift satire,
Gulliver’s Travels. This entered computer lingo via the paper ‘‘On Holy Wars and a Plea for
Peace’’ by Danny Cohen, USC/ISI IEN 137, April 1, 1980.

Some systems may have even weirder byte orders such as

0x56 0x78 0x12 0x34
0x34 0x12 0x78 0x56

These are called mid-endian, middle-endian, mixed-endian, or just weird.

You can determine your system endianness with this incantation:

printf("%#02x ", $_) for unpack("W*", pack L=>0x12345678);

The byteorder on the platform where Perl was built is also available via Config:

use Config;
print "$Config{byteorder}\n";

or from the command line:

$ perl −V:byteorder

Byteorders "1234" and "12345678" are little-endian; "4321" and "87654321" are big-

perl v5.26.1 2018-11-19 155

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

endian. Systems with multiarchitecture binaries will have "ffff", signifying that static
information doesn’t work, one must use runtime probing.

For portably packed integers, either use the formats n, N, v, and V or else use the > and <
modifiers described immediately below. See also perlport.

• Also floating point numbers have endianness. Usually (but not always) this agrees with the
integer endianness. Even though most platforms these days use the IEEE 754 binary format, there
are differences, especially if the long doubles are involved. You can see the Config variables
doublekind and longdblkind (also doublesize, longdblsize): the ‘‘kind’’ values
are enums, unlike byteorder.

Portability-wise the best option is probably to keep to the IEEE 754 64−bit doubles, and of agreed-
upon endianness. Another possibility is the "%a") format of printf.

• Starting with Perl 5.10.0, integer and floating-point formats, along with the p and P formats and
() groups, may all be followed by the > or < endianness modifiers to respectively enforce big−
or little-endian byte-order. These modifiers are especially useful given how n, N, v, and V don’t
cover signed integers, 64−bit integers, or floating-point values.

Here are some concerns to keep in mind when using an endianness modifier:

• Exchanging signed integers between different platforms works only when all platforms store
them in the same format. Most platforms store signed integers in two’s-complement
notation, so usually this is not an issue.

• The > or < modifiers can only be used on floating-point formats on big− or little-endian
machines. Otherwise, attempting to use them raises an exception.

• Forcing big− or little-endian byte-order on floating-point values for data exchange can work
only if all platforms use the same binary representation such as IEEE floating-point. Even if
all platforms are using IEEE, there may still be subtle differences. Being able to use > or <
on floating-point values can be useful, but also dangerous if you don’t know exactly what
you’re doing. It is not a general way to portably store floating-point values.

• When using > or < on a () group, this affects all types inside the group that accept byte-
order modifiers, including all subgroups. It is silently ignored for all other types. You are
not allowed to override the byte-order within a group that already has a byte-order modifier
suffix.

• Real numbers (floats and doubles) are in native machine format only. Due to the multiplicity of
floating-point formats and the lack of a standard ‘‘network’’ representation for them, no facility
for interchange has been made. This means that packed floating-point data written on one
machine may not be readable on another, even if both use IEEE floating-point arithmetic (because
the endianness of the memory representation is not part of the IEEE spec). See also perlport.

If you know exactly what you’re doing, you can use the > or < modifiers to force big− or little-
endian byte-order on floating-point values.

Because Perl uses doubles (or long doubles, if configured) internally for all numeric calculation,
converting from double into float and thence to double again loses precision, so unpack("f",
pack("f", $foo)) will not in general equal $foo.

• Pack and unpack can operate in two modes: character mode (C0 mode) where the packed string is
processed per character, and UTF−8 byte mode (U0 mode) where the packed string is processed in
its UTF−8−encoded Unicode form on a byte-by-byte basis. Character mode is the default unless
the format string starts with U. You can always switch mode mid-format with an explicit C0 or
U0 in the format. This mode remains in effect until the next mode change, or until the end of the
() group it (directly) applies to.

Using C0 to get Unicode characters while using U0 to get non−Unicode bytes is not necessarily
obvious. Probably only the first of these is what you want:

156 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

$ perl −CS −E 'say "\x{3B1}\x{3C9}"' |
perl −CS −ne 'printf "%v04X\n", $_ for unpack("C0A*", $_)'

03B1.03C9
$ perl −CS −E 'say "\x{3B1}\x{3C9}"' |
perl −CS −ne 'printf "%v02X\n", $_ for unpack("U0A*", $_)'

CE.B1.CF.89
$ perl −CS −E 'say "\x{3B1}\x{3C9}"' |
perl −C0 −ne 'printf "%v02X\n", $_ for unpack("C0A*", $_)'

CE.B1.CF.89
$ perl −CS −E 'say "\x{3B1}\x{3C9}"' |
perl −C0 −ne 'printf "%v02X\n", $_ for unpack("U0A*", $_)'

C3.8E.C2.B1.C3.8F.C2.89

Those examples also illustrate that you should not try to use pack/unpack as a substitute for
the Encode module.

• You must yourself do any alignment or padding by inserting, for example, enough "x"es while
packing. There is no way for pack and unpack to know where characters are going to or
coming from, so they handle their output and input as flat sequences of characters.

• A () group is a sub-TEMPLATE enclosed in parentheses. A group may take a repeat count
either as postfix, or for unpack, also via the / template character. Within each repetition of a
group, positioning with @ starts over at 0. Therefore, the result of

pack("@1A((@2A)@3A)", qw[X Y Z])

is the string "\0X\0\0YZ".

• x and X accept the ! modifier to act as alignment commands: they jump forward or back to the
closest position aligned at a multiple of count characters. For example, to pack or unpack a
C structure like

struct {
char c; /* one signed, 8−bit character */
double d;
char cc[2];

}

one may need to use the template c x![d] d c[2]. This assumes that doubles must be
aligned to the size of double.

For alignment commands, a count of 0 is equivalent to a count of 1; both are no-ops.

• n, N, v and V accept the ! modifier to represent signed 16−/32−bit integers in big−/little−endian
order. This is portable only when all platforms sharing packed data use the same binary
representation for signed integers; for example, when all platforms use two’s-complement
representation.

• Comments can be embedded in a TEMPLATE using # through the end of line. White space can
separate pack codes from each other, but modifiers and repeat counts must follow immediately.
Breaking complex templates into individual line-by-line components, suitably annotated, can do
as much to improve legibility and maintainability of pack/unpack formats as /x can for
complicated pattern matches.

• If TEMPLATE requires more arguments than pack is given, pack assumes additional ""
arguments. If TEMPLATE requires fewer arguments than given, extra arguments are ignored.

• Attempting to pack the special floating point values Inf and NaN (infinity, also in negative, and
not-a-number) into packed integer values (like "L") is a fatal error. The reason for this is that
there simply isn’t any sensible mapping for these special values into integers.

Examples:

perl v5.26.1 2018-11-19 157

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

$foo = pack("WWWW",65,66,67,68);
foo eq "ABCD"
$foo = pack("W4",65,66,67,68);
same thing
$foo = pack("W4",0x24b6,0x24b7,0x24b8,0x24b9);
same thing with Unicode circled letters.
$foo = pack("U4",0x24b6,0x24b7,0x24b8,0x24b9);
same thing with Unicode circled letters. You don't get the
UTF−8 bytes because the U at the start of the format caused
a switch to U0−mode, so the UTF−8 bytes get joined into
characters
$foo = pack("C0U4",0x24b6,0x24b7,0x24b8,0x24b9);
foo eq "\xe2\x92\xb6\xe2\x92\xb7\xe2\x92\xb8\xe2\x92\xb9"
This is the UTF−8 encoding of the string in the
previous example

$foo = pack("ccxxcc",65,66,67,68);
foo eq "AB\0\0CD"

NOTE: The examples above featuring "W" and "c" are true
only on ASCII and ASCII−derived systems such as ISO Latin 1
and UTF−8. On EBCDIC systems, the first example would be
$foo = pack("WWWW",193,194,195,196);

$foo = pack("s2",1,2);
"\001\000\002\000" on little−endian
"\000\001\000\002" on big−endian

$foo = pack("a4","abcd","x","y","z");
"abcd"

$foo = pack("aaaa","abcd","x","y","z");
"axyz"

$foo = pack("a14","abcdefg");
"abcdefg\0\0\0\0\0\0\0"

$foo = pack("i9pl", gmtime);
a real struct tm (on my system anyway)

$utmp_template = "Z8 Z8 Z16 L";
$utmp = pack($utmp_template, @utmp1);
a struct utmp (BSDish)

@utmp2 = unpack($utmp_template, $utmp);
"@utmp1" eq "@utmp2"

sub bintodec {
unpack("N", pack("B32", substr("0" x 32 . shift, −32)));

}

$foo = pack('sx2l', 12, 34);
short 12, two zero bytes padding, long 34
$bar = pack('s@4l', 12, 34);
short 12, zero fill to position 4, long 34
$foo eq $bar
$baz = pack('s.l', 12, 4, 34);
short 12, zero fill to position 4, long 34

158 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

$foo = pack('nN', 42, 4711);
pack big−endian 16− and 32−bit unsigned integers
$foo = pack('S>L>', 42, 4711);
exactly the same
$foo = pack('s<l<', −42, 4711);
pack little−endian 16− and 32−bit signed integers
$foo = pack('(sl)<', −42, 4711);
exactly the same

The same template may generally also be used in unpack.

package NAMESPACE

package NAMESPACE VERSION

package NAMESPACE BLOCK

package NAMESPACE VERSION BLOCK

Declares the BLOCK or the rest of the compilation unit as being in the given namespace. The scope of
the package declaration is either the supplied code BLOCK or, in the absence of a BLOCK, from the
declaration itself through the end of current scope (the enclosing block, file, or eval). That is, the
forms without a BLOCK are operative through the end of the current scope, just like the my, state,
and our operators. All unqualified dynamic identifiers in this scope will be in the given namespace,
except where overridden by another package declaration or when they’re one of the special
identifiers that qualify into main::, like STDOUT, ARGV, ENV, and the punctuation variables.

A package statement affects dynamic variables only, including those you’ve used local on, but not
lexically-scoped variables, which are created with my, state, or our. Typically it would be the first
declaration in a file included by require or use. You can switch into a package in more than one
place, since this only determines which default symbol table the compiler uses for the rest of that
block. You can refer to identifiers in other packages than the current one by prefixing the identifier
with the package name and a double colon, as in $SomePack::var or
ThatPack::INPUT_HANDLE. If package name is omitted, the main package as assumed. That
is, $::sail is equivalent to $main::sail (as well as to $main'sail, still seen in ancient code,
mostly from Perl 4).

If VERSION is provided, package sets the $VERSION variable in the given namespace to a version
object with the VERSION provided. VERSION must be a ‘‘strict’’ style version number as defined by
the version module: a positive decimal number (integer or decimal-fraction) without exponentiation or
else a dotted-decimal v−string with a leading ’v’ character and at least three components. You should
set $VERSION only once per package.

See ‘‘Packages’’ in perlmod for more information about packages, modules, and classes. See perlsub
for other scoping issues.

_ _PA CKAGE_ _
A special token that returns the name of the package in which it occurs.

pipe READHANDLE,WRITEHANDLE

Opens a pair of connected pipes like the corresponding system call. Note that if you set up a loop of
piped processes, deadlock can occur unless you are very careful. In addition, note that Perl’s pipes use
IO buffering, so you may need to set $| to flush your WRITEHANDLE after each command, depending
on the application.

Returns true on success.

See IPC::Open2, IPC::Open3, and ‘‘Bidirectional Communication with Another Process’’ in perlipc
for examples of such things.

On systems that support a close-on-exec flag on files, that flag is set on all newly opened file
descriptors whose filenos are higher than the current value of $ˆF (by default 2 for STDERR). See
‘‘$ˆF’’ in perlvar.

pop ARRAY

pop Pops and returns the last value of the array, shortening the array by one element.

Returns the undefined value if the array is empty, although this may also happen at other times. If
ARRAY is omitted, pops the @ARGV array in the main program, but the @_ array in subroutines, just

perl v5.26.1 2018-11-19 159

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

like shift.

Starting with Perl 5.14, an experimental feature allowed pop to take a scalar expression. This
experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

pos SCALAR

pos Returns the offset of where the last m//g search left off for the variable in question ($_ is used when
the variable is not specified). This offset is in characters unless the (no-longer-recommended) use
bytes pragma is in effect, in which case the offset is in bytes. Note that 0 is a valid match offset.
undef indicates that the search position is reset (usually due to match failure, but can also be because
no match has yet been run on the scalar).

pos directly accesses the location used by the regexp engine to store the offset, so assigning to pos
will change that offset, and so will also influence the \G zero-width assertion in regular expressions.
Both of these effects take place for the next match, so you can’t affect the position with pos during
the current match, such as in (?{pos() = 5}) or s//pos() = 5/e.

Setting pos also resets the matched with zero-length flag, described under ‘‘Repeated Patterns
Matching a Zero-length Substring’’ in perlre.

Because a failed m//gc match doesn’t reset the offset, the return from pos won’t change either in
this case. See perlre and perlop.

print FILEHANDLE LIST

print FILEHANDLE

print LIST

print
Prints a string or a list of strings. Returns true if successful. FILEHANDLE may be a scalar variable
containing the name of or a reference to the filehandle, thus introducing one level of indirection.
(NOTE: If FILEHANDLE is a variable and the next token is a term, it may be misinterpreted as an
operator unless you interpose a + or put parentheses around the arguments.) If FILEHANDLE is
omitted, prints to the last selected (see select) output handle. If LIST is omitted, prints $_ to the
currently selected output handle. To use FILEHANDLE alone to print the content of $_ to it, you must
use a bareword filehandle like FH, not an indirect one like $fh. To set the default output handle to
something other than STDOUT, use the select operation.

The current value of $, (if any) is printed between each LIST item. The current value of $\ (if any) is
printed after the entire LIST has been printed. Because print takes a LIST, anything in the LIST is
evaluated in list context, including any subroutines whose return lists you pass to print. Be careful
not to follow the print keyword with a left parenthesis unless you want the corresponding right
parenthesis to terminate the arguments to the print; put parentheses around all arguments (or interpose
a +, but that doesn’t look as good).

If you’re storing handles in an array or hash, or in general whenever you’re using any expression more
complex than a bareword handle or a plain, unsubscripted scalar variable to retrieve it, you will have to
use a block returning the filehandle value instead, in which case the LIST may not be omitted:

print { $files[$i] } "stuff\n";
print { $OK ? *STDOUT : *STDERR } "stuff\n";

Printing to a closed pipe or socket will generate a SIGPIPE signal. See perlipc for more on signal
handling.

printf FILEHANDLE FORMAT, LIST

printf FILEHANDLE

printf FORMAT, LIST

printf
Equivalent to print FILEHANDLE sprintf(FORMAT, LIST), except that $\ (the output
record separator) is not appended. The FORMAT and the LIST are actually parsed as a single list. The
first argument of the list will be interpreted as the printf format. This means that printf(@_)
will use $_[0] as the format. See sprintf for an explanation of the format argument. If use
locale (including use locale ':not_characters') is in effect and
POSIX::setlocale has been called, the character used for the decimal separator in formatted
floating-point numbers is affected by the LC_NUMERIC locale setting. See perllocale and POSIX.

160 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

For historical reasons, if you omit the list, $_ is used as the format; to use FILEHANDLE without a list,
you must use a bareword filehandle like FH, not an indirect one like $fh. Howev er, this will rarely do
what you want; if $_ contains formatting codes, they will be replaced with the empty string and a
warning will be emitted if warnings are enabled. Just use print if you want to print the contents of
$_.

Don’t fall into the trap of using a printf when a simple print would do. The print is more
efficient and less error prone.

prototype FUNCTION

prototype
Returns the prototype of a function as a string (or undef if the function has no prototype).
FUNCTION is a reference to, or the name of, the function whose prototype you want to retrieve. If
FUNCTION is omitted, $_ is used.

If FUNCTION is a string starting with CORE::, the rest is taken as a name for a Perl builtin. If the
builtin’s arguments cannot be adequately expressed by a prototype (such as system), prototype
returns undef, because the builtin does not really behave like a Perl function. Otherwise, the string
describing the equivalent prototype is returned.

push ARRAY,LIST

Treats ARRAY as a stack by appending the values of LIST to the end of ARRAY. The length of ARRAY

increases by the length of LIST. Has the same effect as

for my $value (LIST) {
$ARRAY[++$#ARRAY] = $value;

}

but is more efficient. Returns the number of elements in the array following the completed push.

Starting with Perl 5.14, an experimental feature allowed push to take a scalar expression. This
experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

q/STRING/
qq/STRING/
qw/STRING/
qx/STRING/

Generalized quotes. See ‘‘Quote-Like Operators’’ in perlop.

qr/STRING/
Regexp-like quote. See ‘‘Regexp Quote-Like Operators’’ in perlop.

quotemeta EXPR

quotemeta
Returns the value of EXPR with all the ASCII non−‘‘word’’ characters backslashed. (That is, all ASCII

characters not matching /[A−Za−z_0−9]/ will be preceded by a backslash in the returned string,
regardless of any locale settings.) This is the internal function implementing the \Q escape in double-
quoted strings. (See below for the behavior on non-ASCII code points.)

If EXPR is omitted, uses $_.

quotemeta (and \Q ... \E) are useful when interpolating strings into regular expressions, because by
default an interpolated variable will be considered a mini-regular expression. For example:

my $sentence = 'The quick brown fox jumped over the lazy dog';
my $substring = 'quick.*?fox';
$sentence =˜ s{$substring}{big bad wolf};

Will cause $sentence to become 'The big bad wolf jumped over...'.

On the other hand:

my $sentence = 'The quick brown fox jumped over the lazy dog';
my $substring = 'quick.*?fox';
$sentence =˜ s{\Q$substring\E}{big bad wolf};

Or:

perl v5.26.1 2018-11-19 161

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

my $sentence = 'The quick brown fox jumped over the lazy dog';
my $substring = 'quick.*?fox';
my $quoted_substring = quotemeta($substring);
$sentence =˜ s{$quoted_substring}{big bad wolf};

Will both leave the sentence as is. Normally, when accepting literal string input from the user,
quotemeta or \Q must be used.

In Perl v5.14, all non-ASCII characters are quoted in non−UTF−8−encoded strings, but not quoted in
UTF−8 strings.

Starting in Perl v5.16, Perl adopted a Unicode-defined strategy for quoting non-ASCII characters; the
quoting of ASCII characters is unchanged.

Also unchanged is the quoting of non−UTF−8 strings when outside the scope of a use feature
'unicode_strings', which is to quote all characters in the upper Latin1 range. This provides
complete backwards compatibility for old programs which do not use Unicode. (Note that
unicode_strings is automatically enabled within the scope of a use v5.12 or greater.)

Within the scope of use locale, all non-ASCII Latin1 code points are quoted whether the string is
encoded as UTF−8 or not. As mentioned above, locale does not affect the quoting of ASCII-range
characters. This protects against those locales where characters such as "|" are considered to be
word characters.

Otherwise, Perl quotes non-ASCII characters using an adaptation from Unicode (see
<http://www.unicode.org/reports/tr31/>). The only code points that are quoted are those that have any
of the Unicode properties: Pattern_Syntax, Pattern_White_Space, White_Space,
Default_Ignorable_Code_Point, or General_Category=Control.

Of these properties, the two important ones are Pattern_Syntax and Pattern_White_Space. They hav e
been set up by Unicode for exactly this purpose of deciding which characters in a regular expression
pattern should be quoted. No character that can be in an identifier has these properties.

Perl promises, that if we ever add regular expression pattern metacharacters to the dozen already
defined (\ | () [{ ˆ $ * + ? .), that we will only use ones that have the Pattern_Syntax
property. Perl also promises, that if we ever add characters that are considered to be white space in
regular expressions (currently mostly affected by /x), they will all have the Pattern_White_Space
property.

Unicode promises that the set of code points that have these two properties will never change, so
something that is not quoted in v5.16 will never need to be quoted in any future Perl release. (Not all
the code points that match Pattern_Syntax have actually had characters assigned to them; so there is
room to grow, but they are quoted whether assigned or not. Perl, of course, would never use an
unassigned code point as an actual metacharacter.)

Quoting characters that have the other 3 properties is done to enhance the readability of the regular
expression and not because they actually need to be quoted for regular expression purposes (characters
with the White_Space property are likely to be indistinguishable on the page or screen from those with
the Pattern_White_Space property; and the other two properties contain non-printing characters).

rand EXPR

rand
Returns a random fractional number greater than or equal to 0 and less than the value of EXPR. (EXPR

should be positive.) If EXPR is omitted, the value 1 is used. Currently EXPR with the value 0 is also
special-cased as 1 (this was undocumented before Perl 5.8.0 and is subject to change in future versions
of Perl). Automatically calls srand unless srand has already been called. See also srand.

Apply int to the value returned by rand if you want random integers instead of random fractional
numbers. For example,

int(rand(10))

returns a random integer between 0 and 9, inclusive.

(Note: If your rand function consistently returns numbers that are too large or too small, then your
version of Perl was probably compiled with the wrong number of RANDBITS.)

162 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

rand is not cryptographically secure. You should not rely on it in security-sensitive situations.
As of this writing, a number of third-party CPAN modules offer random number generators intended
by their authors to be cryptographically secure, including: Data::Entropy, Crypt::Random,
Math::Random::Secure, and Math::TrulyRandom.

read FILEHANDLE,SCALAR,LENGTH,OFFSET

read FILEHANDLE,SCALAR,LENGTH

Attempts to read LENGTH characters of data into variable SCALAR from the specified FILEHANDLE.

Returns the number of characters actually read, 0 at end of file, or undef if there was an error (in the
latter case $! is also set). SCALAR will be grown or shrunk so that the last character actually read is
the last character of the scalar after the read.

An OFFSET may be specified to place the read data at some place in the string other than the
beginning. A negative OFFSET specifies placement at that many characters counting backwards from
the end of the string. A positive OFFSET greater than the length of SCALAR results in the string being
padded to the required size with "\0" bytes before the result of the read is appended.

The call is implemented in terms of either Perl’s or your system’s native fread (3) library function. To
get a true read (2) system call, see sysread.

Note the characters: depending on the status of the filehandle, either (8−bit) bytes or characters are
read. By default, all filehandles operate on bytes, but for example if the filehandle has been opened
with the :utf8 I/O layer (see open, and the open pragma), the I/O will operate on UTF8−encoded
Unicode characters, not bytes. Similarly for the :encoding layer: in that case pretty much any
characters can be read.

readdir DIRHANDLE

Returns the next directory entry for a directory opened by opendir. If used in list context, returns
all the rest of the entries in the directory. If there are no more entries, returns the undefined value in
scalar context and the empty list in list context.

If you’re planning to filetest the return values out of a readdir, you’d better prepend the directory in
question. Otherwise, because we didn’t chdir there, it would have been testing the wrong file.

opendir(my $dh, $some_dir) || die "Can't opendir $some_dir: $!";
my @dots = grep { /ˆ\./ && −f "$some_dir/$_" } readdir($dh);
closedir $dh;

As of Perl 5.12 you can use a bare readdir in a while loop, which will set $_ on every iteration.

opendir(my $dh, $some_dir) || die "Can't open $some_dir: $!";
while (readdir $dh) {

print "$some_dir/$_\n";
}
closedir $dh;

To avoid confusing would-be users of your code who are running earlier versions of Perl with
mysterious failures, put this sort of thing at the top of your file to signal that your code will work only
on Perls of a recent vintage:

use 5.012; # so readdir assigns to $_ in a lone while test

readline EXPR

readline
Reads from the filehandle whose typeglob is contained in EXPR (or from *ARGV if EXPR is not
provided). In scalar context, each call reads and returns the next line until end-of-file is reached,
whereupon the subsequent call returns undef. In list context, reads until end-of-file is reached and
returns a list of lines. Note that the notion of ‘‘line’’ used here is whatever you may have defined with
$/ (or $INPUT_RECORD_SEPARATOR in English). See ‘‘$/’’ in perlvar.

When $/ is set to undef, when readline is in scalar context (i.e., file slurp mode), and when an
empty file is read, it returns '' the first time, followed by undef subsequently.

This is the internal function implementing the <EXPR> operator, but you can use it directly. The
<EXPR> operator is discussed in more detail in ‘‘I/O Operators’’ in perlop.

perl v5.26.1 2018-11-19 163

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

my $line = <STDIN>;
my $line = readline(STDIN); # same thing

If readline encounters an operating system error, $! will be set with the corresponding error
message. It can be helpful to check $! when you are reading from filehandles you don’t trust, such as
a tty or a socket. The following example uses the operator form of readline and dies if the result is
not defined.

while (! eof($fh)) {
defined($_ = readline $fh) or die "readline failed: $!";
...

}

Note that you have can’t handle readline errors that way with the ARGV filehandle. In that case,
you have to open each element of @ARGV yourself since eof handles ARGV differently.

foreach my $arg (@ARGV) {
open(my $fh, $arg) or warn "Can't open $arg: $!";

while (! eof($fh)) {
defined($_ = readline $fh)

or die "readline failed for $arg: $!";
...

}
}

readlink EXPR

readlink
Returns the value of a symbolic link, if symbolic links are implemented. If not, raises an exception. If
there is a system error, returns the undefined value and sets $! (errno). If EXPR is omitted, uses $_.

Portability issues: ‘‘readlink’’ in perlport.

readpipe EXPR

readpipe
EXPR is executed as a system command. The collected standard output of the command is returned.
In scalar context, it comes back as a single (potentially multi-line) string. In list context, returns a list
of lines (however you’ve defined lines with $/ (or $INPUT_RECORD_SEPARATOR in English)).
This is the internal function implementing the qx/EXPR/ operator, but you can use it directly. The
qx/EXPR/ operator is discussed in more detail in ‘‘I/O Operators’’ in perlop. If EXPR is omitted,
uses $_.

recv SOCKET,SCALAR,LENGTH,FLAGS

Receives a message on a socket. Attempts to receive LENGTH characters of data into variable
SCALAR from the specified SOCKET filehandle. SCALAR will be grown or shrunk to the length
actually read. Takes the same flags as the system call of the same name. Returns the address of the
sender if SOCKET’s protocol supports this; returns an empty string otherwise. If there’s an error,
returns the undefined value. This call is actually implemented in terms of the recvfrom (2) system call.
See ‘‘UDP: Message Passing’’ in perlipc for examples.

Note the characters: depending on the status of the socket, either (8−bit) bytes or characters are
received. By default all sockets operate on bytes, but for example if the socket has been changed using
binmode to operate with the :encoding(UTF−8) I/O layer (see the open pragma), the I/O will
operate on UTF8−encoded Unicode characters, not bytes. Similarly for the :encoding layer: in that
case pretty much any characters can be read.

redo LABEL

redo EXPR

redo
The redo command restarts the loop block without evaluating the conditional again. The continue
block, if any, is not executed. If the LABEL is omitted, the command refers to the innermost enclosing
loop. The redo EXPR form, available starting in Perl 5.18.0, allows a label name to be computed at
run time, and is otherwise identical to redo LABEL. Programs that want to lie to themselves about
what was just input normally use this command:

164 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

a simpleminded Pascal comment stripper
(warning: assumes no { or } in strings)
LINE: while (<STDIN>) {

while (s|({.*}.*){.*}|$1 |) {}
s|{.*}| |;
if (s|{.*| |) {

my $front = $_;
while (<STDIN>) {

if (/}/) { # end of comment?
s|ˆ|$front\{|;
redo LINE;

}
}

}
print;

}

redo cannot be used to retry a block that returns a value such as eval {}, sub {}, or do {}, and
should not be used to exit a grep or map operation.

Note that a block by itself is semantically identical to a loop that executes once. Thus redo inside
such a block will effectively turn it into a looping construct.

See also continue for an illustration of how last, next, and redo work.

Unlike most named operators, this has the same precedence as assignment. It is also exempt from the
looks-like-a-function rule, so redo ("foo")."bar" will cause ‘‘bar’’ to be part of the argument
to redo.

ref EXPR

ref Returns a non-empty string if EXPR is a reference, the empty string otherwise. If EXPR is not
specified, $_ will be used. The value returned depends on the type of thing the reference is a
reference to.

Builtin types include:

SCALAR
ARRAY
HASH
CODE
REF
GLOB
LVALUE
FORMAT
IO
VSTRING
Regexp

You can think of ref as a typeof operator.

if (ref($r) eq "HASH") {
print "r is a reference to a hash.\n";

}
unless (ref($r)) {

print "r is not a reference at all.\n";
}

The return value LVALUE indicates a reference to an lvalue that is not a variable. You get this from
taking the reference of function calls like pos or substr. VSTRING is returned if the reference
points to a version string.

The result Regexp indicates that the argument is a regular expression resulting from qr//.

If the referenced object has been blessed into a package, then that package name is returned instead.
But don’t use that, as it’s now considered ‘‘bad practice’’. For one reason, an object could be using a

perl v5.26.1 2018-11-19 165

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

class called Regexp or IO, or even HASH. Also, ref doesn’t take into account subclasses, like isa
does.

Instead, use blessed (in the Scalar::Util module) for boolean checks, isa for specific class checks
and reftype (also from Scalar::Util) for type checks. (See perlobj for details and a blessed/isa
example.)

See also perlref.

rename OLDNAME,NEWNAME

Changes the name of a file; an existing file NEWNAME will be clobbered. Returns true for success,
false otherwise.

Behavior of this function varies wildly depending on your system implementation. For example, it
will usually not work across file system boundaries, even though the system mv command sometimes
compensates for this. Other restrictions include whether it works on directories, open files, or pre-
existing files. Check perlport and either the rename (2) manpage or equivalent system documentation
for details.

For a platform independent move function look at the File::Copy module.

Portability issues: ‘‘rename’’ in perlport.

require VERSION

require EXPR

require
Demands a version of Perl specified by VERSION, or demands some semantics specified by EXPR or
by $_ if EXPR is not supplied.

VERSION may be either a numeric argument such as 5.006, which will be compared to $], or a literal
of the form v5.6.1, which will be compared to $ˆV (or $PERL_VERSION in English). An exception
is raised if VERSION is greater than the version of the current Perl interpreter. Compare with use,
which can do a similar check at compile time.

Specifying VERSION as a literal of the form v5.6.1 should generally be avoided, because it leads to
misleading error messages under earlier versions of Perl that do not support this syntax. The
equivalent numeric version should be used instead.

require v5.6.1; # run time version check
require 5.6.1; # ditto
require 5.006_001; # ditto; preferred for backwards

compatibility

Otherwise, require demands that a library file be included if it hasn’t already been included. The
file is included via the do-FILE mechanism, which is essentially just a variety of eval with the caveat
that lexical variables in the invoking script will be invisible to the included code. If it were
implemented in pure Perl, it would have semantics similar to the following:

use Carp 'croak';
use version;

sub require {
my ($filename) = @_;
if (my $version = eval { version−>parse($filename) }) {

if ($version > $ˆV) {
my $vn = $version−>normal;
croak "Perl $vn required−−this is only $ˆV, stopped";

}
return 1;

}

if (exists $INC{$filename}) {
return 1 if $INC{$filename};
croak "Compilation failed in require";

}

166 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

foreach $prefix (@INC) {
if (ref($prefix)) {

#... do other stuff − see text below
}
(see text below about possible appending of .pmc
suffix to $filename)
my $realfilename = "$prefix/$filename";
next if ! −e $realfilename || −d _ || −b _;
$INC{$filename} = $realfilename;
my $result = do($realfilename);

but run in caller's namespace

if (!defined $result) {
$INC{$filename} = undef;
croak $@ ? "$@Compilation failed in require"

: "Can't locate $filename: $!\n";
}
if (!$result) {

delete $INC{$filename};
croak "$filename did not return true value";

}
$! = 0;
return $result;

}
croak "Can't locate $filename in \@INC ...";

}

Note that the file will not be included twice under the same specified name.

The file must return true as the last statement to indicate successful execution of any initialization
code, so it’s customary to end such a file with 1; unless you’re sure it’ll return true otherwise. But it’s
better just to put the 1;, in case you add more statements.

If EXPR is a bareword, require assumes a .pm extension and replaces :: with / in the filename for
you, to make it easy to load standard modules. This form of loading of modules does not risk altering
your namespace.

In other words, if you try this:

require Foo::Bar; # a splendid bareword

The require function will actually look for the Foo/Bar.pm file in the directories specified in the @INC
array.

But if you try this:

my $class = 'Foo::Bar';
require $class; # $class is not a bareword

#or
require "Foo::Bar"; # not a bareword because of the ""

The require function will look for the Foo::Bar file in the @INC array and will complain about not
finding Foo::Bar there. In this case you can do:

eval "require $class";

Now that you understand how require looks for files with a bareword argument, there is a little
extra functionality going on behind the scenes. Before require looks for a .pm extension, it will
first look for a similar filename with a .pmc extension. If this file is found, it will be loaded in place of
any file ending in a .pm extension.

You can also insert hooks into the import facility by putting Perl code directly into the @INC array.
There are three forms of hooks: subroutine references, array references, and blessed objects.

perl v5.26.1 2018-11-19 167

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Subroutine references are the simplest case. When the inclusion system walks through @INC and
encounters a subroutine, this subroutine gets called with two parameters, the first a reference to itself,
and the second the name of the file to be included (e.g., Foo/Bar.pm). The subroutine should return
either nothing or else a list of up to four values in the following order:

1. A reference to a scalar, containing any initial source code to prepend to the file or generator
output.

2. A filehandle, from which the file will be read.

3. A reference to a subroutine. If there is no filehandle (previous item), then this subroutine is
expected to generate one line of source code per call, writing the line into $_ and returning 1,
then finally at end of file returning 0. If there is a filehandle, then the subroutine will be called to
act as a simple source filter, with the line as read in $_. Again, return 1 for each valid line, and 0
after all lines have been returned.

4. Optional state for the subroutine. The state is passed in as $_[1]. A reference to the subroutine
itself is passed in as $_[0].

If an empty list, undef, or nothing that matches the first 3 values above is returned, then require
looks at the remaining elements of @INC. Note that this filehandle must be a real filehandle (strictly a
typeglob or reference to a typeglob, whether blessed or unblessed); tied filehandles will be ignored and
processing will stop there.

If the hook is an array reference, its first element must be a subroutine reference. This subroutine is
called as above, but the first parameter is the array reference. This lets you indirectly pass arguments
to the subroutine.

In other words, you can write:

push @INC, \&my_sub;
sub my_sub {

my ($coderef, $filename) = @_; # $coderef is \&my_sub
...

}

or:

push @INC, [\&my_sub, $x, $y, ...];
sub my_sub {

my ($arrayref, $filename) = @_;
Retrieve $x, $y, ...
my (undef, @parameters) = @$arrayref;
...

}

If the hook is an object, it must provide an INC method that will be called as above, the first parameter
being the object itself. (Note that you must fully qualify the sub’s name, as unqualified INC is always
forced into package main.) Here is a typical code layout:

In Foo.pm
package Foo;
sub new { ... }
sub Foo::INC {

my ($self, $filename) = @_;
...

}

In the main program
push @INC, Foo−>new(...);

These hooks are also permitted to set the %INC entry corresponding to the files they hav e loaded. See
‘‘%INC’’ in perlvar.

For a yet-more-powerful import facility, see use and perlmod.

168 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

reset EXPR

reset
Generally used in a continue block at the end of a loop to clear variables and reset m?pattern?
searches so that they work again. The expression is interpreted as a list of single characters (hyphens
allowed for ranges). All variables and arrays beginning with one of those letters are reset to their
pristine state. If the expression is omitted, one-match searches (m?pattern?) are reset to match
again. Only resets variables or searches in the current package. Always returns 1. Examples:

reset 'X'; # reset all X variables
reset 'a−z'; # reset lower case variables
reset; # just reset m?one−time? searches

Resetting "A−Z" is not recommended because you’ll wipe out your @ARGV and @INC arrays and
your %ENV hash. Resets only package variables; lexical variables are unaffected, but they clean
themselves up on scope exit anyway, so you’ll probably want to use them instead. See my.

return EXPR

return
Returns from a subroutine, eval, do FILE, sort block or regex eval block (but not a grep or map
block) with the value given in EXPR. Evaluation of EXPR may be in list, scalar, or void context,
depending on how the return value will be used, and the context may vary from one execution to the
next (see wantarray). If no EXPR is given, returns an empty list in list context, the undefined value
in scalar context, and (of course) nothing at all in void context.

(In the absence of an explicit return, a subroutine, eval, or do FILE automatically returns the
value of the last expression evaluated.)

Unlike most named operators, this is also exempt from the looks-like-a-function rule, so return
("foo")."bar" will cause "bar" to be part of the argument to return.

reverse LIST

In list context, returns a list value consisting of the elements of LIST in the opposite order. In scalar
context, concatenates the elements of LIST and returns a string value with all characters in the opposite
order.

print join(", ", reverse "world", "Hello"); # Hello, world

print scalar reverse "dlrow ,", "olleH"; # Hello, world

Used without arguments in scalar context, reverse reverses $_.

$_ = "dlrow ,olleH";
print reverse; # No output, list context
print scalar reverse; # Hello, world

Note that reversing an array to itself (as in @a = reverse @a) will preserve non-existent elements
whenever possible; i.e., for non-magical arrays or for tied arrays with EXISTS and DELETE methods.

This operator is also handy for inverting a hash, although there are some caveats. If a value is
duplicated in the original hash, only one of those can be represented as a key in the inverted hash.
Also, this has to unwind one hash and build a whole new one, which may take some time on a large
hash, such as from a DBM file.

my %by_name = reverse %by_address; # Invert the hash

rewinddir DIRHANDLE

Sets the current position to the beginning of the directory for the readdir routine on DIRHANDLE.

Portability issues: ‘‘rewinddir’’ in perlport.

rindex STR,SUBSTR,POSITION

rindex STR,SUBSTR

Works just like index except that it returns the position of the last occurrence of SUBSTR in STR. If
POSITION is specified, returns the last occurrence beginning at or before that position.

perl v5.26.1 2018-11-19 169

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

rmdir FILENAME

rmdir
Deletes the directory specified by FILENAME if that directory is empty. If it succeeds it returns true;
otherwise it returns false and sets $! (errno). If FILENAME is omitted, uses $_.

To remove a directory tree recursively (rm −rf on Unix) look at the rmtree function of the
File::Path module.

s/// The substitution operator. See ‘‘Regexp Quote-Like Operators’’ in perlop.

say FILEHANDLE LIST

say FILEHANDLE

say LIST

say Just like print, but implicitly appends a newline. say LIST is simply an abbreviation for {
local $\ = "\n"; print LIST }. To use FILEHANDLE without a LIST to print the contents
of $_ to it, you must use a bareword filehandle like FH, not an indirect one like $fh.

say is available only if the "say" feature is enabled or if it is prefixed with CORE::. The "say"
feature is enabled automatically with a use v5.10 (or higher) declaration in the current scope.

scalar EXPR

Forces EXPR to be interpreted in scalar context and returns the value of EXPR.

my @counts = (scalar @a, scalar @b, scalar @c);

There is no equivalent operator to force an expression to be interpolated in list context because in
practice, this is never needed. If you really wanted to do so, however, you could use the construction
@{[(some expression)]}, but usually a simple (some expression) suffices.

Because scalar is a unary operator, if you accidentally use a parenthesized list for the EXPR, this
behaves as a scalar comma expression, evaluating all but the last element in void context and returning
the final element evaluated in scalar context. This is seldom what you want.

The following single statement:

print uc(scalar(foo(), $bar)), $baz;

is the moral equivalent of these two:

foo();
print(uc($bar), $baz);

See perlop for more details on unary operators and the comma operator, and perldata for details on
evaluating a hash in scalar contex.

seek FILEHANDLE,POSITION,WHENCE

Sets FILEHANDLE’s position, just like the fseek (3) call of C stdio. FILEHANDLE may be an
expression whose value gives the name of the filehandle. The values for WHENCE are 0 to set the new
position in bytes to POSITION; 1 to set it to the current position plus POSITION; and 2 to set it to EOF

plus POSITION, typically negative. For WHENCE you may use the constants SEEK_SET, SEEK_CUR,
and SEEK_END (start of the file, current position, end of the file) from the Fcntl module. Returns 1
on success, false otherwise.

Note the emphasis on bytes: even if the filehandle has been set to operate on characters (for example
using the :encoding(UTF−8) I/O layer), the seek, tell, and sysseek family of functions use
byte offsets, not character offsets, because seeking to a character offset would be very slow in a UTF−8

file.

If you want to position the file for sysread or syswrite, don’t use seek, because buffering
makes its effect on the file’s read-write position unpredictable and non-portable. Use sysseek
instead.

Due to the rules and rigors of ANSI C, on some systems you have to do a seek whenever you switch
between reading and writing. Amongst other things, this may have the effect of calling stdio’s
clearerr (3). A WHENCE of 1 (SEEK_CUR) is useful for not moving the file position:

seek($fh, 0, 1);

This is also useful for applications emulating tail −f. Once you hit EOF on your read and then

170 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

sleep for a while, you (probably) have to stick in a dummy seek to reset things. The seek doesn’t
change the position, but it does clear the end-of-file condition on the handle, so that the next
readline FILE makes Perl try again to read something. (We hope.)

If that doesn’t work (some I/O implementations are particularly cantankerous), you might need
something like this:

for (;;) {
for ($curpos = tell($fh); $_ = readline($fh);

$curpos = tell($fh)) {
search for some stuff and put it into files

}
sleep($for_a_while);
seek($fh, $curpos, 0);

}

seekdir DIRHANDLE,POS

Sets the current position for the readdir routine on DIRHANDLE. POS must be a value returned by
telldir. seekdir also has the same caveats about possible directory compaction as the
corresponding system library routine.

select FILEHANDLE

select
Returns the currently selected filehandle. If FILEHANDLE is supplied, sets the new current default
filehandle for output. This has two effects: first, a write or a print without a filehandle default to
this FILEHANDLE. Second, references to variables related to output will refer to this output channel.

For example, to set the top-of-form format for more than one output channel, you might do the
following:

select(REPORT1);
$ˆ = 'report1_top';
select(REPORT2);
$ˆ = 'report2_top';

FILEHANDLE may be an expression whose value gives the name of the actual filehandle. Thus:

my $oldfh = select(STDERR); $| = 1; select($oldfh);

Some programmers may prefer to think of filehandles as objects with methods, preferring to write the
last example as:

STDERR−>autoflush(1);

(Prior to Perl version 5.14, you have to use IO::Handle; explicitly first.)

Portability issues: ‘‘select’’ in perlport.

select RBITS,WBITS,EBITS,TIMEOUT

This calls the select (2) syscall with the bit masks specified, which can be constructed using fileno
and vec, along these lines:

my $rin = my $win = my $ein = '';
vec($rin, fileno(STDIN), 1) = 1;
vec($win, fileno(STDOUT), 1) = 1;
$ein = $rin | $win;

If you want to select on many filehandles, you may wish to write a subroutine like this:

perl v5.26.1 2018-11-19 171

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

sub fhbits {
my @fhlist = @_;
my $bits = "";
for my $fh (@fhlist) {

vec($bits, fileno($fh), 1) = 1;
}
return $bits;

}
my $rin = fhbits(*STDIN, $tty, $mysock);

The usual idiom is:

my ($nfound, $timeleft) =
select(my $rout = $rin, my $wout = $win, my $eout = $ein,

$timeout);

or to block until something becomes ready just do this

my $nfound =
select(my $rout = $rin, my $wout = $win, my $eout = $ein, undef);

Most systems do not bother to return anything useful in $timeleft, so calling select in scalar
context just returns $nfound.

Any of the bit masks can also be undef. The timeout, if specified, is in seconds, which may be
fractional. Note: not all implementations are capable of returning the $timeleft. If not, they
always return $timeleft equal to the supplied $timeout.

You can effect a sleep of 250 milliseconds this way:

select(undef, undef, undef, 0.25);

Note that whether select gets restarted after signals (say, SIGALRM) is implementation-dependent.
See also perlport for notes on the portability of select.

On error, select behaves just like select (2): it returns −1 and sets $!.

On some Unixes, select (2) may report a socket file descriptor as ‘‘ready for reading’’ even when no
data is available, and thus any subsequent read would block. This can be avoided if you always use
O_NONBLOCK on the socket. See select (2) and fcntl (2) for further details.

The standard IO::Select module provides a user-friendlier interface to select, mostly because it
does all the bit-mask work for you.

WARNING: One should not attempt to mix buffered I/O (like read or readline) with select,
except as permitted by POSIX, and even then only on POSIX systems. You have to use sysread
instead.

Portability issues: ‘‘select’’ in perlport.

semctl ID,SEMNUM,CMD,ARG

Calls the System V IPC function semctl (2). You’ll probably have to say

use IPC::SysV;

first to get the correct constant definitions. If CMD is IPC_STAT or GETALL, then ARG must be a
variable that will hold the returned semid_ds structure or semaphore value array. Returns like ioctl:
the undefined value for error, "0 but true" for zero, or the actual return value otherwise. The ARG

must consist of a vector of native short integers, which may be created with
pack("s!",(0)x$nsem). See also ‘‘SysV IPC’’ in perlipc and the documentation for
IPC::SysV and IPC::Semaphore.

Portability issues: ‘‘semctl’’ in perlport.

semget KEY,NSEMS,FLAGS

Calls the System V IPC function semget (2). Returns the semaphore id, or the undefined value on
error. See also ‘‘SysV IPC’’ in perlipc and the documentation for IPC::SysV and
IPC::Semaphore.

172 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Portability issues: ‘‘semget’’ in perlport.

semop KEY,OPSTRING

Calls the System V IPC function semop (2) for semaphore operations such as signalling and waiting.
OPSTRING must be a packed array of semop structures. Each semop structure can be generated with
pack("s!3", $semnum, $semop, $semflag). The length of OPSTRING implies the
number of semaphore operations. Returns true if successful, false on error. As an example, the
following code waits on semaphore $semnum of semaphore id $semid:

my $semop = pack("s!3", $semnum, −1, 0);
die "Semaphore trouble: $!\n" unless semop($semid, $semop);

To signal the semaphore, replace −1 with 1. See also ‘‘SysV IPC’’ in perlipc and the documentation
for IPC::SysV and IPC::Semaphore.

Portability issues: ‘‘semop’’ in perlport.

send SOCKET,MSG,FLAGS,TO

send SOCKET,MSG,FLAGS

Sends a message on a socket. Attempts to send the scalar MSG to the SOCKET filehandle. Takes the
same flags as the system call of the same name. On unconnected sockets, you must specify a
destination to send to, in which case it does a sendto (2) syscall. Returns the number of characters
sent, or the undefined value on error. The sendmsg (2) syscall is currently unimplemented. See ‘‘UDP:

Message Passing’’ in perlipc for examples.

Note the characters: depending on the status of the socket, either (8−bit) bytes or characters are sent.
By default all sockets operate on bytes, but for example if the socket has been changed using
binmode to operate with the :encoding(UTF−8) I/O layer (see open, or the open pragma), the
I/O will operate on UTF−8 encoded Unicode characters, not bytes. Similarly for the :encoding
layer: in that case pretty much any characters can be sent.

setpgrp PID,PGRP

Sets the current process group for the specified PID, 0 for the current process. Raises an exception
when used on a machine that doesn’t implement POSIX setpgid (2) or BSD setpgrp (2). If the
arguments are omitted, it defaults to 0,0. Note that the BSD 4.2 version of setpgrp does not accept
any arguments, so only setpgrp(0,0) is portable. See also POSIX::setsid().

Portability issues: ‘‘setpgrp’’ in perlport.

setpriority WHICH,WHO,PRIORITY

Sets the current priority for a process, a process group, or a user. (See setpriority (2).) Raises an
exception when used on a machine that doesn’t implement setpriority (2).

Portability issues: ‘‘setpriority’’ in perlport.

setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL

Sets the socket option requested. Returns undef on error. Use integer constants provided by the
Socket module for LEVEL and OPNAME. Values for LEVEL can also be obtained from
getprotobyname. OPTVAL might either be a packed string or an integer. An integer OPTVAL is
shorthand for pack(‘‘i’’, OPTVAL).

An example disabling Nagle’s algorithm on a socket:

use Socket qw(IPPROTO_TCP TCP_NODELAY);
setsockopt($socket, IPPROTO_TCP, TCP_NODELAY, 1);

Portability issues: ‘‘setsockopt’’ in perlport.

shift ARRAY

shift
Shifts the first value of the array off and returns it, shortening the array by 1 and moving everything
down. If there are no elements in the array, returns the undefined value. If ARRAY is omitted, shifts
the @_ array within the lexical scope of subroutines and formats, and the @ARGV array outside a
subroutine and also within the lexical scopes established by the eval STRING, BEGIN {}, INIT
{}, CHECK {}, UNITCHECK {}, and END {} constructs.

Starting with Perl 5.14, an experimental feature allowed shift to take a scalar expression. This

perl v5.26.1 2018-11-19 173

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

See also unshift, push, and pop. shift and unshift do the same thing to the left end of an
array that pop and push do to the right end.

shmctl ID,CMD,ARG

Calls the System V IPC function shmctl. You’ll probably have to say

use IPC::SysV;

first to get the correct constant definitions. If CMD is IPC_STAT, then ARG must be a variable that
will hold the returned shmid_ds structure. Returns like ioctl: undef for error; "0 but true" for zero;
and the actual return value otherwise. See also ‘‘SysV IPC’’ in perlipc and the documentation for
IPC::SysV.

Portability issues: ‘‘shmctl’’ in perlport.

shmget KEY,SIZE,FLAGS

Calls the System V IPC function shmget. Returns the shared memory segment id, or undef on error.
See also ‘‘SysV IPC’’ in perlipc and the documentation for IPC::SysV.

Portability issues: ‘‘shmget’’ in perlport.

shmread ID,VAR,POS,SIZE

shmwrite ID,STRING,POS,SIZE

Reads or writes the System V shared memory segment ID starting at position POS for size SIZE by
attaching to it, copying in/out, and detaching from it. When reading, VAR must be a variable that will
hold the data read. When writing, if STRING is too long, only SIZE bytes are used; if STRING is too
short, nulls are written to fill out SIZE bytes. Return true if successful, false on error. shmread taints
the variable. See also ‘‘SysV IPC’’ in perlipc and the documentation for IPC::SysV and the
IPC::Shareable module from CPAN.

Portability issues: ‘‘shmread’’ in perlport and ‘‘shmwrite’’ in perlport.

shutdown SOCKET,HOW

Shuts down a socket connection in the manner indicated by HOW, which has the same interpretation as
in the syscall of the same name.

shutdown($socket, 0); # I/we have stopped reading data
shutdown($socket, 1); # I/we have stopped writing data
shutdown($socket, 2); # I/we have stopped using this socket

This is useful with sockets when you want to tell the other side you’re done writing but not done
reading, or vice versa. It’s also a more insistent form of close because it also disables the file
descriptor in any forked copies in other processes.

Returns 1 for success; on error, returns undef if the first argument is not a valid filehandle, or returns
0 and sets $! for any other failure.

sin EXPR

sin Returns the sine of EXPR (expressed in radians). If EXPR is omitted, returns sine of $_.

For the inverse sine operation, you may use the Math::Trig::asin function, or use this relation:

sub asin { atan2($_[0], sqrt(1 − $_[0] * $_[0])) }

sleep EXPR

sleep
Causes the script to sleep for (integer) EXPR seconds, or forever if no argument is given. Returns the
integer number of seconds actually slept.

May be interrupted if the process receives a signal such as SIGALRM.

eval {
local $SIG{ALRM} = sub { die "Alarm!\n" };
sleep;

};
die $@ unless $@ eq "Alarm!\n";

174 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

You probably cannot mix alarm and sleep calls, because sleep is often implemented using
alarm.

On some older systems, it may sleep up to a full second less than what you requested, depending on
how it counts seconds. Most modern systems always sleep the full amount. They may appear to sleep
longer than that, however, because your process might not be scheduled right away in a busy
multitasking system.

For delays of finer granularity than one second, the Time::HiRes module (from CPAN, and starting
from Perl 5.8 part of the standard distribution) provides usleep. You may also use Perl’s four-
argument version of select leaving the first three arguments undefined, or you might be able to use
the syscall interface to access setitimer (2) if your system supports it. See perlfaq8 for details.

See also the POSIX module’s pause function.

socket SOCKET,DOMAIN,TYPE,PROT OCOL

Opens a socket of the specified kind and attaches it to filehandle SOCKET. DOMAIN, TYPE, and
PROT OCOL are specified the same as for the syscall of the same name. You should use Socket
first to get the proper definitions imported. See the examples in ‘‘Sockets: Client/Server
Communication’’ in perlipc.

On systems that support a close-on-exec flag on files, the flag will be set for the newly opened file
descriptor, as determined by the value of $ˆF. See ‘‘$ˆF’’ in perlvar.

socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROT OCOL

Creates an unnamed pair of sockets in the specified domain, of the specified type. DOMAIN, TYPE,

and PROT OCOL are specified the same as for the syscall of the same name. If unimplemented, raises
an exception. Returns true if successful.

On systems that support a close-on-exec flag on files, the flag will be set for the newly opened file
descriptors, as determined by the value of $ˆF. See ‘‘$ˆF’’ in perlvar.

Some systems define pipe in terms of socketpair, in which a call to pipe($rdr, $wtr) is
essentially:

use Socket;
socketpair(my $rdr, my $wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);
shutdown($rdr, 1); # no more writing for reader
shutdown($wtr, 0); # no more reading for writer

See perlipc for an example of socketpair use. Perl 5.8 and later will emulate socketpair using IP

sockets to localhost if your system implements sockets but not socketpair.

Portability issues: ‘‘socketpair’’ in perlport.

sort SUBNAME LIST

sort BLOCK LIST

sort LIST

In list context, this sorts the LIST and returns the sorted list value. In scalar context, the behaviour of
sort is undefined.

If SUBNAME or BLOCK is omitted, sorts in standard string comparison order. If SUBNAME is
specified, it gives the name of a subroutine that returns an integer less than, equal to, or greater than 0,
depending on how the elements of the list are to be ordered. (The <=> and cmp operators are
extremely useful in such routines.) SUBNAME may be a scalar variable name (unsubscripted), in
which case the value provides the name of (or a reference to) the actual subroutine to use. In place of
a SUBNAME, you can provide a BLOCK as an anonymous, in-line sort subroutine.

If the subroutine’s prototype is ($$), the elements to be compared are passed by reference in @_, as
for a normal subroutine. This is slower than unprototyped subroutines, where the elements to be
compared are passed into the subroutine as the package global variables $a and $b (see example
below).

If the subroutine is an XSUB, the elements to be compared are pushed on to the stack, the way
arguments are usually passed to XSUBs. $a and $b are not set.

The values to be compared are always passed by reference and should not be modified.

perl v5.26.1 2018-11-19 175

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

You also cannot exit out of the sort block or subroutine using any of the loop control operators
described in perlsyn or with goto.

When use locale (but not use locale ':not_characters') is in effect, sort LIST
sorts LIST according to the current collation locale. See perllocale.

sort returns aliases into the original list, much as a for loop’s index variable aliases the list elements.
That is, modifying an element of a list returned by sort (for example, in a foreach, map or grep)
actually modifies the element in the original list. This is usually something to be avoided when
writing clear code.

Perl 5.6 and earlier used a quicksort algorithm to implement sort. That algorithm was not stable and
could go quadratic. (A stable sort preserves the input order of elements that compare equal. Although
quicksort’s run time is O(NlogN) when averaged over all arrays of length N, the time can be O(N**2),
quadratic behavior, for some inputs.) In 5.7, the quicksort implementation was replaced with a stable
mergesort algorithm whose worst-case behavior is O(NlogN). But benchmarks indicated that for some
inputs, on some platforms, the original quicksort was faster. 5.8 has a sort pragma for limited control
of the sort. Its rather blunt control of the underlying algorithm may not persist into future Perls, but
the ability to characterize the input or output in implementation independent ways quite probably will.

Examples:

sort lexically
my @articles = sort @files;

same thing, but with explicit sort routine
my @articles = sort {$a cmp $b} @files;

now case−insensitively
my @articles = sort {fc($a) cmp fc($b)} @files;

same thing in reversed order
my @articles = sort {$b cmp $a} @files;

sort numerically ascending
my @articles = sort {$a <=> $b} @files;

sort numerically descending
my @articles = sort {$b <=> $a} @files;

this sorts the %age hash by value instead of key
using an in−line function
my @eldest = sort { $age{$b} <=> $age{$a} } keys %age;

sort using explicit subroutine name
sub byage {

$age{$a} <=> $age{$b}; # presuming numeric
}
my @sortedclass = sort byage @class;

sub backwards { $b cmp $a }
my @harry = qw(dog cat x Cain Abel);
my @george = qw(gone chased yz Punished Axed);
print sort @harry;

prints AbelCaincatdogx
print sort backwards @harry;

prints xdogcatCainAbel
print sort @george, 'to', @harry;

prints AbelAxedCainPunishedcatchaseddoggonetoxyz

inefficiently sort by descending numeric compare using

176 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

the first integer after the first = sign, or the
whole record case−insensitively otherwise

my @new = sort {
($b =˜ /=(\d+)/)[0] <=> ($a =˜ /=(\d+)/)[0]

||
fc($a) cmp fc($b)

} @old;

same thing, but much more efficiently;
we'll build auxiliary indices instead
for speed
my (@nums, @caps);
for (@old) {

push @nums, (/=(\d+)/ ? $1 : undef);
push @caps, fc($_);

}

my @new = @old[sort {
$nums[$b] <=> $nums[$a]

||
$caps[$a] cmp $caps[$b]

} 0..$#old
];

same thing, but without any temps
my @new = map { $_−>[0] }

sort { $b−>[1] <=> $a−>[1]
||

$a−>[2] cmp $b−>[2]
} map { [$_, /=(\d+)/, fc($_)] } @old;

using a prototype allows you to use any comparison subroutine
as a sort subroutine (including other package's subroutines)
package Other;
sub backwards ($$) { $_[1] cmp $_[0]; } # $a and $b are

not set here
package main;
my @new = sort Other::backwards @old;

guarantee stability, regardless of algorithm
use sort 'stable';
my @new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;

force use of mergesort (not portable outside Perl 5.8)
use sort '_mergesort'; # note discouraging _
my @new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;

Warning: syntactical care is required when sorting the list returned from a function. If you want to
sort the list returned by the function call find_records(@key), you can use:

my @contact = sort { $a cmp $b } find_records @key;
my @contact = sort +find_records(@key);
my @contact = sort &find_records(@key);
my @contact = sort(find_records(@key));

If instead you want to sort the array @key with the comparison routine find_records() then you
can use:

perl v5.26.1 2018-11-19 177

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

my @contact = sort { find_records() } @key;
my @contact = sort find_records(@key);
my @contact = sort(find_records @key);
my @contact = sort(find_records (@key));

$a and $b are set as package globals in the package the sort() is called from. That means $main::a
and $main::b (or $::a and $::b) in the main package, $FooPack::a and $FooPack::b in
the FooPack package, etc. If the sort block is in scope of a my or state declaration of $a and/or
$b, you must spell out the full name of the variables in the sort block :

package main;
my $a = "C"; # DANGER, Will Robinson, DANGER !!!

print sort { $a cmp $b } qw(A C E G B D F H);
WRONG

sub badlexi { $a cmp $b }
print sort badlexi qw(A C E G B D F H);

WRONG
the above prints BACFEDGH or some other incorrect ordering

print sort { $::a cmp $::b } qw(A C E G B D F H);
OK

print sort { our $a cmp our $b } qw(A C E G B D F H);
also OK

print sort { our ($a, $b); $a cmp $b } qw(A C E G B D F H);
also OK

sub lexi { our $a cmp our $b }
print sort lexi qw(A C E G B D F H);

also OK
the above print ABCDEFGH

With proper care you may mix package and my (or state) $a and/or $b:

my $a = {
tiny => −2,
small => −1,
normal => 0,
big => 1,
huge => 2

};

say sort { $a−>{our $a} <=> $a−>{our $b} }
qw{ huge normal tiny small big};

prints tinysmallnormalbighuge

$a and $b are implicitely local to the sort() execution and regain their former values upon completing
the sort.

Sort subroutines written using $a and $b are bound to their calling package. It is possible, but of
limited interest, to define them in a different package, since the subroutine must still refer to the
calling package’s $a and $b :

package Foo;
sub lexi { $Bar::a cmp $Bar::b }
package Bar;
... sort Foo::lexi ...

Use the prototyped versions (see above) for a more generic alternative.

The comparison function is required to behave. If it returns inconsistent results (sometimes saying
$x[1] is less than $x[2] and sometimes saying the opposite, for example) the results are not well-
defined.

178 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Because <=> returns undef when either operand is NaN (not-a-number), be careful when sorting
with a comparison function like $a <=> $b any lists that might contain a NaN. The following
example takes advantage that NaN != NaN to eliminate any NaNs from the input list.

my @result = sort { $a <=> $b } grep { $_ == $_ } @input;

splice ARRAY,OFFSET,LENGTH,LIST

splice ARRAY,OFFSET,LENGTH

splice ARRAY,OFFSET

splice ARRAY

Removes the elements designated by OFFSET and LENGTH from an array, and replaces them with the
elements of LIST, if any. In list context, returns the elements removed from the array. In scalar
context, returns the last element removed, or undef if no elements are removed. The array grows or
shrinks as necessary. If OFFSET is negative then it starts that far from the end of the array. If LENGTH

is omitted, removes everything from OFFSET onward. If LENGTH is negative, removes the elements
from OFFSET onward except for −LENGTH elements at the end of the array. If both OFFSET and
LENGTH are omitted, removes everything. If OFFSET is past the end of the array and a LENGTH was
provided, Perl issues a warning, and splices at the end of the array.

The following equivalences hold (assuming $#a >= $i)

push(@a,$x,$y) splice(@a,@a,0,$x,$y)
pop(@a) splice(@a,−1)
shift(@a) splice(@a,0,1)
unshift(@a,$x,$y) splice(@a,0,0,$x,$y)
$a[$i] = $y splice(@a,$i,1,$y)

splice can be used, for example, to implement n−ary queue processing:

sub nary_print {
my $n = shift;
while (my @next_n = splice @_, 0, $n) {
say join q{ −− }, @next_n;

}
}

nary_print(3, qw(a b c d e f g h));
prints:
a −− b −− c
d −− e −− f
g −− h

Starting with Perl 5.14, an experimental feature allowed splice to take a scalar expression. This
experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

split /PATTERN/,EXPR,LIMIT
split /PATTERN/,EXPR
split /PATTERN/
split

Splits the string EXPR into a list of strings and returns the list in list context, or the size of the list in
scalar context. (Prior to Perl 5.11, it also overwrote @_ with the list in void and scalar context. If you
target old perls, beware.)

If only PATTERN is given, EXPR defaults to $_.

Anything in EXPR that matches PATTERN is taken to be a separator that separates the EXPR into
substrings (called "fields") that do not include the separator. Note that a separator may be longer than
one character or even hav e no characters at all (the empty string, which is a zero-width match).

The PATTERN need not be constant; an expression may be used to specify a pattern that varies at
runtime.

If PATTERN matches the empty string, the EXPR is split at the match position (between characters).
As an example, the following:

perl v5.26.1 2018-11-19 179

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

print join(':', split(/b/, 'abc')), "\n";

uses the b in 'abc' as a separator to produce the output a:c. Howev er, this:

print join(':', split(//, 'abc')), "\n";

uses empty string matches as separators to produce the output a:b:c; thus, the empty string may be
used to split EXPR into a list of its component characters.

As a special case for split, the empty pattern given in match operator syntax (//) specifically
matches the empty string, which is contrary to its usual interpretation as the last successful match.

If PATTERN is /ˆ/, then it is treated as if it used the multiline modifier (/ˆ/m), since it isn’t much
use otherwise.

/m and any of the other pattern modifiers valid for qr (summarized in ‘‘qr/STRING/msixpodualn’’ in
perlop) may be specified explicitly.

As another special case, split emulates the default behavior of the command line tool awk when the
PATTERN is either omitted or a string composed of a single space character (such as ' ' or "\x20",
but not e.g. / /). In this case, any leading whitespace in EXPR is removed before splitting occurs,
and the PATTERN is instead treated as if it were /\s+/; in particular, this means that any contiguous
whitespace (not just a single space character) is used as a separator. Howev er, this special treatment
can be avoided by specifying the pattern / / instead of the string " ", thereby allowing only a single
space character to be a separator. In earlier Perls this special case was restricted to the use of a plain
" " as the pattern argument to split; in Perl 5.18.0 and later this special case is triggered by any
expression which evaluates to the simple string " ".

If omitted, PATTERN defaults to a single space, " ", triggering the previously described awk
emulation.

If LIMIT is specified and positive, it represents the maximum number of fields into which the EXPR

may be split; in other words, LIMIT is one greater than the maximum number of times EXPR may be
split. Thus, the LIMIT value 1 means that EXPR may be split a maximum of zero times, producing a
maximum of one field (namely, the entire value of EXPR). For instance:

print join(':', split(//, 'abc', 1)), "\n";

produces the output abc, and this:

print join(':', split(//, 'abc', 2)), "\n";

produces the output a:bc, and each of these:

print join(':', split(//, 'abc', 3)), "\n";
print join(':', split(//, 'abc', 4)), "\n";

produces the output a:b:c.

If LIMIT is negative, it is treated as if it were instead arbitrarily large; as many fields as possible are
produced.

If LIMIT is omitted (or, equivalently, zero), then it is usually treated as if it were instead negative but
with the exception that trailing empty fields are stripped (empty leading fields are always preserved); if
all fields are empty, then all fields are considered to be trailing (and are thus stripped in this case).
Thus, the following:

print join(':', split(/,/, 'a,b,c,,,')), "\n";

produces the output a:b:c, but the following:

print join(':', split(/,/, 'a,b,c,,,', −1)), "\n";

produces the output a:b:c:::.

In time-critical applications, it is worthwhile to avoid splitting into more fields than necessary. Thus,
when assigning to a list, if LIMIT is omitted (or zero), then LIMIT is treated as though it were one
larger than the number of variables in the list; for the following, LIMIT is implicitly 3:

180 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

my ($login, $passwd) = split(/:/);

Note that splitting an EXPR that evaluates to the empty string always produces zero fields, regardless
of the LIMIT specified.

An empty leading field is produced when there is a positive-width match at the beginning of EXPR.

For instance:

print join(':', split(/ /, ' abc')), "\n";

produces the output :abc. Howev er, a zero-width match at the beginning of EXPR never produces an
empty field, so that:

print join(':', split(//, ' abc'));

produces the output :a:b:c (rather than : :a:b:c).

An empty trailing field, on the other hand, is produced when there is a match at the end of EXPR,

regardless of the length of the match (of course, unless a non-zero LIMIT is given explicitly, such fields
are removed, as in the last example). Thus:

print join(':', split(//, ' abc', −1)), "\n";

produces the output :a:b:c:.

If the PATTERN contains capturing groups, then for each separator, an additional field is produced for
each substring captured by a group (in the order in which the groups are specified, as per
backreferences); if any group does not match, then it captures the undef value instead of a substring.
Also, note that any such additional field is produced whenever there is a separator (that is, whenever a
split occurs), and such an additional field does not count towards the LIMIT. Consider the following
expressions evaluated in list context (each returned list is provided in the associated comment):

split(/−|,/, "1−10,20", 3)
('1', '10', '20')

split(/(−|,)/, "1−10,20", 3)
('1', '−', '10', ',', '20')

split(/−|(,)/, "1−10,20", 3)
('1', undef, '10', ',', '20')

split(/(−)|,/, "1−10,20", 3)
('1', '−', '10', undef, '20')

split(/(−)|(,)/, "1−10,20", 3)
('1', '−', undef, '10', undef, ',', '20')

sprintf FORMAT, LIST

Returns a string formatted by the usual printf conventions of the C library function sprintf. See
below for more details and see sprintf (3) or printf (3) on your system for an explanation of the general
principles.

For example:

Format number with up to 8 leading zeroes
my $result = sprintf("%08d", $number);

Round number to 3 digits after decimal point
my $rounded = sprintf("%.3f", $number);

Perl does its own sprintf formatting: it emulates the C function sprintf (3), but doesn’t use it except
for floating-point numbers, and even then only standard modifiers are allowed. Non-standard
extensions in your local sprintf (3) are therefore unavailable from Perl.

Unlike printf, sprintf does not do what you probably mean when you pass it an array as your
first argument. The array is given scalar context, and instead of using the 0th element of the array as
the format, Perl will use the count of elements in the array as the format, which is almost never useful.

perl v5.26.1 2018-11-19 181

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Perl’s sprintf permits the following universally-known conversions:

%% a percent sign
%c a character with the given number
%s a string
%d a signed integer, in decimal
%u an unsigned integer, in decimal
%o an unsigned integer, in octal
%x an unsigned integer, in hexadecimal
%e a floating−point number, in scientific notation
%f a floating−point number, in fixed decimal notation
%g a floating−point number, in %e or %f notation

In addition, Perl permits the following widely-supported conversions:

%X like %x, but using upper−case letters
%E like %e, but using an upper−case "E"
%G like %g, but with an upper−case "E" (if applicable)
%b an unsigned integer, in binary
%B like %b, but using an upper−case "B" with the # flag
%p a pointer (outputs the Perl value's address in hexadecimal)
%n special: *stores* the number of characters output so far

into the next argument in the parameter list
%a hexadecimal floating point
%A like %a, but using upper−case letters

Finally, for backward (and we do mean ‘‘backward’’) compatibility, Perl permits these unnecessary but
widely-supported conversions:

%i a synonym for %d
%D a synonym for %ld
%U a synonym for %lu
%O a synonym for %lo
%F a synonym for %f

Note that the number of exponent digits in the scientific notation produced by %e, %E, %g and %G for
numbers with the modulus of the exponent less than 100 is system-dependent: it may be three or less
(zero-padded as necessary). In other words, 1.23 times ten to the 99th may be either ‘‘1.23e99’’ or
‘‘1.23e099’’. Similarly for %a and %A: the exponent or the hexadecimal digits may float: especially
the ‘‘long doubles’’ Perl configuration option may cause surprises.

Between the % and the format letter, you may specify several additional attributes controlling the
interpretation of the format. In order, these are:

format parameter index
An explicit format parameter index, such as 2$. By default sprintf will format the next unused
argument in the list, but this allows you to take the arguments out of order:

printf '%2$d %1$d', 12, 34; # prints "34 12"
printf '%3$d %d %1$d', 1, 2, 3; # prints "3 1 1"

flags
one or more of:

space prefix non−negative number with a space
+ prefix non−negative number with a plus sign
− left−justify within the field
0 use zeros, not spaces, to right−justify
ensure the leading "0" for any octal,

prefix non−zero hexadecimal with "0x" or "0X",
prefix non−zero binary with "0b" or "0B"

For example:

182 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

printf '<% d>', 12; # prints "< 12>"
printf '<% d>', 0; # prints "< 0>"
printf '<% d>', −12; # prints "<−12>"
printf '<%+d>', 12; # prints "<+12>"
printf '<%+d>', 0; # prints "<+0>"
printf '<%+d>', −12; # prints "<−12>"
printf '<%6s>', 12; # prints "< 12>"
printf '<%−6s>', 12; # prints "<12 >"
printf '<%06s>', 12; # prints "<000012>"
printf '<%#o>', 12; # prints "<014>"
printf '<%#x>', 12; # prints "<0xc>"
printf '<%#X>', 12; # prints "<0XC>"
printf '<%#b>', 12; # prints "<0b1100>"
printf '<%#B>', 12; # prints "<0B1100>"

When a space and a plus sign are given as the flags at once, the space is ignored.

printf '<%+ d>', 12; # prints "<+12>"
printf '<% +d>', 12; # prints "<+12>"

When the # flag and a precision are given in the %o conversion, the precision is incremented if it’s
necessary for the leading ‘‘0’’.

printf '<%#.5o>', 012; # prints "<00012>"
printf '<%#.5o>', 012345; # prints "<012345>"
printf '<%#.0o>', 0; # prints "<0>"

vector flag
This flag tells Perl to interpret the supplied string as a vector of integers, one for each character in
the string. Perl applies the format to each integer in turn, then joins the resulting strings with a
separator (a dot . by default). This can be useful for displaying ordinal values of characters in
arbitrary strings:

printf "%vd", "AB\x{100}"; # prints "65.66.256"
printf "version is v%vd\n", $ˆV; # Perl's version

Put an asterisk * before the v to override the string to use to separate the numbers:

printf "address is %*vX\n", ":", $addr; # IPv6 address
printf "bits are %0*v8b\n", " ", $bits; # random bitstring

You can also explicitly specify the argument number to use for the join string using something
like *2$v; for example:

printf '%*4$vX %*4$vX %*4$vX', # 3 IPv6 addresses
@addr[1..3], ":";

(minimum) width
Arguments are usually formatted to be only as wide as required to display the given value. You
can override the width by putting a number here, or get the width from the next argument (with
*) or from a specified argument (e.g., with *2$):

printf "<%s>", "a"; # prints "<a>"
printf "<%6s>", "a"; # prints "< a>"
printf "<%*s>", 6, "a"; # prints "< a>"
printf '<%*2$s>', "a", 6; # prints "< a>"
printf "<%2s>", "long"; # prints "<long>" (does not truncate)

If a field width obtained through * is negative, it has the same effect as the − flag: left-
justification.

precision, or maximum width
You can specify a precision (for numeric conversions) or a maximum width (for string
conversions) by specifying a . followed by a number. For floating-point formats except g and G,
this specifies how many places right of the decimal point to show (the default being 6). For
example:

perl v5.26.1 2018-11-19 183

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

these examples are subject to system−specific variation
printf '<%f>', 1; # prints "<1.000000>"
printf '<%.1f>', 1; # prints "<1.0>"
printf '<%.0f>', 1; # prints "<1>"
printf '<%e>', 10; # prints "<1.000000e+01>"
printf '<%.1e>', 10; # prints "<1.0e+01>"

For ‘‘g’’ and ‘‘G’’, this specifies the maximum number of significant digits to show; for example:

These examples are subject to system−specific variation.
printf '<%g>', 1; # prints "<1>"
printf '<%.10g>', 1; # prints "<1>"
printf '<%g>', 100; # prints "<100>"
printf '<%.1g>', 100; # prints "<1e+02>"
printf '<%.2g>', 100.01; # prints "<1e+02>"
printf '<%.5g>', 100.01; # prints "<100.01>"
printf '<%.4g>', 100.01; # prints "<100>"
printf '<%.1g>', 0.0111; # prints "<0.01>"
printf '<%.2g>', 0.0111; # prints "<0.011>"
printf '<%.3g>', 0.0111; # prints "<0.0111>"

For integer conversions, specifying a precision implies that the output of the number itself should
be zero-padded to this width, where the 0 flag is ignored:

printf '<%.6d>', 1; # prints "<000001>"
printf '<%+.6d>', 1; # prints "<+000001>"
printf '<%−10.6d>', 1; # prints "<000001 >"
printf '<%10.6d>', 1; # prints "< 000001>"
printf '<%010.6d>', 1; # prints "< 000001>"
printf '<%+10.6d>', 1; # prints "< +000001>"

printf '<%.6x>', 1; # prints "<000001>"
printf '<%#.6x>', 1; # prints "<0x000001>"
printf '<%−10.6x>', 1; # prints "<000001 >"
printf '<%10.6x>', 1; # prints "< 000001>"
printf '<%010.6x>', 1; # prints "< 000001>"
printf '<%#10.6x>', 1; # prints "< 0x000001>"

For string conversions, specifying a precision truncates the string to fit the specified width:

printf '<%.5s>', "truncated"; # prints "<trunc>"
printf '<%10.5s>', "truncated"; # prints "< trunc>"

You can also get the precision from the next argument using .*, or from a specified argument
(e.g., with .*2$):

printf '<%.6x>', 1; # prints "<000001>"
printf '<%.*x>', 6, 1; # prints "<000001>"

printf '<%.*2$x>', 1, 6; # prints "<000001>"

printf '<%6.*2$x>', 1, 4; # prints "< 0001>"

If a precision obtained through * is negative, it counts as having no precision at all.

printf '<%.*s>', 7, "string"; # prints "<string>"
printf '<%.*s>', 3, "string"; # prints "<str>"
printf '<%.*s>', 0, "string"; # prints "<>"
printf '<%.*s>', −1, "string"; # prints "<string>"

printf '<%.*d>', 1, 0; # prints "<0>"
printf '<%.*d>', 0, 0; # prints "<>"
printf '<%.*d>', −1, 0; # prints "<0>"

184 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

size
For numeric conversions, you can specify the size to interpret the number as using l, h, V, q, L,
or ll. For integer conversions (d u o x X b i D U O), numbers are usually assumed to be
whatever the default integer size is on your platform (usually 32 or 64 bits), but you can override
this to use instead one of the standard C types, as supported by the compiler used to build Perl:

hh interpret integer as C type "char" or "unsigned
char" on Perl 5.14 or later

h interpret integer as C type "short" or
"unsigned short"

j interpret integer as C type "intmax_t" on Perl
5.14 or later, and only with a C99 compiler
(unportable)

l interpret integer as C type "long" or
"unsigned long"

q, L, or ll interpret integer as C type "long long",
"unsigned long long", or "quad" (typically
64−bit integers)

t interpret integer as C type "ptrdiff_t" on Perl
5.14 or later

z interpret integer as C type "size_t" on Perl 5.14
or later

As of 5.14, none of these raises an exception if they are not supported on your platform.
However, if warnings are enabled, a warning of the printf warning class is issued on an
unsupported conversion flag. Should you instead prefer an exception, do this:

use warnings FATAL => "printf";

If you would like to know about a version dependency before you start running the program, put
something like this at its top:

use 5.014; # for hh/j/t/z/ printf modifiers

You can find out whether your Perl supports quads via Config:

use Config;
if ($Config{use64bitint} eq "define"

|| $Config{longsize} >= 8) {
print "Nice quads!\n";

}

For floating-point conversions (e f g E F G), numbers are usually assumed to be the default
floating-point size on your platform (double or long double), but you can force ‘‘long double’’
with q, L, or ll if your platform supports them. You can find out whether your Perl supports
long doubles via Config:

use Config;
print "long doubles\n" if $Config{d_longdbl} eq "define";

You can find out whether Perl considers ‘‘long double’’ to be the default floating-point size to use
on your platform via Config:

use Config;
if ($Config{uselongdouble} eq "define") {

print "long doubles by default\n";
}

It can also be that long doubles and doubles are the same thing:

use Config;
($Config{doublesize} == $Config{longdblsize}) &&

print "doubles are long doubles\n";

The size specifier V has no effect for Perl code, but is supported for compatibility with XS code.
It means ‘‘use the standard size for a Perl integer or floating-point number’’, which is the default.

perl v5.26.1 2018-11-19 185

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

order of arguments
Normally, sprintf takes the next unused argument as the value to format for each format
specification. If the format specification uses * to require additional arguments, these are
consumed from the argument list in the order they appear in the format specification before the
value to format. Where an argument is specified by an explicit index, this does not affect the
normal order for the arguments, even when the explicitly specified index would have been the
next argument.

So:

printf "<%*.*s>", $a, $b, $c;

uses $a for the width, $b for the precision, and $c as the value to format; while:

printf '<%*1$.*s>', $a, $b;

would use $a for the width and precision, and $b as the value to format.

Here are some more examples; be aware that when using an explicit index, the $ may need
escaping:

printf "%2\$d %d\n", 12, 34; # will print "34 12\n"
printf "%2\$d %d %d\n", 12, 34; # will print "34 12 34\n"
printf "%3\$d %d %d\n", 12, 34, 56; # will print "56 12 34\n"
printf "%2\$*3\$d %d\n", 12, 34, 3; # will print " 34 12\n"
printf "%*1\$.*f\n", 4, 5, 10; # will print "5.0000\n"

If use locale (including use locale ':not_characters') is in effect and
POSIX::setlocale has been called, the character used for the decimal separator in formatted
floating-point numbers is affected by the LC_NUMERIC locale. See perllocale and POSIX.

sqrt EXPR

sqrt Return the positive square root of EXPR. If EXPR is omitted, uses $_. Works only for non-negative
operands unless you’ve loaded the Math::Complex module.

use Math::Complex;
print sqrt(−4); # prints 2i

srand EXPR

srand
Sets and returns the random number seed for the rand operator.

The point of the function is to ‘‘seed’’ the rand function so that rand can produce a different
sequence each time you run your program. When called with a parameter, srand uses that for the
seed; otherwise it (semi−)randomly chooses a seed. In either case, starting with Perl 5.14, it returns
the seed. To signal that your code will work only on Perls of a recent vintage:

use 5.014; # so srand returns the seed

If srand is not called explicitly, it is called implicitly without a parameter at the first use of the rand
operator. Howev er, there are a few situations where programs are likely to want to call srand. One
is for generating predictable results, generally for testing or debugging. There, you use
srand($seed), with the same $seed each time. Another case is that you may want to call srand
after a fork to avoid child processes sharing the same seed value as the parent (and consequently
each other).

Do not call srand() (i.e., without an argument) more than once per process. The internal state of
the random number generator should contain more entropy than can be provided by any seed, so
calling srand again actually loses randomness.

Most implementations of srand take an integer and will silently truncate decimal numbers. This
means srand(42) will usually produce the same results as srand(42.1). To be safe, always
pass srand an integer.

A typical use of the returned seed is for a test program which has too many combinations to test
comprehensively in the time available to it each run. It can test a random subset each time, and should
there be a failure, log the seed used for that run so that it can later be used to reproduce the same

186 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

results.

rand is not cryptographically secure. You should not rely on it in security-sensitive situations.
As of this writing, a number of third-party CPAN modules offer random number generators intended
by their authors to be cryptographically secure, including: Data::Entropy, Crypt::Random,
Math::Random::Secure, and Math::TrulyRandom.

stat FILEHANDLE

stat EXPR

stat DIRHANDLE

stat Returns a 13−element list giving the status info for a file, either the file opened via FILEHANDLE or
DIRHANDLE, or named by EXPR. If EXPR is omitted, it stats $_ (not _!). Returns the empty list if
stat fails. Typically used as follows:

my ($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,
$atime,$mtime,$ctime,$blksize,$blocks)

= stat($filename);

Not all fields are supported on all filesystem types. Here are the meanings of the fields:

0 dev device number of filesystem
1 ino inode number
2 mode file mode (type and permissions)
3 nlink number of (hard) links to the file
4 uid numeric user ID of file's owner
5 gid numeric group ID of file's owner
6 rdev the device identifier (special files only)
7 size total size of file, in bytes
8 atime last access time in seconds since the epoch
9 mtime last modify time in seconds since the epoch
10 ctime inode change time in seconds since the epoch (*)
11 blksize preferred I/O size in bytes for interacting with the

file (may vary from file to file)
12 blocks actual number of system−specific blocks allocated

on disk (often, but not always, 512 bytes each)

(The epoch was at 00:00 January 1, 1970 GMT.)

(*) Not all fields are supported on all filesystem types. Notably, the ctime field is non-portable. In
particular, you cannot expect it to be a ‘‘creation time’’; see ‘‘Files and Filesystems’’ in perlport for
details.

If stat is passed the special filehandle consisting of an underline, no stat is done, but the current
contents of the stat structure from the last stat, lstat, or filetest are returned. Example:

if (−x $file && (($d) = stat(_)) && $d < 0) {
print "$file is executable NFS file\n";

}

(This works on machines only for which the device number is negative under NFS.)

Because the mode contains both the file type and its permissions, you should mask off the file type
portion and (s)printf using a "%o" if you want to see the real permissions.

my $mode = (stat($filename))[2];
printf "Permissions are %04o\n", $mode & 07777;

In scalar context, stat returns a boolean value indicating success or failure, and, if successful, sets
the information associated with the special filehandle _.

The File::stat module provides a convenient, by-name access mechanism:

perl v5.26.1 2018-11-19 187

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

use File::stat;
my $sb = stat($filename);
printf "File is %s, size is %s, perm %04o, mtime %s\n",

$filename, $sb−>size, $sb−>mode & 07777,
scalar localtime $sb−>mtime;

You can import symbolic mode constants (S_IF*) and functions (S_IS*) from the Fcntl module:

use Fcntl ':mode';

my $mode = (stat($filename))[2];

my $user_rwx = ($mode & S_IRWXU) >> 6;
my $group_read = ($mode & S_IRGRP) >> 3;
my $other_execute = $mode & S_IXOTH;

printf "Permissions are %04o\n", S_IMODE($mode), "\n";

my $is_setuid = $mode & S_ISUID;
my $is_directory = S_ISDIR($mode);

You could write the last two using the −u and −d operators. Commonly available S_IF* constants
are:

Permissions: read, write, execute, for user, group, others.

S_IRWXU S_IRUSR S_IWUSR S_IXUSR
S_IRWXG S_IRGRP S_IWGRP S_IXGRP
S_IRWXO S_IROTH S_IWOTH S_IXOTH

Setuid/Setgid/Stickiness/SaveText.
Note that the exact meaning of these is system−dependent.

S_ISUID S_ISGID S_ISVTX S_ISTXT

File types. Not all are necessarily available on
your system.

S_IFREG S_IFDIR S_IFLNK S_IFBLK S_IFCHR
S_IFIFO S_IFSOCK S_IFWHT S_ENFMT

The following are compatibility aliases for S_IRUSR,
S_IWUSR, and S_IXUSR.

S_IREAD S_IWRITE S_IEXEC

and the S_IF* functions are

S_IMODE($mode) the part of $mode containing the permission
bits and the setuid/setgid/sticky bits

S_IFMT($mode) the part of $mode containing the file type
which can be bit−anded with (for example)
S_IFREG or with the following functions

The operators −f, −d, −l, −b, −c, −p, and −S.

S_ISREG($mode) S_ISDIR($mode) S_ISLNK($mode)
S_ISBLK($mode) S_ISCHR($mode) S_ISFIFO($mode) S_ISSOCK($mode)

No direct −X operator counterpart, but for the first one
the −g operator is often equivalent. The ENFMT stands for

188 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

record flocking enforcement, a platform−dependent feature.

S_ISENFMT($mode) S_ISWHT($mode)

See your native chmod (2) and stat (2) documentation for more details about the S_* constants. To get
status info for a symbolic link instead of the target file behind the link, use the lstat function.

Portability issues: ‘‘stat’’ in perlport.

state VARLIST

state TYPE VARLIST

state VARLIST : ATTRS

state TYPE VARLIST : ATTRS

state declares a lexically scoped variable, just like my. Howev er, those variables will never be
reinitialized, contrary to lexical variables that are reinitialized each time their enclosing block is
entered. See ‘‘Persistent Private Variables’’ in perlsub for details.

If more than one variable is listed, the list must be placed in parentheses. With a parenthesised list,
undef can be used as a dummy placeholder. Howev er, since initialization of state variables in list
context is currently not possible this would serve no purpose.

state is available only if the "state" feature is enabled or if it is prefixed with CORE::. The
"state" feature is enabled automatically with a use v5.10 (or higher) declaration in the current
scope.

study SCALAR

study
At this time, study does nothing. This may change in the future.

Prior to Perl version 5.16, it would create an inverted index of all characters that occurred in the given
SCALAR (or $_ if unspecified). When matching a pattern, the rarest character from the pattern would
be looked up in this index. Rarity was based on some static frequency tables constructed from some C
programs and English text.

sub NAME BLOCK

sub NAME (PROT O) BLOCK

sub NAME : ATTRS BLOCK

sub NAME (PROT O) : ATTRS BLOCK

This is subroutine definition, not a real function per se. Without a BLOCK it’s just a forward
declaration. Without a NAME, it’s an anonymous function declaration, so does return a value: the
CODE ref of the closure just created.

See perlsub and perlref for details about subroutines and references; see attributes and
Attribute::Handlers for more information about attributes.

_ _SUB_ _
A special token that returns a reference to the current subroutine, or undef outside of a subroutine.

The behaviour of __SUB_ _ within a regex code block (such as /(?{...})/) is subject to change.

This token is only available under use v5.16 or the "current_sub" feature. See feature.

substr EXPR,OFFSET,LENGTH,REPLACEMENT

substr EXPR,OFFSET,LENGTH

substr EXPR,OFFSET

Extracts a substring out of EXPR and returns it. First character is at offset zero. If OFFSET is negative,
starts that far back from the end of the string. If LENGTH is omitted, returns everything through the
end of the string. If LENGTH is negative, leaves that many characters off the end of the string.

my $s = "The black cat climbed the green tree";
my $color = substr $s, 4, 5; # black
my $middle = substr $s, 4, −11; # black cat climbed the
my $end = substr $s, 14; # climbed the green tree
my $tail = substr $s, −4; # tree
my $z = substr $s, −4, 2; # tr

You can use the substr function as an lvalue, in which case EXPR must itself be an lvalue. If you

perl v5.26.1 2018-11-19 189

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

assign something shorter than LENGTH, the string will shrink, and if you assign something longer than
LENGTH, the string will grow to accommodate it. To keep the string the same length, you may need to
pad or chop your value using sprintf.

If OFFSET and LENGTH specify a substring that is partly outside the string, only the part within the
string is returned. If the substring is beyond either end of the string, substr returns the undefined
value and produces a warning. When used as an lvalue, specifying a substring that is entirely outside
the string raises an exception. Here’s an example showing the behavior for boundary cases:

my $name = 'fred';
substr($name, 4) = 'dy'; # $name is now 'freddy'
my $null = substr $name, 6, 2; # returns "" (no warning)
my $oops = substr $name, 7; # returns undef, with warning
substr($name, 7) = 'gap'; # raises an exception

An alternative to using substr as an lvalue is to specify the replacement string as the 4th argument.
This allows you to replace parts of the EXPR and return what was there before in one operation, just as
you can with splice.

my $s = "The black cat climbed the green tree";
my $z = substr $s, 14, 7, "jumped from"; # climbed
$s is now "The black cat jumped from the green tree"

Note that the lvalue returned by the three-argument version of substr acts as a ’magic bullet’; each
time it is assigned to, it remembers which part of the original string is being modified; for example:

my $x = '1234';
for (substr($x,1,2)) {

$_ = 'a'; print $x,"\n"; # prints 1a4
$_ = 'xyz'; print $x,"\n"; # prints 1xyz4
$x = '56789';
$_ = 'pq'; print $x,"\n"; # prints 5pq9

}

With negative offsets, it remembers its position from the end of the string when the target string is
modified:

my $x = '1234';
for (substr($x, −3, 2)) {

$_ = 'a'; print $x,"\n"; # prints 1a4, as above
$x = 'abcdefg';
print $_,"\n"; # prints f

}

Prior to Perl version 5.10, the result of using an lvalue multiple times was unspecified. Prior to 5.16,
the result with negative offsets was unspecified.

symlink OLDFILE,NEWFILE

Creates a new filename symbolically linked to the old filename. Returns 1 for success, 0 otherwise.
On systems that don’t support symbolic links, raises an exception. To check for that, use eval:

my $symlink_exists = eval { symlink("",""); 1 };

Portability issues: ‘‘symlink’’ in perlport.

syscall NUMBER, LIST

Calls the system call specified as the first element of the list, passing the remaining elements as
arguments to the system call. If unimplemented, raises an exception. The arguments are interpreted as
follows: if a given argument is numeric, the argument is passed as an int. If not, the pointer to the
string value is passed. You are responsible to make sure a string is pre-extended long enough to
receive any result that might be written into a string. You can’t use a string literal (or other read-only
string) as an argument to syscall because Perl has to assume that any string pointer might be
written through. If your integer arguments are not literals and have nev er been interpreted in a
numeric context, you may need to add 0 to them to force them to look like numbers. This emulates
the syswrite function (or vice versa):

190 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

require 'syscall.ph'; # may need to run h2ph
my $s = "hi there\n";
syscall(SYS_write(), fileno(STDOUT), $s, length $s);

Note that Perl supports passing of up to only 14 arguments to your syscall, which in practice should
(usually) suffice.

Syscall returns whatever value returned by the system call it calls. If the system call fails, syscall
returns −1 and sets $! (errno). Note that some system calls can legitimately return −1. The proper
way to handle such calls is to assign $! = 0 before the call, then check the value of $! if syscall
returns −1.

There’s a problem with syscall(SYS_pipe()): it returns the file number of the read end of the
pipe it creates, but there is no way to retrieve the file number of the other end. You can avoid this
problem by using pipe instead.

Portability issues: ‘‘syscall’’ in perlport.

sysopen FILEHANDLE,FILENAME,MODE

sysopen FILEHANDLE,FILENAME,MODE,PERMS

Opens the file whose filename is given by FILENAME, and associates it with FILEHANDLE. If
FILEHANDLE is an expression, its value is used as the real filehandle wanted; an undefined scalar will
be suitably autovivified. This function calls the underlying operating system’s open (2) function with
the parameters FILENAME, MODE, and PERMS.

Returns true on success and undef otherwise.

The possible values and flag bits of the MODE parameter are system-dependent; they are available via
the standard module Fcntl. See the documentation of your operating system’s open (2) syscall to see
which values and flag bits are available. You may combine several flags using the |−operator.

Some of the most common values are O_RDONLY for opening the file in read-only mode, O_WRONLY
for opening the file in write-only mode, and O_RDWR for opening the file in read-write mode.

For historical reasons, some values work on almost every system supported by Perl: 0 means read-
only, 1 means write-only, and 2 means read/write. We know that these values do not work under
OS/390 and on the Macintosh; you probably don’t want to use them in new code.

If the file named by FILENAME does not exist and the open call creates it (typically because MODE

includes the O_CREAT flag), then the value of PERMS specifies the permissions of the newly created
file. If you omit the PERMS argument to sysopen, Perl uses the octal value 0666. These
permission values need to be in octal, and are modified by your process’s current umask.

In many systems the O_EXCL flag is available for opening files in exclusive mode. This is not
locking: exclusiveness means here that if the file already exists, sysopen fails. O_EXCL may not
work on network filesystems, and has no effect unless the O_CREAT flag is set as well. Setting
O_CREAT|O_EXCL prevents the file from being opened if it is a symbolic link. It does not protect
against symbolic links in the file’s path.

Sometimes you may want to truncate an already-existing file. This can be done using the O_TRUNC
flag. The behavior of O_TRUNC with O_RDONLY is undefined.

You should seldom if ever use 0644 as argument to sysopen, because that takes away the user’s
option to have a more permissive umask. Better to omit it. See umask for more on this.

Note that under Perls older than 5.8.0, sysopen depends on the fdopen (3) C library function. On
many Unix systems, fdopen (3) is known to fail when file descriptors exceed a certain value, typically
255. If you need more file descriptors than that, consider using the POSIX::open function. For
Perls 5.8.0 and later, PerlIO is (most often) the default.

See perlopentut for a kinder, gentler explanation of opening files.

Portability issues: ‘‘sysopen’’ in perlport.

sysread FILEHANDLE,SCALAR,LENGTH,OFFSET

perl v5.26.1 2018-11-19 191

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

sysread FILEHANDLE,SCALAR,LENGTH

Attempts to read LENGTH bytes of data into variable SCALAR from the specified FILEHANDLE, using
read (2). It bypasses buffered IO, so mixing this with other kinds of reads, print, write, seek,
tell, or eof can cause confusion because the perlio or stdio layers usually buffer data. Returns the
number of bytes actually read, 0 at end of file, or undef if there was an error (in the latter case $! is
also set). SCALAR will be grown or shrunk so that the last byte actually read is the last byte of the
scalar after the read.

An OFFSET may be specified to place the read data at some place in the string other than the
beginning. A negative OFFSET specifies placement at that many characters counting backwards from
the end of the string. A positive OFFSET greater than the length of SCALAR results in the string being
padded to the required size with "\0" bytes before the result of the read is appended.

There is no syseof() function, which is ok, since eof doesn’t work well on device files (like ttys)
anyway. Use sysread and check for a return value for 0 to decide whether you’re done.

Note that if the filehandle has been marked as :utf8, Unicode characters are read instead of bytes
(the LENGTH, OFFSET, and the return value of sysread are in Unicode characters). The
:encoding(...) layer implicitly introduces the :utf8 layer. See binmode, open, and the
open pragma.

sysseek FILEHANDLE,POSITION,WHENCE

Sets FILEHANDLE’s system position in bytes using lseek (2). FILEHANDLE may be an expression
whose value gives the name of the filehandle. The values for WHENCE are 0 to set the new position to
POSITION; 1 to set the it to the current position plus POSITION; and 2 to set it to EOF plus POSITION,

typically negative.

Note the emphasis on bytes: even if the filehandle has been set to operate on characters (for example
using the :encoding(UTF−8) I/O layer), the seek, tell, and sysseek family of functions use
byte offsets, not character offsets, because seeking to a character offset would be very slow in a UTF−8

file.

sysseek bypasses normal buffered IO, so mixing it with reads other than sysread (for example
readline or read), print, write, seek, tell, or eof may cause confusion.

For WHENCE, you may also use the constants SEEK_SET, SEEK_CUR, and SEEK_END (start of the
file, current position, end of the file) from the Fcntl module. Use of the constants is also more portable
than relying on 0, 1, and 2. For example to define a ‘‘systell’’ function:

use Fcntl 'SEEK_CUR';
sub systell { sysseek($_[0], 0, SEEK_CUR) }

Returns the new position, or the undefined value on failure. A position of zero is returned as the string
"0 but true"; thus sysseek returns true on success and false on failure, yet you can still easily
determine the new position.

system LIST

system PROGRAM LIST

Does exactly the same thing as exec, except that a fork is done first and the parent process waits for
the child process to exit. Note that argument processing varies depending on the number of
arguments. If there is more than one argument in LIST, or if LIST is an array with more than one value,
starts the program given by the first element of the list with arguments given by the rest of the list. If
there is only one scalar argument, the argument is checked for shell metacharacters, and if there are
any, the entire argument is passed to the system’s command shell for parsing (this is /bin/sh −c on
Unix platforms, but varies on other platforms). If there are no shell metacharacters in the argument, it
is split into words and passed directly to execvp, which is more efficient. On Windows, only the
system PROGRAM LIST syntax will reliably avoid using the shell; system LIST, even with
more than one element, will fall back to the shell if the first spawn fails.

Perl will attempt to flush all files opened for output before any operation that may do a fork, but this
may not be supported on some platforms (see perlport). To be safe, you may need to set $|
($AUTOFLUSH in English) or call the autoflush method of IO::Handle on any open handles.

The return value is the exit status of the program as returned by the wait call. To get the actual exit
value, shift right by eight (see below). See also exec. This is not what you want to use to capture the

192 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

output from a command; for that you should use merely backticks or qx//, as described in
‘‘‘STRING‘’’ in perlop. Return value of −1 indicates a failure to start the program or an error of the
wait (2) system call (inspect $! for the reason).

If you’d like to make system (and many other bits of Perl) die on error, hav e a look at the autodie
pragma.

Like exec, system allows you to lie to a program about its name if you use the system PROGRAM
LIST syntax. Again, see exec.

Since SIGINT and SIGQUIT are ignored during the execution of system, if you expect your
program to terminate on receipt of these signals you will need to arrange to do so yourself based on
the return value.

my @args = ("command", "arg1", "arg2");
system(@args) == 0

or die "system @args failed: $?";

If you’d like to manually inspect system’s failure, you can check all possible failure modes by
inspecting $? like this:

if ($? == −1) {
print "failed to execute: $!\n";

}
elsif ($? & 127) {

printf "child died with signal %d, %s coredump\n",
($? & 127), ($? & 128) ? 'with' : 'without';

}
else {

printf "child exited with value %d\n", $? >> 8;
}

Alternatively, you may inspect the value of ${ˆCHILD_ERROR_NATIVE} with the W*() calls from
the POSIX module.

When system’s arguments are executed indirectly by the shell, results and return codes are subject to
its quirks. See ‘‘‘STRING‘’’ in perlop and exec for details.

Since system does a fork and wait it may affect a SIGCHLD handler. See perlipc for details.

Portability issues: ‘‘system’’ in perlport.

syswrite FILEHANDLE,SCALAR,LENGTH,OFFSET

syswrite FILEHANDLE,SCALAR,LENGTH

syswrite FILEHANDLE,SCALAR

Attempts to write LENGTH bytes of data from variable SCALAR to the specified FILEHANDLE, using
write (2). If LENGTH is not specified, writes whole SCALAR. It bypasses buffered IO, so mixing this
with reads (other than sysread)), print, write, seek, tell, or eof may cause confusion
because the perlio and stdio layers usually buffer data. Returns the number of bytes actually written,
or undef if there was an error (in this case the errno variable $! is also set). If the LENGTH is
greater than the data available in the SCALAR after the OFFSET, only as much data as is available will
be written.

An OFFSET may be specified to write the data from some part of the string other than the beginning.
A neg ative OFFSET specifies writing that many characters counting backwards from the end of the
string. If SCALAR is of length zero, you can only use an OFFSET of 0.

WARNING: If the filehandle is marked :utf8, Unicode characters encoded in UTF−8 are written
instead of bytes, and the LENGTH, OFFSET, and return value of syswrite are in (UTF8−encoded
Unicode) characters. The :encoding(...) layer implicitly introduces the :utf8 layer.
Alternately, if the handle is not marked with an encoding but you attempt to write characters with code
points over 255, raises an exception. See binmode, open, and the open pragma.

tell FILEHANDLE

tell Returns the current position in bytes for FILEHANDLE, or −1 on error. FILEHANDLE may be an
expression whose value gives the name of the actual filehandle. If FILEHANDLE is omitted, assumes

perl v5.26.1 2018-11-19 193

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

the file last read.

Note the emphasis on bytes: even if the filehandle has been set to operate on characters (for example
using the :encoding(UTF−8) I/O layer), the seek, tell, and sysseek family of functions use
byte offsets, not character offsets, because seeking to a character offset would be very slow in a UTF−8

file.

The return value of tell for the standard streams like the STDIN depends on the operating system: it
may return −1 or something else. tell on pipes, fifos, and sockets usually returns −1.

There is no systell function. Use sysseek($fh, 0, 1) for that.

Do not use tell (or other buffered I/O operations) on a filehandle that has been manipulated by
sysread, syswrite, or sysseek. Those functions ignore the buffering, while tell does not.

telldir DIRHANDLE

Returns the current position of the readdir routines on DIRHANDLE. Value may be given to
seekdir to access a particular location in a directory. telldir has the same caveats about
possible directory compaction as the corresponding system library routine.

tie VARIABLE,CLASSNAME,LIST

This function binds a variable to a package class that will provide the implementation for the variable.
VARIABLE is the name of the variable to be enchanted. CLASSNAME is the name of a class
implementing objects of correct type. Any additional arguments are passed to the appropriate
constructor method of the class (meaning TIESCALAR, TIEHANDLE, TIEARRAY, or TIEHASH).
Typically these are arguments such as might be passed to the dbm_open (3) function of C. The object
returned by the constructor is also returned by the tie function, which would be useful if you want to
access other methods in CLASSNAME.

Note that functions such as keys and values may return huge lists when used on large objects, like
DBM files. You may prefer to use the each function to iterate over such. Example:

print out history file offsets
use NDBM_File;
tie(my %HIST, 'NDBM_File', '/usr/lib/news/history', 1, 0);
while (my ($key,$val) = each %HIST) {

print $key, ' = ', unpack('L', $val), "\n";
}

A class implementing a hash should have the following methods:

TIEHASH classname, LIST
FETCH this, key
STORE this, key, value
DELETE this, key
CLEAR this
EXISTS this, key
FIRSTKEY this
NEXTKEY this, lastkey
SCALAR this
DESTROY this
UNTIE this

A class implementing an ordinary array should have the following methods:

194 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

TIEARRAY classname, LIST
FETCH this, key
STORE this, key, value
FETCHSIZE this
STORESIZE this, count
CLEAR this
PUSH this, LIST
POP this
SHIFT this
UNSHIFT this, LIST
SPLICE this, offset, length, LIST
EXTEND this, count
DELETE this, key
EXISTS this, key
DESTROY this
UNTIE this

A class implementing a filehandle should have the following methods:

TIEHANDLE classname, LIST
READ this, scalar, length, offset
READLINE this
GETC this
WRITE this, scalar, length, offset
PRINT this, LIST
PRINTF this, format, LIST
BINMODE this
EOF this
FILENO this
SEEK this, position, whence
TELL this
OPEN this, mode, LIST
CLOSE this
DESTROY this
UNTIE this

A class implementing a scalar should have the following methods:

TIESCALAR classname, LIST
FETCH this,
STORE this, value
DESTROY this
UNTIE this

Not all methods indicated above need be implemented. See perltie, Tie::Hash, Tie::Array, Tie::Scalar,
and Tie::Handle.

Unlike dbmopen, the tie function will not use or require a module for you; you need to do that
explicitly yourself. See DB_File or the Config module for interesting tie implementations.

For further details see perltie, tied.

tied VARIABLE

Returns a reference to the object underlying VARIABLE (the same value that was originally returned
by the tie call that bound the variable to a package.) Returns the undefined value if VARIABLE isn’t
tied to a package.

time
Returns the number of non-leap seconds since whatever time the system considers to be the epoch,
suitable for feeding to gmtime and localtime. On most systems the epoch is 00:00:00 UTC,

January 1, 1970; a prominent exception being Mac OS Classic which uses 00:00:00, January 1, 1904
in the current local time zone for its epoch.

For measuring time in better granularity than one second, use the Time::HiRes module from Perl 5.8

perl v5.26.1 2018-11-19 195

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

onwards (or from CPAN before then), or, if you have gettimeofday (2), you may be able to use the
syscall interface of Perl. See perlfaq8 for details.

For date and time processing look at the many related modules on CPAN. For a comprehensive date
and time representation look at the DateTime module.

times
Returns a four-element list giving the user and system times in seconds for this process and any exited
children of this process.

my ($user,$system,$cuser,$csystem) = times;

In scalar context, times returns $user.

Children’s times are only included for terminated children.

Portability issues: ‘‘times’’ in perlport.

tr/// The transliteration operator. Same as y///. See ‘‘Quote-Like Operators’’ in perlop.

truncate FILEHANDLE,LENGTH

truncate EXPR,LENGTH

Truncates the file opened on FILEHANDLE, or named by EXPR, to the specified length. Raises an
exception if truncate isn’t implemented on your system. Returns true if successful, undef on error.

The behavior is undefined if LENGTH is greater than the length of the file.

The position in the file of FILEHANDLE is left unchanged. You may want to call seek before writing
to the file.

Portability issues: ‘‘truncate’’ in perlport.

uc EXPR

uc Returns an uppercased version of EXPR. This is the internal function implementing the \U escape in
double-quoted strings. It does not attempt to do titlecase mapping on initial letters. See ucfirst for
that.

If EXPR is omitted, uses $_.

This function behaves the same way under various pragmas, such as in a locale, as lc does.

ucfirst EXPR

ucfirst
Returns the value of EXPR with the first character in uppercase (titlecase in Unicode). This is the
internal function implementing the \u escape in double-quoted strings.

If EXPR is omitted, uses $_.

This function behaves the same way under various pragmas, such as in a locale, as lc does.

umask EXPR

umask
Sets the umask for the process to EXPR and returns the previous value. If EXPR is omitted, merely
returns the current umask.

The Unix permission rwxr−x−−− is represented as three sets of three bits, or three octal digits: 0750
(the leading 0 indicates octal and isn’t one of the digits). The umask value is such a number
representing disabled permissions bits. The permission (or ‘‘mode’’) values you pass mkdir or
sysopen are modified by your umask, so even if you tell sysopen to create a file with permissions
0777, if your umask is 0022, then the file will actually be created with permissions 0755. If your
umask were 0027 (group can’t write; others can’t read, write, or execute), then passing sysopen
0666 would create a file with mode 0640 (because 0666 &˜ 027 is 0640).

Here’s some advice: supply a creation mode of 0666 for regular files (in sysopen) and one of 0777
for directories (in mkdir) and executable files. This gives users the freedom of choice: if they want
protected files, they might choose process umasks of 022, 027, or even the particularly antisocial
mask of 077. Programs should rarely if ever make policy decisions better left to the user. The
exception to this is when writing files that should be kept private: mail files, web browser cookies,
.rhosts files, and so on.

196 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

If umask (2) is not implemented on your system and you are trying to restrict access for yourself (i.e.,
(EXPR & 0700) > 0), raises an exception. If umask (2) is not implemented and you are not trying
to restrict access for yourself, returns undef.

Remember that a umask is a number, usually given in octal; it is not a string of octal digits. See also
oct, if all you have is a string.

Portability issues: ‘‘umask’’ in perlport.

undef EXPR

undef
Undefines the value of EXPR, which must be an lvalue. Use only on a scalar value, an array (using @),
a hash (using %), a subroutine (using &), or a typeglob (using *). Saying undef $hash{$key}
will probably not do what you expect on most predefined variables or DBM list values, so don’t do
that; see delete. Always returns the undefined value. You can omit the EXPR, in which case
nothing is undefined, but you still get an undefined value that you could, for instance, return from a
subroutine, assign to a variable, or pass as a parameter. Examples:

undef $foo;
undef $bar{'blurfl'}; # Compare to: delete $bar{'blurfl'};
undef @ary;
undef %hash;
undef &mysub;
undef *xyz; # destroys $xyz, @xyz, %xyz, &xyz, etc.
return (wantarray ? (undef, $errmsg) : undef) if $they_blew_it;
select undef, undef, undef, 0.25;
my ($x, $y, undef, $z) = foo(); # Ignore third value returned

Note that this is a unary operator, not a list operator.

unlink LIST

unlink
Deletes a list of files. On success, it returns the number of files it successfully deleted. On failure, it
returns false and sets $! (errno):

my $unlinked = unlink 'a', 'b', 'c';
unlink @goners;
unlink glob "*.bak";

On error, unlink will not tell you which files it could not remove. If you want to know which files
you could not remove, try them one at a time:

foreach my $file (@goners) {
unlink $file or warn "Could not unlink $file: $!";

}

Note: unlink will not attempt to delete directories unless you are superuser and the −U flag is
supplied to Perl. Even if these conditions are met, be warned that unlinking a directory can inflict
damage on your filesystem. Finally, using unlink on directories is not supported on many operating
systems. Use rmdir instead.

If LIST is omitted, unlink uses $_.

unpack TEMPLATE,EXPR

unpack TEMPLATE

unpack does the reverse of pack: it takes a string and expands it out into a list of values. (In scalar
context, it returns merely the first value produced.)

If EXPR is omitted, unpacks the $_ string. See perlpacktut for an introduction to this function.

The string is broken into chunks described by the TEMPLATE. Each chunk is converted separately to a
value. Typically, either the string is a result of pack, or the characters of the string represent a C
structure of some kind.

The TEMPLATE has the same format as in the pack function. Here’s a subroutine that does substring:

perl v5.26.1 2018-11-19 197

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

sub substr {
my ($what, $where, $howmuch) = @_;
unpack("x$where a$howmuch", $what);

}

and then there’s

sub ordinal { unpack("W",$_[0]); } # same as ord()

In addition to fields allowed in pack, you may prefix a field with a %<number> to indicate that you
want a <number>−bit checksum of the items instead of the items themselves. Default is a 16−bit
checksum. The checksum is calculated by summing numeric values of expanded values (for string
fields the sum of ord($char) is taken; for bit fields the sum of zeroes and ones).

For example, the following computes the same number as the System V sum program:

my $checksum = do {
local $/; # slurp!
unpack("%32W*", readline) % 65535;

};

The following efficiently counts the number of set bits in a bit vector:

my $setbits = unpack("%32b*", $selectmask);

The p and P formats should be used with care. Since Perl has no way of checking whether the value
passed to unpack corresponds to a valid memory location, passing a pointer value that’s not known
to be valid is likely to have disastrous consequences.

If there are more pack codes or if the repeat count of a field or a group is larger than what the
remainder of the input string allows, the result is not well defined: the repeat count may be decreased,
or unpack may produce empty strings or zeros, or it may raise an exception. If the input string is
longer than one described by the TEMPLATE, the remainder of that input string is ignored.

See pack for more examples and notes.

unshift ARRAY,LIST

Does the opposite of a shift. Or the opposite of a push, depending on how you look at it.
Prepends list to the front of the array and returns the new number of elements in the array.

unshift(@ARGV, '−e') unless $ARGV[0] =˜ /ˆ−/;

Note the LIST is prepended whole, not one element at a time, so the prepended elements stay in the
same order. Use reverse to do the reverse.

Starting with Perl 5.14, an experimental feature allowed unshift to take a scalar expression. This
experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

untie VARIABLE

Breaks the binding between a variable and a package. (See tie.) Has no effect if the variable is not
tied.

use Module VERSION LIST

use Module VERSION

use Module LIST

use Module
use VERSION

Imports some semantics into the current package from the named module, generally by aliasing certain
subroutine or variable names into your package. It is exactly equivalent to

BEGIN { require Module; Module−>import(LIST); }

except that Module must be a bareword. The importation can be made conditional by using the if
module.

In the peculiar use VERSION form, VERSION may be either a positive decimal fraction such as
5.006, which will be compared to $], or a v−string of the form v5.6.1, which will be compared to $ˆV
(aka $PERL_VERSION). An exception is raised if VERSION is greater than the version of the current

198 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Perl interpreter; Perl will not attempt to parse the rest of the file. Compare with require, which can
do a similar check at run time. Symmetrically, no VERSION allows you to specify that you want a
version of Perl older than the specified one.

Specifying VERSION as a literal of the form v5.6.1 should generally be avoided, because it leads to
misleading error messages under earlier versions of Perl (that is, prior to 5.6.0) that do not support this
syntax. The equivalent numeric version should be used instead.

use v5.6.1; # compile time version check
use 5.6.1; # ditto
use 5.006_001; # ditto; preferred for backwards compatibility

This is often useful if you need to check the current Perl version before useing library modules that
won’t work with older versions of Perl. (We try not to do this more than we have to.)

use VERSION also lexically enables all features available in the requested version as defined by the
feature pragma, disabling any features not in the requested version’s feature bundle. See feature.
Similarly, if the specified Perl version is greater than or equal to 5.12.0, strictures are enabled lexically
as with use strict. Any explicit use of use strict or no strict overrides use
VERSION, even if it comes before it. Later use of use VERSION will override all behavior of a
previous use VERSION, possibly removing the strict and feature added by use VERSION.
use VERSION does not load the feature.pm or strict.pm files.

The BEGIN forces the require and import to happen at compile time. The require makes sure
the module is loaded into memory if it hasn’t been yet. The import is not a builtin; it’s just an
ordinary static method call into the Module package to tell the module to import the list of features
back into the current package. The module can implement its import method any way it likes,
though most modules just choose to derive their import method via inheritance from the Exporter
class that is defined in the Exporter module. See Exporter. If no import method can be found,
then the call is skipped, even if there is an AUTOLOAD method.

If you do not want to call the package’s import method (for instance, to stop your namespace from
being altered), explicitly supply the empty list:

use Module ();

That is exactly equivalent to

BEGIN { require Module }

If the VERSION argument is present between Module and LIST, then the use will call the VERSION
method in class Module with the given version as an argument:

use Module 12.34;

is equivalent to:

BEGIN { require Module; Module−>VERSION(12.34) }

The default VERSION method, inherited from the UNIVERSAL class, croaks if the given version is
larger than the value of the variable $Module::VERSION.

Again, there is a distinction between omitting LIST (import called with no arguments) and an
explicit empty LIST () (import not called). Note that there is no comma after VERSION!

Because this is a wide-open interface, pragmas (compiler directives) are also implemented this way.
Some of the currently implemented pragmas are:

use constant;
use diagnostics;
use integer;
use sigtrap qw(SEGV BUS);
use strict qw(subs vars refs);
use subs qw(afunc blurfl);
use warnings qw(all);
use sort qw(stable _quicksort _mergesort);

Some of these pseudo-modules import semantics into the current block scope (like strict or

perl v5.26.1 2018-11-19 199

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

integer, unlike ordinary modules, which import symbols into the current package (which are
effective through the end of the file).

Because use takes effect at compile time, it doesn’t respect the ordinary flow control of the code
being compiled. In particular, putting a use inside the false branch of a conditional doesn’t prevent it
from being processed. If a module or pragma only needs to be loaded conditionally, this can be done
using the if pragma:

use if $] < 5.008, "utf8";
use if WANT_WARNINGS, warnings => qw(all);

There’s a corresponding no declaration that unimports meanings imported by use, i.e., it calls
Module−>unimport(LIST) instead of import. It behaves just as import does with VERSION,

an omitted or empty LIST, or no unimport method being found.

no integer;
no strict 'refs';
no warnings;

Care should be taken when using the no VERSION form of no. It is only meant to be used to assert
that the running Perl is of a earlier version than its argument and not to undo the feature-enabling side
effects of use VERSION.

See perlmodlib for a list of standard modules and pragmas. See perlrun for the −M and −m command-
line options to Perl that give use functionality from the command-line.

utime LIST

Changes the access and modification times on each file of a list of files. The first two elements of the
list must be the NUMERIC access and modification times, in that order. Returns the number of files
successfully changed. The inode change time of each file is set to the current time. For example, this
code has the same effect as the Unix touch (1) command when the files already exist and belong to the
user running the program:

#!/usr/bin/perl
my $atime = my $mtime = time;
utime $atime, $mtime, @ARGV;

Since Perl 5.8.0, if the first two elements of the list are undef, the utime (2) syscall from your C
library is called with a null second argument. On most systems, this will set the file’s access and
modification times to the current time (i.e., equivalent to the example above) and will work even on
files you don’t own provided you have write permission:

for my $file (@ARGV) {
utime(undef, undef, $file)

|| warn "Couldn't touch $file: $!";
}

Under NFS this will use the time of the NFS server, not the time of the local machine. If there is a time
synchronization problem, the NFS server and local machine will have different times. The Unix
touch (1) command will in fact normally use this form instead of the one shown in the first example.

Passing only one of the first two elements as undef is equivalent to passing a 0 and will not have the
effect described when both are undef. This also triggers an uninitialized warning.

On systems that support futimes (2), you may pass filehandles among the files. On systems that don’t
support futimes (2), passing filehandles raises an exception. Filehandles must be passed as globs or
glob references to be recognized; barewords are considered filenames.

Portability issues: ‘‘utime’’ in perlport.

values HASH

values ARRAY

In list context, returns a list consisting of all the values of the named hash. In Perl 5.12 or later only,
will also return a list of the values of an array; prior to that release, attempting to use an array
argument will produce a syntax error. In scalar context, returns the number of values.

Hash entries are returned in an apparently random order. The actual random order is specific to a

200 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

given hash; the exact same series of operations on two hashes may result in a different order for each
hash. Any insertion into the hash may change the order, as will any deletion, with the exception that
the most recent key returned by each or keys may be deleted without changing the order. So long
as a given hash is unmodified you may rely on keys, values and each to repeatedly return the
same order as each other. See ‘‘Algorithmic Complexity Attacks’’ in perlsec for details on why hash
order is randomized. Aside from the guarantees provided here the exact details of Perl’s hash
algorithm and the hash traversal order are subject to change in any release of Perl. Tied hashes may
behave differently to Perl’s hashes with respect to changes in order on insertion and deletion of items.

As a side effect, calling values resets the HASH or ARRAY’s internal iterator, see each. (In
particular, calling values in void context resets the iterator with no other overhead. Apart from
resetting the iterator, values @array in list context is the same as plain @array. (We
recommend that you use void context keys @array for this, but reasoned that taking values
@array out would require more documentation than leaving it in.)

Note that the values are not copied, which means modifying them will modify the contents of the hash:

for (values %hash) { s/foo/bar/g } # modifies %hash values
for (@hash{keys %hash}) { s/foo/bar/g } # same

Starting with Perl 5.14, an experimental feature allowed values to take a scalar expression. This
experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

To avoid confusing would-be users of your code who are running earlier versions of Perl with
mysterious syntax errors, put this sort of thing at the top of your file to signal that your code will work
only on Perls of a recent vintage:

use 5.012; # so keys/values/each work on arrays

See also keys, each, and sort.

vec EXPR,OFFSET,BITS

Treats the string in EXPR as a bit vector made up of elements of width BITS and returns the value of
the element specified by OFFSET as an unsigned integer. BITS therefore specifies the number of bits
that are reserved for each element in the bit vector. This must be a power of two from 1 to 32 (or 64, if
your platform supports that).

If BITS is 8, ‘‘elements’’ coincide with bytes of the input string.

If BITS is 16 or more, bytes of the input string are grouped into chunks of size BITS/8, and each group
is converted to a number as with pack/unpack with big-endian formats n/N (and analogously for
BITS==64). See pack for details.

If bits is 4 or less, the string is broken into bytes, then the bits of each byte are broken into 8/BITS
groups. Bits of a byte are numbered in a little-endian-ish way, as in 0x01, 0x02, 0x04, 0x08,
0x10, 0x20, 0x40, 0x80. For example, breaking the single input byte chr(0x36) into two
groups gives a list (0x6, 0x3); breaking it into 4 groups gives (0x2, 0x1, 0x3, 0x0).

vec may also be assigned to, in which case parentheses are needed to give the expression the correct
precedence as in

vec($image, $max_x * $x + $y, 8) = 3;

If the selected element is outside the string, the value 0 is returned. If an element off the end of the
string is written to, Perl will first extend the string with sufficiently many zero bytes. It is an error to
try to write off the beginning of the string (i.e., negative OFFSET).

If the string happens to be encoded as UTF−8 internally (and thus has the UTF8 flag set), vec tries to
convert it to use a one-byte-per-character internal representation. However, if the string contains
characters with values of 256 or higher, that conversion will fail. In that situation, vec will operate on
the underlying buffer regardless, in its internal UTF−8 representation.

Strings created with vec can also be manipulated with the logical operators |, &, ˆ, and ˜. These
operators will assume a bit vector operation is desired when both operands are strings. See ‘‘Bitwise
String Operators’’ in perlop.

The following code will build up an ASCII string saying 'PerlPerlPerl'. The comments show

perl v5.26.1 2018-11-19 201

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

the string after each step. Note that this code works in the same way on big-endian or little-endian
machines.

my $foo = '';
vec($foo, 0, 32) = 0x5065726C; # 'Perl'

$foo eq "Perl" eq "\x50\x65\x72\x6C", 32 bits
print vec($foo, 0, 8); # prints 80 == 0x50 == ord('P')

vec($foo, 2, 16) = 0x5065; # 'PerlPe'
vec($foo, 3, 16) = 0x726C; # 'PerlPerl'
vec($foo, 8, 8) = 0x50; # 'PerlPerlP'
vec($foo, 9, 8) = 0x65; # 'PerlPerlPe'
vec($foo, 20, 4) = 2; # 'PerlPerlPe' . "\x02"
vec($foo, 21, 4) = 7; # 'PerlPerlPer'

'r' is "\x72"
vec($foo, 45, 2) = 3; # 'PerlPerlPer' . "\x0c"
vec($foo, 93, 1) = 1; # 'PerlPerlPer' . "\x2c"
vec($foo, 94, 1) = 1; # 'PerlPerlPerl'

'l' is "\x6c"

To transform a bit vector into a string or list of 0’s and 1’s, use these:

my $bits = unpack("b*", $vector);
my @bits = split(//, unpack("b*", $vector));

If you know the exact length in bits, it can be used in place of the *.

Here is an example to illustrate how the bits actually fall in place:

#!/usr/bin/perl −wl

print <<'EOT';
0 1 2 3

unpack("V",$_) 01234567890123456789012345678901
−−
EOT

for $w (0..3) {
$width = 2**$w;
for ($shift=0; $shift < $width; ++$shift) {

for ($off=0; $off < 32/$width; ++$off) {
$str = pack("B*", "0"x32);
$bits = (1<<$shift);
vec($str, $off, $width) = $bits;
$res = unpack("b*",$str);
$val = unpack("V", $str);
write;

}
}

}

format STDOUT =
vec($_,@#,@#) = @<< == @######### @>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
$off, $width, $bits, $val, $res
.
__END_ _

Regardless of the machine architecture on which it runs, the example above should print the following
table:

202 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

0 1 2 3
unpack("V",$_) 01234567890123456789012345678901

−−
vec($_, 0, 1) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 1) = 1 == 2 01000000000000000000000000000000
vec($_, 2, 1) = 1 == 4 00100000000000000000000000000000
vec($_, 3, 1) = 1 == 8 00010000000000000000000000000000
vec($_, 4, 1) = 1 == 16 00001000000000000000000000000000
vec($_, 5, 1) = 1 == 32 00000100000000000000000000000000
vec($_, 6, 1) = 1 == 64 00000010000000000000000000000000
vec($_, 7, 1) = 1 == 128 00000001000000000000000000000000
vec($_, 8, 1) = 1 == 256 00000000100000000000000000000000
vec($_, 9, 1) = 1 == 512 00000000010000000000000000000000
vec($_,10, 1) = 1 == 1024 00000000001000000000000000000000
vec($_,11, 1) = 1 == 2048 00000000000100000000000000000000
vec($_,12, 1) = 1 == 4096 00000000000010000000000000000000
vec($_,13, 1) = 1 == 8192 00000000000001000000000000000000
vec($_,14, 1) = 1 == 16384 00000000000000100000000000000000
vec($_,15, 1) = 1 == 32768 00000000000000010000000000000000
vec($_,16, 1) = 1 == 65536 00000000000000001000000000000000
vec($_,17, 1) = 1 == 131072 00000000000000000100000000000000
vec($_,18, 1) = 1 == 262144 00000000000000000010000000000000
vec($_,19, 1) = 1 == 524288 00000000000000000001000000000000
vec($_,20, 1) = 1 == 1048576 00000000000000000000100000000000
vec($_,21, 1) = 1 == 2097152 00000000000000000000010000000000
vec($_,22, 1) = 1 == 4194304 00000000000000000000001000000000
vec($_,23, 1) = 1 == 8388608 00000000000000000000000100000000
vec($_,24, 1) = 1 == 16777216 00000000000000000000000010000000
vec($_,25, 1) = 1 == 33554432 00000000000000000000000001000000
vec($_,26, 1) = 1 == 67108864 00000000000000000000000000100000
vec($_,27, 1) = 1 == 134217728 00000000000000000000000000010000
vec($_,28, 1) = 1 == 268435456 00000000000000000000000000001000
vec($_,29, 1) = 1 == 536870912 00000000000000000000000000000100
vec($_,30, 1) = 1 == 1073741824 00000000000000000000000000000010
vec($_,31, 1) = 1 == 2147483648 00000000000000000000000000000001
vec($_, 0, 2) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 2) = 1 == 4 00100000000000000000000000000000
vec($_, 2, 2) = 1 == 16 00001000000000000000000000000000
vec($_, 3, 2) = 1 == 64 00000010000000000000000000000000
vec($_, 4, 2) = 1 == 256 00000000100000000000000000000000
vec($_, 5, 2) = 1 == 1024 00000000001000000000000000000000
vec($_, 6, 2) = 1 == 4096 00000000000010000000000000000000
vec($_, 7, 2) = 1 == 16384 00000000000000100000000000000000
vec($_, 8, 2) = 1 == 65536 00000000000000001000000000000000
vec($_, 9, 2) = 1 == 262144 00000000000000000010000000000000
vec($_,10, 2) = 1 == 1048576 00000000000000000000100000000000
vec($_,11, 2) = 1 == 4194304 00000000000000000000001000000000
vec($_,12, 2) = 1 == 16777216 00000000000000000000000010000000
vec($_,13, 2) = 1 == 67108864 00000000000000000000000000100000
vec($_,14, 2) = 1 == 268435456 00000000000000000000000000001000
vec($_,15, 2) = 1 == 1073741824 00000000000000000000000000000010
vec($_, 0, 2) = 2 == 2 01000000000000000000000000000000
vec($_, 1, 2) = 2 == 8 00010000000000000000000000000000
vec($_, 2, 2) = 2 == 32 00000100000000000000000000000000
vec($_, 3, 2) = 2 == 128 00000001000000000000000000000000
vec($_, 4, 2) = 2 == 512 00000000010000000000000000000000
vec($_, 5, 2) = 2 == 2048 00000000000100000000000000000000
vec($_, 6, 2) = 2 == 8192 00000000000001000000000000000000
vec($_, 7, 2) = 2 == 32768 00000000000000010000000000000000

perl v5.26.1 2018-11-19 203

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

vec($_, 8, 2) = 2 == 131072 00000000000000000100000000000000
vec($_, 9, 2) = 2 == 524288 00000000000000000001000000000000
vec($_,10, 2) = 2 == 2097152 00000000000000000000010000000000
vec($_,11, 2) = 2 == 8388608 00000000000000000000000100000000
vec($_,12, 2) = 2 == 33554432 00000000000000000000000001000000
vec($_,13, 2) = 2 == 134217728 00000000000000000000000000010000
vec($_,14, 2) = 2 == 536870912 00000000000000000000000000000100
vec($_,15, 2) = 2 == 2147483648 00000000000000000000000000000001
vec($_, 0, 4) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 4) = 1 == 16 00001000000000000000000000000000
vec($_, 2, 4) = 1 == 256 00000000100000000000000000000000
vec($_, 3, 4) = 1 == 4096 00000000000010000000000000000000
vec($_, 4, 4) = 1 == 65536 00000000000000001000000000000000
vec($_, 5, 4) = 1 == 1048576 00000000000000000000100000000000
vec($_, 6, 4) = 1 == 16777216 00000000000000000000000010000000
vec($_, 7, 4) = 1 == 268435456 00000000000000000000000000001000
vec($_, 0, 4) = 2 == 2 01000000000000000000000000000000
vec($_, 1, 4) = 2 == 32 00000100000000000000000000000000
vec($_, 2, 4) = 2 == 512 00000000010000000000000000000000
vec($_, 3, 4) = 2 == 8192 00000000000001000000000000000000
vec($_, 4, 4) = 2 == 131072 00000000000000000100000000000000
vec($_, 5, 4) = 2 == 2097152 00000000000000000000010000000000
vec($_, 6, 4) = 2 == 33554432 00000000000000000000000001000000
vec($_, 7, 4) = 2 == 536870912 00000000000000000000000000000100
vec($_, 0, 4) = 4 == 4 00100000000000000000000000000000
vec($_, 1, 4) = 4 == 64 00000010000000000000000000000000
vec($_, 2, 4) = 4 == 1024 00000000001000000000000000000000
vec($_, 3, 4) = 4 == 16384 00000000000000100000000000000000
vec($_, 4, 4) = 4 == 262144 00000000000000000010000000000000
vec($_, 5, 4) = 4 == 4194304 00000000000000000000001000000000
vec($_, 6, 4) = 4 == 67108864 00000000000000000000000000100000
vec($_, 7, 4) = 4 == 1073741824 00000000000000000000000000000010
vec($_, 0, 4) = 8 == 8 00010000000000000000000000000000
vec($_, 1, 4) = 8 == 128 00000001000000000000000000000000
vec($_, 2, 4) = 8 == 2048 00000000000100000000000000000000
vec($_, 3, 4) = 8 == 32768 00000000000000010000000000000000
vec($_, 4, 4) = 8 == 524288 00000000000000000001000000000000
vec($_, 5, 4) = 8 == 8388608 00000000000000000000000100000000
vec($_, 6, 4) = 8 == 134217728 00000000000000000000000000010000
vec($_, 7, 4) = 8 == 2147483648 00000000000000000000000000000001
vec($_, 0, 8) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 8) = 1 == 256 00000000100000000000000000000000
vec($_, 2, 8) = 1 == 65536 00000000000000001000000000000000
vec($_, 3, 8) = 1 == 16777216 00000000000000000000000010000000
vec($_, 0, 8) = 2 == 2 01000000000000000000000000000000
vec($_, 1, 8) = 2 == 512 00000000010000000000000000000000
vec($_, 2, 8) = 2 == 131072 00000000000000000100000000000000
vec($_, 3, 8) = 2 == 33554432 00000000000000000000000001000000
vec($_, 0, 8) = 4 == 4 00100000000000000000000000000000
vec($_, 1, 8) = 4 == 1024 00000000001000000000000000000000
vec($_, 2, 8) = 4 == 262144 00000000000000000010000000000000
vec($_, 3, 8) = 4 == 67108864 00000000000000000000000000100000
vec($_, 0, 8) = 8 == 8 00010000000000000000000000000000
vec($_, 1, 8) = 8 == 2048 00000000000100000000000000000000
vec($_, 2, 8) = 8 == 524288 00000000000000000001000000000000
vec($_, 3, 8) = 8 == 134217728 00000000000000000000000000010000
vec($_, 0, 8) = 16 == 16 00001000000000000000000000000000
vec($_, 1, 8) = 16 == 4096 00000000000010000000000000000000
vec($_, 2, 8) = 16 == 1048576 00000000000000000000100000000000

204 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

vec($_, 3, 8) = 16 == 268435456 00000000000000000000000000001000
vec($_, 0, 8) = 32 == 32 00000100000000000000000000000000
vec($_, 1, 8) = 32 == 8192 00000000000001000000000000000000
vec($_, 2, 8) = 32 == 2097152 00000000000000000000010000000000
vec($_, 3, 8) = 32 == 536870912 00000000000000000000000000000100
vec($_, 0, 8) = 64 == 64 00000010000000000000000000000000
vec($_, 1, 8) = 64 == 16384 00000000000000100000000000000000
vec($_, 2, 8) = 64 == 4194304 00000000000000000000001000000000
vec($_, 3, 8) = 64 == 1073741824 00000000000000000000000000000010
vec($_, 0, 8) = 128 == 128 00000001000000000000000000000000
vec($_, 1, 8) = 128 == 32768 00000000000000010000000000000000
vec($_, 2, 8) = 128 == 8388608 00000000000000000000000100000000
vec($_, 3, 8) = 128 == 2147483648 00000000000000000000000000000001

wait
Behaves like wait (2) on your system: it waits for a child process to terminate and returns the pid of the
deceased process, or −1 if there are no child processes. The status is returned in $? and
${ˆCHILD_ERROR_NATIVE}. Note that a return value of −1 could mean that child processes are
being automatically reaped, as described in perlipc.

If you use wait in your handler for $SIG{CHLD}, it may accidentally wait for the child created by
qx or system. See perlipc for details.

Portability issues: ‘‘wait’’ in perlport.

waitpid PID,FLAGS

Waits for a particular child process to terminate and returns the pid of the deceased process, or −1 if
there is no such child process. A non-blocking wait (with WNOHANG in FLAGS) can return 0 if there
are child processes matching PID but none have terminated yet. The status is returned in $? and
${ˆCHILD_ERROR_NATIVE}.

A PID of 0 indicates to wait for any child process whose process group ID is equal to that of the
current process. A PID of less than −1 indicates to wait for any child process whose process group ID

is equal to −PID. A PID of −1 indicates to wait for any child process.

If you say

use POSIX ":sys_wait_h";

my $kid;
do {

$kid = waitpid(−1, WNOHANG);
} while $kid > 0;

or

1 while waitpid(−1, WNOHANG) > 0;

then you can do a non-blocking wait for all pending zombie processes (see ‘‘WAIT’’ in POSIX). Non-
blocking wait is available on machines supporting either the waitpid (2) or wait4 (2) syscalls.
However, waiting for a particular pid with FLAGS of 0 is implemented everywhere. (Perl emulates the
system call by remembering the status values of processes that have exited but have not been harvested
by the Perl script yet.)

Note that on some systems, a return value of −1 could mean that child processes are being
automatically reaped. See perlipc for details, and for other examples.

Portability issues: ‘‘waitpid’’ in perlport.

wantarray
Returns true if the context of the currently executing subroutine or eval is looking for a list value.
Returns false if the context is looking for a scalar. Returns the undefined value if the context is
looking for no value (void context).

perl v5.26.1 2018-11-19 205

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

return unless defined wantarray; # don't bother doing more
my @a = complex_calculation();
return wantarray ? @a : "@a";

wantarray’s result is unspecified in the top level of a file, in a BEGIN, UNITCHECK, CHECK,
INIT or END block, or in a DESTROY method.

This function should have been named wantlist() instead.

warn LIST

Prints the value of LIST to STDERR. If the last element of LIST does not end in a newline, it appends
the same file/line number text as die does.

If the output is empty and $@ already contains a value (typically from a previous eval) that value is
used after appending "\t...caught" to $@. This is useful for staying almost, but not entirely
similar to die.

If $@ is empty, then the string "Warning: Something's wrong" is used.

No message is printed if there is a $SIG{_ _WARN_ _} handler installed. It is the handler’s
responsibility to deal with the message as it sees fit (like, for instance, converting it into a die). Most
handlers must therefore arrange to actually display the warnings that they are not prepared to deal
with, by calling warn again in the handler. Note that this is quite safe and will not produce an endless
loop, since __WARN_ _ hooks are not called from inside one.

You will find this behavior is slightly different from that of $SIG{_ _DIE_ _} handlers (which don’t
suppress the error text, but can instead call die again to change it).

Using a __WARN_ _ handler provides a powerful way to silence all warnings (even the so-called
mandatory ones). An example:

wipe out *all* compile−time warnings
BEGIN { $SIG{'__WARN_ _'} = sub { warn $_[0] if $DOWARN } }
my $foo = 10;
my $foo = 20; # no warning about duplicate my $foo,

but hey, you asked for it!
no compile−time or run−time warnings before here
$DOWARN = 1;

run−time warnings enabled after here
warn "\$foo is alive and $foo!"; # does show up

See perlvar for details on setting %SIG entries and for more examples. See the Carp module for other
kinds of warnings using its carp and cluck functions.

write FILEHANDLE

write EXPR

write
Writes a formatted record (possibly multi-line) to the specified FILEHANDLE, using the format
associated with that file. By default the format for a file is the one having the same name as the
filehandle, but the format for the current output channel (see the select function) may be set
explicitly by assigning the name of the format to the $˜ variable.

Top of form processing is handled automatically: if there is insufficient room on the current page for
the formatted record, the page is advanced by writing a form feed and a special top-of-page format is
used to format the new page header before the record is written. By default, the top-of-page format is
the name of the filehandle with _TOP appended, or top in the current package if the former does not
exist. This would be a problem with autovivified filehandles, but it may be dynamically set to the
format of your choice by assigning the name to the $ˆ variable while that filehandle is selected. The
number of lines remaining on the current page is in variable $−, which can be set to 0 to force a new
page.

If FILEHANDLE is unspecified, output goes to the current default output channel, which starts out as
STDOUT but may be changed by the select operator. If the FILEHANDLE is an EXPR, then the
expression is evaluated and the resulting string is used to look up the name of the FILEHANDLE at run

206 2018-11-19 perl v5.26.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

time. For more on formats, see perlform.

Note that write is not the opposite of read. Unfortunately.

y/// The transliteration operator. Same as tr///. See ‘‘Quote-Like Operators’’ in perlop.

Non-function Keywords by Cross-reference
perldata

_ _DATA_ _
_ _END_ _

These keywords are documented in ‘‘Special Literals’’ in perldata.

perlmod

BEGIN

CHECK

END

INIT

UNITCHECK

These compile phase keywords are documented in ‘‘BEGIN, UNITCHECK, CHECK, INIT and END’’ in
perlmod.

perlobj

DESTROY

This method keyword is documented in ‘‘Destructors’’ in perlobj.

perlop

and
cmp
eq
ge
gt
le
lt
ne
not
or
x
xor These operators are documented in perlop.

perlsub

AUTOLOAD

This keyword is documented in ‘‘Autoloading’’ in perlsub.

perlsyn

else
elsif
for
foreach
if
unless
until
while

These flow-control keywords are documented in ‘‘Compound Statements’’ in perlsyn.

elseif
The ‘‘else if’’ keyword is spelled elsif in Perl. There’s no elif or else if either. It does parse
elseif, but only to warn you about not using it.

See the documentation for flow-control keywords in ‘‘Compound Statements’’ in perlsyn.

default

perl v5.26.1 2018-11-19 207

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

given
when

These flow-control keywords related to the experimental switch feature are documented in ‘‘Switch
Statements’’ in perlsyn.

208 2018-11-19 perl v5.26.1

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

NAME
perlvar − Perl predefined variables

DESCRIPTION
The Syntax of Variable Names

Variable names in Perl can have sev eral formats. Usually, they must begin with a letter or underscore, in
which case they can be arbitrarily long (up to an internal limit of 251 characters) and may contain letters,
digits, underscores, or the special sequence :: or '. In this case, the part before the last :: or ' is taken to
be a package qualifier; see perlmod. A Unicode letter that is not ASCII is not considered to be a letter
unless "use utf8" is in effect, and somewhat more complicated rules apply; see ‘‘Identifier parsing’’ in
perldata for details.

Perl variable names may also be a sequence of digits, a single punctuation character, or the two-character
sequence: ˆ (caret or CIRCUMFLEX ACCENT) followed by any one of the characters [][A−Zˆ_?\].
These names are all reserved for special uses by Perl; for example, the all-digits names are used to hold
data captured by backreferences after a regular expression match.

Since Perl v5.6.0, Perl variable names may also be alphanumeric strings preceded by a caret. These must
all be written in the form ${ˆFoo}; the braces are not optional. ${ˆFoo} denotes the scalar variable
whose name is considered to be a control−F followed by two o’s. These variables are reserved for future
special uses by Perl, except for the ones that begin with ˆ_ (caret-underscore). No name that begins with
ˆ_ will acquire a special meaning in any future version of Perl; such names may therefore be used safely in
programs. $ˆ_ itself, however, is reserved.

Perl identifiers that begin with digits or punctuation characters are exempt from the effects of the package
declaration and are always forced to be in package main; they are also exempt from strict 'vars'
errors. A few other names are also exempt in these ways:

ENV STDIN
INC STDOUT
ARGV STDERR
ARGVOUT
SIG

In particular, the special ${ˆ_XYZ} variables are always taken to be in package main, reg ardless of any
package declarations presently in scope.

SPECIAL VARIABLES
The following names have special meaning to Perl. Most punctuation names have reasonable mnemonics,
or analogs in the shells. Nevertheless, if you wish to use long variable names, you need only say:

use English;

at the top of your program. This aliases all the short names to the long names in the current package.
Some even hav e medium names, generally borrowed from awk. For more info, please see English.

Before you continue, note the sort order for variables. In general, we first list the variables in case-
insensitive, almost-lexigraphical order (ignoring the { or ˆ preceding words, as in ${ˆUNICODE} or
$ˆT), although $_ and @_ move up to the top of the pile. For variables with the same identifier, we list it
in order of scalar, array, hash, and bareword.

General Variables
$ARG
$_ The default input and pattern-searching space. The following pairs are equivalent:

while (<>) {...} # equivalent only in while!
while (defined($_ = <>)) {...}

/ˆSubject:/
$_ =˜ /ˆSubject:/

tr/a−z/A−Z/
$_ =˜ tr/a−z/A−Z/

chomp
chomp($_)

perl v5.26.1 2018-11-19 209

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

Here are the places where Perl will assume $_ ev en if you don’t use it:

• The following functions use $_ as a default argument:

abs, alarm, chomp, chop, chr, chroot, cos, defined, eval, evalbytes, exp, fc, glob, hex, int, lc,
lcfirst, length, log, lstat, mkdir, oct, ord, pos, print, printf, quotemeta, readlink, readpipe, ref,
require, reverse (in scalar context only), rmdir, say, sin, split (for its second argument), sqrt,
stat, study, uc, ucfirst, unlink, unpack.

• All file tests (−f, −d) except for −t, which defaults to STDIN. See ‘‘−X’’ in perlfunc

• The pattern matching operations m//, s/// and tr/// (aka y///) when used without an
=˜ operator.

• The default iterator variable in a foreach loop if no other variable is supplied.

• The implicit iterator variable in the grep() and map() functions.

• The implicit variable of given().

• The default place to put the next value or input record when a <FH>, readline, readdir
or each operation’s result is tested by itself as the sole criterion of a while test. Outside a
while test, this will not happen.

$_ is by default a global variable. However, as of perl v5.10.0, you can use a lexical version of
$_ by declaring it in a file or in a block with my. Moreover, declaring our $_ restores the
global $_ in the current scope. Though this seemed like a good idea at the time it was
introduced, lexical $_ actually causes more problems than it solves. If you call a function that
expects to be passed information via $_, it may or may not work, depending on how the function
is written, there not being any easy way to solve this. Just avoid lexical $_, unless you are
feeling particularly masochistic. For this reason lexical $_ is still experimental and will produce
a warning unless warnings have been disabled. As with other experimental features, the behavior
of lexical $_ is subject to change without notice, including change into a fatal error.

Mnemonic: underline is understood in certain operations.

@ARG
@_ Within a subroutine the array @_ contains the parameters passed to that subroutine. Inside a

subroutine, @_ is the default array for the array operators pop and shift.

See perlsub.

$LIST_SEPARATOR
$" When an array or an array slice is interpolated into a double-quoted string or a similar context

such as /.../, its elements are separated by this value. Default is a space. For example, this:

print "The array is: @array\n";

is equivalent to this:

print "The array is: " . join($", @array) . "\n";

Mnemonic: works in double-quoted context.

$PROCESS_ID
$PID
$$ The process number of the Perl running this script. Though you can set this variable, doing so is

generally discouraged, although it can be invaluable for some testing purposes. It will be reset
automatically across fork() calls.

Note for Linux and Debian GNU/kFreeBSD users: Before Perl v5.16.0 perl would emulate
POSIX semantics on Linux systems using LinuxThreads, a partial implementation of POSIX

Threads that has since been superseded by the Native POSIX Thread Library (NPTL).

LinuxThreads is now obsolete on Linux, and caching getpid() like this made embedding perl
unnecessarily complex (since you’d hav e to manually update the value of $$), so now $$ and
getppid() will always return the same values as the underlying C library.

Debian GNU/kFreeBSD systems also used LinuxThreads up until and including the 6.0 release,
but after that moved to FreeBSD thread semantics, which are POSIX-like.

210 2018-11-19 perl v5.26.1

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

To see if your system is affected by this discrepancy check if getconf
GNU_LIBPTHREAD_VERSION | grep −q NPTL returns a false value. NTPL threads
preserve the POSIX semantics.

Mnemonic: same as shells.

$PROGRAM_NAME
$0 Contains the name of the program being executed.

On some (but not all) operating systems assigning to $0 modifies the argument area that the ps
program sees. On some platforms you may have to use special ps options or a different ps to
see the changes. Modifying the $0 is more useful as a way of indicating the current program
state than it is for hiding the program you’re running.

Note that there are platform-specific limitations on the maximum length of $0. In the most
extreme case it may be limited to the space occupied by the original $0.

In some platforms there may be arbitrary amount of padding, for example space characters, after
the modified name as shown by ps. In some platforms this padding may extend all the way to
the original length of the argument area, no matter what you do (this is the case for example with
Linux 2.2).

Note for BSD users: setting $0 does not completely remove ‘‘perl’’ from the ps (1) output. For
example, setting $0 to "foobar" may result in "perl: foobar (perl)" (whether both
the "perl: " prefix and the ‘‘ (perl)’’ suffix are shown depends on your exact BSD variant and
version). This is an operating system feature, Perl cannot help it.

In multithreaded scripts Perl coordinates the threads so that any thread may modify its copy of the
$0 and the change becomes visible to ps (1) (assuming the operating system plays along). Note
that the view of $0 the other threads have will not change since they hav e their own copies of it.

If the program has been given to perl via the switches −e or −E, $0 will contain the string "−e".

On Linux as of perl v5.14.0 the legacy process name will be set with prctl(2), in addition to
altering the POSIX name via argv[0] as perl has done since version 4.000. Now system
utilities that read the legacy process name such as ps, top and killall will recognize the name you
set when assigning to $0. The string you supply will be cut off at 16 bytes, this is a limitation
imposed by Linux.

Mnemonic: same as sh and ksh.

$REAL_GROUP_ID
$GID
$(The real gid of this process. If you are on a machine that supports membership in multiple

groups simultaneously, giv es a space separated list of groups you are in. The first number is the
one returned by getgid(), and the subsequent ones by getgroups(), one of which may be
the same as the first number.

However, a value assigned to $(must be a single number used to set the real gid. So the value
given by $(should not be assigned back to $(without being forced numeric, such as by adding
zero. Note that this is different to the effective gid ($)) which does take a list.

You can change both the real gid and the effective gid at the same time by using
POSIX::setgid(). Changes to $(require a check to $! to detect any possible errors after
an attempted change.

Mnemonic: parentheses are used to group things. The real gid is the group you left, if you’re
running setgid.

$EFFECTIVE_GROUP_ID
$EGID
$) The effective gid of this process. If you are on a machine that supports membership in multiple

groups simultaneously, giv es a space separated list of groups you are in. The first number is the
one returned by getegid(), and the subsequent ones by getgroups(), one of which may be
the same as the first number.

Similarly, a value assigned to $) must also be a space-separated list of numbers. The first

perl v5.26.1 2018-11-19 211

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

number sets the effective gid, and the rest (if any) are passed to setgroups(). To get the
effect of an empty list for setgroups(), just repeat the new effective gid; that is, to force an
effective gid of 5 and an effectively empty setgroups() list, say $) = "5 5" .

You can change both the effective gid and the real gid at the same time by using
POSIX::setgid() (use only a single numeric argument). Changes to $) require a check to
$! to detect any possible errors after an attempted change.

$<, $>, $(and $) can be set only on machines that support the corresponding set[re][ug]id()
routine. $(and $) can be swapped only on machines supporting setregid().

Mnemonic: parentheses are used to group things. The effective gid is the group that’s right for
you, if you’re running setgid.

$REAL_USER_ID
$UID
$< The real uid of this process. You can change both the real uid and the effective uid at the same

time by using POSIX::setuid(). Since changes to $< require a system call, check $! after a
change attempt to detect any possible errors.

Mnemonic: it’s the uid you came from, if you’re running setuid.

$EFFECTIVE_USER_ID
$EUID
$> The effective uid of this process. For example:

$< = $>; # set real to effective uid
($<,$>) = ($>,$<); # swap real and effective uids

You can change both the effective uid and the real uid at the same time by using
POSIX::setuid(). Changes to $> require a check to $! to detect any possible errors after
an attempted change.

$< and $> can be swapped only on machines supporting setreuid().

Mnemonic: it’s the uid you went to, if you’re running setuid.

$SUBSCRIPT_SEPARATOR
$SUBSEP
$; The subscript separator for multidimensional array emulation. If you refer to a hash element as

$foo{$x,$y,$z}

it really means

$foo{join($;, $x, $y, $z)}

But don’t put

@foo{$x,$y,$z} # a slice−−note the @

which means

($foo{$x},$foo{$y},$foo{$z})

Default is ‘‘\034’’, the same as SUBSEP in awk. If your keys contain binary data there might not
be any safe value for $;.

Consider using ‘‘real’’ multidimensional arrays as described in perllol.

Mnemonic: comma (the syntactic subscript separator) is a semi-semicolon.

$a
$b Special package variables when using sort(), see ‘‘sort’’ in perlfunc. Because of this

specialness $a and $b don’t need to be declared (using use vars, or our()) even when using
the strict 'vars' pragma. Don’t lexicalize them with my $a or my $b if you want to be
able to use them in the sort() comparison block or function.

%ENV The hash %ENV contains your current environment. Setting a value in ENV changes the
environment for any child processes you subsequently fork() off.

212 2018-11-19 perl v5.26.1

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

As of v5.18.0, both keys and values stored in %ENV are stringified.

my $foo = 1;
$ENV{'bar'} = \$foo;
if(ref $ENV{'bar'}) {

say "Pre 5.18.0 Behaviour";
} else {

say "Post 5.18.0 Behaviour";
}

Previously, only child processes received stringified values:

my $foo = 1;
$ENV{'bar'} = \$foo;

Always printed 'non ref'
system($ˆX, '−e',

q/print (ref $ENV{'bar'} ? 'ref' : 'non ref') /);

This happens because you can’t really share arbitrary data structures with foreign processes.

$OLD_PERL_VERSION
$] The revision, version, and subversion of the Perl interpreter, represented as a decimal of the form

5.XXXYYY, where XXX is the version / 1e3 and YYY is the subversion / 1e6. For example, Perl
v5.10.1 would be ‘‘5.010001’’.

This variable can be used to determine whether the Perl interpreter executing a script is in the
right range of versions:

warn "No PerlIO!\n" if $] lt '5.008';

When comparing $], string comparison operators are highly recommended. The inherent
limitations of binary floating point representation can sometimes lead to incorrect comparisons
for some numbers on some architectures.

See also the documentation of use VERSION and require VERSION for a convenient way
to fail if the running Perl interpreter is too old.

See ‘‘$ˆV’’ for a representation of the Perl version as a version object, which allows more flexible
string comparisons.

The main advantage of $] over $ˆV is that it works the same on any version of Perl. The
disadvantages are that it can’t easily be compared to versions in other formats (e.g. literal
v−strings, ‘‘v1.2.3’’ or version objects) and numeric comparisons can occasionally fail; it’s good
for string literal version checks and bad for comparing to a variable that hasn’t been sanity-
checked.

The $OLD_PERL_VERSION form was added in Perl v5.20.0 for historical reasons but its use is
discouraged. (If your reason to use $] is to run code on old perls then referring to it as
$OLD_PERL_VERSION would be self-defeating.)

Mnemonic: Is this version of perl in the right bracket?

$SYSTEM_FD_MAX
$ˆF The maximum system file descriptor, ordinarily 2. System file descriptors are passed to

exec()ed processes, while higher file descriptors are not. Also, during an open(), system file
descriptors are preserved even if the open() fails (ordinary file descriptors are closed before the
open() is attempted). The close-on-exec status of a file descriptor will be decided according to
the value of $ˆF when the corresponding file, pipe, or socket was opened, not the time of the
exec().

@F The array @F contains the fields of each line read in when autosplit mode is turned on. See
perlrun for the −a switch. This array is package-specific, and must be declared or given a full
package name if not in package main when running under strict 'vars'.

@INC The array @INC contains the list of places that the do EXPR, require, or use constructs look
for their library files. It initially consists of the arguments to any −I command-line switches,

perl v5.26.1 2018-11-19 213

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

followed by the default Perl library, probably /usr/local/lib/perl, followed by ‘‘.’’, to represent the
current directory. (‘‘.’’ will not be appended if taint checks are enabled, either by −T or by −t, or
if configured not to do so by the −Ddefault_inc_excludes_dot compile time option.) If
you need to modify this at runtime, you should use the use lib pragma to get the machine-
dependent library properly loaded also:

use lib '/mypath/libdir/';
use SomeMod;

You can also insert hooks into the file inclusion system by putting Perl code directly into @INC.
Those hooks may be subroutine references, array references or blessed objects. See ‘‘require’’ in
perlfunc for details.

%INC The hash %INC contains entries for each filename included via the do, require, or use
operators. The key is the filename you specified (with module names converted to pathnames),
and the value is the location of the file found. The require operator uses this hash to determine
whether a particular file has already been included.

If the file was loaded via a hook (e.g. a subroutine reference, see ‘‘require’’ in perlfunc for a
description of these hooks), this hook is by default inserted into %INC in place of a filename.
Note, however, that the hook may have set the %INC entry by itself to provide some more specific
info.

$INPLACE_EDIT
$ˆI The current value of the inplace-edit extension. Use undef to disable inplace editing.

Mnemonic: value of −i switch.

@ISA Each package contains a special array called @ISA which contains a list of that class’s parent
classes, if any. This array is simply a list of scalars, each of which is a string that corresponds to a
package name. The array is examined when Perl does method resolution, which is covered in
perlobj.

To load packages while adding them to @ISA, see the parent pragma. The discouraged base
pragma does this as well, but should not be used except when compatibility with the discouraged
fields pragma is required.

$ˆM By default, running out of memory is an untrappable, fatal error. Howev er, if suitably built, Perl
can use the contents of $ˆM as an emergency memory pool after die()ing. Suppose that your
Perl were compiled with −DPERL_EMERGENCY_SBRK and used Perl’s malloc. Then

$ˆM = 'a' x (1 << 16);

would allocate a 64K buffer for use in an emergency. See the INSTALL file in the Perl distribution
for information on how to add custom C compilation flags when compiling perl. To discourage
casual use of this advanced feature, there is no English long name for this variable.

This variable was added in Perl 5.004.

$OSNAME
$ˆO The name of the operating system under which this copy of Perl was built, as determined during

the configuration process. For examples see ‘‘PLATFORMS’’ in perlport.

The value is identical to $Config{'osname'}. See also Config and the −V command-line
switch documented in perlrun.

In Windows platforms, $ˆO is not very helpful: since it is always MSWin32, it doesn’t tell the
difference between 95/98/ME/NT/2000/XP/CE/.NET. Use Win32::GetOSName() or
Win32::GetOSVersion() (see Win32 and perlport) to distinguish between the variants.

This variable was added in Perl 5.003.

%SIG The hash %SIG contains signal handlers for signals. For example:

214 2018-11-19 perl v5.26.1

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

sub handler { # 1st argument is signal name
my($sig) = @_;
print "Caught a SIG$sig−−shutting down\n";
close(LOG);
exit(0);
}

$SIG{'INT'} = \&handler;
$SIG{'QUIT'} = \&handler;
...
$SIG{'INT'} = 'DEFAULT'; # restore default action
$SIG{'QUIT'} = 'IGNORE'; # ignore SIGQUIT

Using a value of 'IGNORE' usually has the effect of ignoring the signal, except for the CHLD
signal. See perlipc for more about this special case.

Here are some other examples:

$SIG{"PIPE"} = "Plumber"; # assumes main::Plumber (not
recommended)

$SIG{"PIPE"} = \&Plumber; # just fine; assume current
Plumber

$SIG{"PIPE"} = *Plumber; # somewhat esoteric
$SIG{"PIPE"} = Plumber(); # oops, what did Plumber()

return??

Be sure not to use a bareword as the name of a signal handler, lest you inadvertently call it.

If your system has the sigaction() function then signal handlers are installed using it. This
means you get reliable signal handling.

The default delivery policy of signals changed in Perl v5.8.0 from immediate (also known as
‘‘unsafe’’) to deferred, also known as ‘‘safe signals’’. See perlipc for more information.

Certain internal hooks can be also set using the %SIG hash. The routine indicated by
$SIG{_ _WARN_ _} is called when a warning message is about to be printed. The warning
message is passed as the first argument. The presence of a __WARN_ _ hook causes the ordinary
printing of warnings to STDERR to be suppressed. You can use this to save warnings in a
variable, or turn warnings into fatal errors, like this:

local $SIG{__WARN_ _} = sub { die $_[0] };
eval $proggie;

As the 'IGNORE' hook is not supported by __WARN_ _, you can disable warnings using the
empty subroutine:

local $SIG{__WARN_ _} = sub {};

The routine indicated by $SIG{_ _DIE_ _} is called when a fatal exception is about to be
thrown. The error message is passed as the first argument. When a __DIE_ _ hook routine
returns, the exception processing continues as it would have in the absence of the hook, unless the
hook routine itself exits via a goto &sub, a loop exit, or a die(). The __DIE_ _ handler is
explicitly disabled during the call, so that you can die from a __DIE_ _ handler. Similarly for
__WARN_ _.

The $SIG{_ _DIE_ _} hook is called even inside an eval(). It was never intended to happen
this way, but an implementation glitch made this possible. This used to be deprecated, as it
allowed strange action at a distance like rewriting a pending exception in $@. Plans to rectify this
have been scrapped, as users found that rewriting a pending exception is actually a useful feature,
and not a bug.

__DIE_ _/__WARN_ _ handlers are very special in one respect: they may be called to report
(probable) errors found by the parser. In such a case the parser may be in inconsistent state, so
any attempt to evaluate Perl code from such a handler will probably result in a segfault. This
means that warnings or errors that result from parsing Perl should be used with extreme caution,

perl v5.26.1 2018-11-19 215

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

like this:

require Carp if defined $ˆS;
Carp::confess("Something wrong") if defined &Carp::confess;
die "Something wrong, but could not load Carp to give "
. "backtrace...\n\t"
. "To see backtrace try starting Perl with −MCarp switch";

Here the first line will load Carp unless it is the parser who called the handler. The second line
will print backtrace and die if Carp was available. The third line will be executed only if Carp
was not available.

Having to even think about the $ˆS variable in your exception handlers is simply wrong.
$SIG{_ _DIE_ _} as currently implemented invites grievous and difficult to track down errors.
Av oid it and use an END{} or CORE::GLOBAL::die override instead.

See ‘‘die’’ in perlfunc, ‘‘warn’’ in perlfunc, ‘‘eval’’ in perlfunc, and warnings for additional
information.

$BASETIME
$ˆT The time at which the program began running, in seconds since the epoch (beginning of 1970).

The values returned by the −M, −A, and −C filetests are based on this value.

$PERL_VERSION
$ˆV The revision, version, and subversion of the Perl interpreter, represented as a version object.

This variable first appeared in perl v5.6.0; earlier versions of perl will see an undefined value.
Before perl v5.10.0 $ˆV was represented as a v−string rather than a version object.

$ˆV can be used to determine whether the Perl interpreter executing a script is in the right range
of versions. For example:

warn "Hashes not randomized!\n" if !$ˆV or $ˆV lt v5.8.1

While version objects overload stringification, to portably convert $ˆV into its string
representation, use sprintf()’s "%vd" conversion, which works for both v−strings or version
objects:

printf "version is v%vd\n", $ˆV; # Perl's version

See the documentation of use VERSION and require VERSION for a convenient way to fail
if the running Perl interpreter is too old.

See also "$]" for a decimal representation of the Perl version.

The main advantage of $ˆV over $] is that, for Perl v5.10.0 or later, it overloads operators,
allowing easy comparison against other version representations (e.g. decimal, literal v−string,
‘‘v1.2.3’’, or objects). The disadvantage is that prior to v5.10.0, it was only a literal v−string,
which can’t be easily printed or compared, whereas the behavior of $] is unchanged on all
versions of Perl.

Mnemonic: use ˆV for a version object.

${ˆWIN32_SLOPPY_STAT}
If this variable is set to a true value, then stat() on Windows will not try to open the file. This
means that the link count cannot be determined and file attributes may be out of date if additional
hardlinks to the file exist. On the other hand, not opening the file is considerably faster,
especially for files on network drives.

This variable could be set in the sitecustomize.pl file to configure the local Perl installation to use
‘‘sloppy’’ stat() by default. See the documentation for −f in perlrun for more information
about site customization.

This variable was added in Perl v5.10.0.

$EXECUTABLE_NAME
$ˆX The name used to execute the current copy of Perl, from C’s argv[0] or (where supported)

/proc/self/exe.

216 2018-11-19 perl v5.26.1

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

Depending on the host operating system, the value of $ˆX may be a relative or absolute
pathname of the perl program file, or may be the string used to invoke perl but not the pathname
of the perl program file. Also, most operating systems permit invoking programs that are not in
the PATH environment variable, so there is no guarantee that the value of $ˆX is in PATH. For
VMS, the value may or may not include a version number.

You usually can use the value of $ˆX to re-invoke an independent copy of the same perl that is
currently running, e.g.,

@first_run = `$ˆX −le "print int rand 100 for 1..100"`;

But recall that not all operating systems support forking or capturing of the output of commands,
so this complex statement may not be portable.

It is not safe to use the value of $ˆX as a path name of a file, as some operating systems that have
a mandatory suffix on executable files do not require use of the suffix when invoking a command.
To convert the value of $ˆX to a path name, use the following statements:

Build up a set of file names (not command names).
use Config;
my $this_perl = $ˆX;
if ($ˆO ne 'VMS') {

$this_perl .= $Config{_exe}
unless $this_perl =˜ m/$Config{_exe}$/i;

}

Because many operating systems permit anyone with read access to the Perl program file to make
a copy of it, patch the copy, and then execute the copy, the security-conscious Perl programmer
should take care to invoke the installed copy of perl, not the copy referenced by $ˆX. The
following statements accomplish this goal, and produce a pathname that can be invoked as a
command or referenced as a file.

use Config;
my $secure_perl_path = $Config{perlpath};
if ($ˆO ne 'VMS') {

$secure_perl_path .= $Config{_exe}
unless $secure_perl_path =˜ m/$Config{_exe}$/i;

}

Variables related to regular expressions
Most of the special variables related to regular expressions are side effects. Perl sets these variables when it
has a successful match, so you should check the match result before using them. For instance:

if(/P(A)TT(ER)N/) {
print "I found $1 and $2\n";
}

These variables are read-only and dynamically-scoped, unless we note otherwise.

The dynamic nature of the regular expression variables means that their value is limited to the block that
they are in, as demonstrated by this bit of code:

my $outer = 'Wallace and Grommit';
my $inner = 'Mutt and Jeff';

my $pattern = qr/(\S+) and (\S+)/;

sub show_n { print "\$1 is $1; \$2 is $2\n" }

{
OUTER:

show_n() if $outer =˜ m/$pattern/;

INNER: {
show_n() if $inner =˜ m/$pattern/;

perl v5.26.1 2018-11-19 217

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

}

show_n();
}

The output shows that while in the OUTER block, the values of $1 and $2 are from the match against
$outer. Inside the INNER block, the values of $1 and $2 are from the match against $inner, but only
until the end of the block (i.e. the dynamic scope). After the INNER block completes, the values of $1 and
$2 return to the values for the match against $outer ev en though we have not made another match:

$1 is Wallace; $2 is Grommit
$1 is Mutt; $2 is Jeff
$1 is Wallace; $2 is Grommit

Performance issues

Traditionally in Perl, any use of any of the three variables $`, $& or $' (or their use English
equivalents) anywhere in the code, caused all subsequent successful pattern matches to make a copy of the
matched string, in case the code might subsequently access one of those variables. This imposed a
considerable performance penalty across the whole program, so generally the use of these variables has
been discouraged.

In Perl 5.6.0 the @− and @+ dynamic arrays were introduced that supply the indices of successful matches.
So you could for example do this:

$str =˜ /pattern/;

print $`, $&, $'; # bad: perfomance hit

print # good: no perfomance hit
substr($str, 0, $−[0]),
substr($str, $−[0], $+[0]−$−[0]),
substr($str, $+[0]);

In Perl 5.10.0 the /p match operator flag and the ${ˆPREMATCH}, ${ˆMATCH}, and ${ˆPOSTMATCH}
variables were introduced, that allowed you to suffer the penalties only on patterns marked with /p.

In Perl 5.18.0 onwards, perl started noting the presence of each of the three variables separately, and only
copied that part of the string required; so in

$`; $&; "abcdefgh" =˜ /d/

perl would only copy the ‘‘abcd’’ part of the string. That could make a big difference in something like

$str = 'x' x 1_000_000;
$&; # whoops
$str =˜ /x/g # one char copied a million times, not a million chars

In Perl 5.20.0 a new copy-on-write system was enabled by default, which finally fixes all performance
issues with these three variables, and makes them safe to use anywhere.

The Devel::NYTProf and Devel::FindAmpersand modules can help you find uses of these
problematic match variables in your code.

$<digits> ($1, $2, ...)
Contains the subpattern from the corresponding set of capturing parentheses from the last
successful pattern match, not counting patterns matched in nested blocks that have been exited
already.

Note there is a distinction between a capture buffer which matches the empty string a capture
buffer which is optional. Eg, (x?) and (x)? The latter may be undef, the former not.

These variables are read-only and dynamically-scoped.

Mnemonic: like \digits.

@{ˆCAPTURE}
An array which exposes the contents of the capture buffers, if any, of the last successful pattern
match, not counting patterns matched in nested blocks that have been exited already.

218 2018-11-19 perl v5.26.1

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

Note that the 0 index of @{ˆCAPTURE} is equivalent to $1, the 1 index is equivalent to $2, etc.

if ("foal"=˜/(.)(.)(.)(.)/) {
print join "−", @{ˆCAPTURE};

}

should output ‘‘f−o-a-l’’.

See also "$digits", ‘‘%{ˆCAPTURE}’’ and ‘‘%{ˆCAPTURE_ALL}’’.

Note that unlike most other regex magic variables there is no single letter equivalent to
@{ˆCAPTURE}.

This variable was added in 5.25.7

$MATCH
$& The string matched by the last successful pattern match (not counting any matches hidden within

a BLOCK or eval() enclosed by the current BLOCK).

See ‘‘Performance issues’’ above for the serious performance implications of using this variable
(even once) in your code.

This variable is read-only and dynamically-scoped.

Mnemonic: like & in some editors.

${ˆMATCH}
This is similar to $& ($MATCH) except that it does not incur the performance penalty associated
with that variable.

See ‘‘Performance issues’’ above.

In Perl v5.18 and earlier, it is only guaranteed to return a defined value when the pattern was
compiled or executed with the /p modifier. In Perl v5.20, the /p modifier does nothing, so
${ˆMATCH} does the same thing as $MATCH.

This variable was added in Perl v5.10.0.

This variable is read-only and dynamically-scoped.

$PREMATCH
$‘ The string preceding whatever was matched by the last successful pattern match, not counting

any matches hidden within a BLOCK or eval enclosed by the current BLOCK.

See ‘‘Performance issues’’ above for the serious performance implications of using this variable
(even once) in your code.

This variable is read-only and dynamically-scoped.

Mnemonic: ` often precedes a quoted string.

${ˆPREMATCH}
This is similar to $` ($PREMATCH) except that it does not incur the performance penalty
associated with that variable.

See ‘‘Performance issues’’ above.

In Perl v5.18 and earlier, it is only guaranteed to return a defined value when the pattern was
compiled or executed with the /p modifier. In Perl v5.20, the /p modifier does nothing, so
${ˆPREMATCH} does the same thing as $PREMATCH.

This variable was added in Perl v5.10.0.

This variable is read-only and dynamically-scoped.

$POSTMATCH
$’ The string following whatever was matched by the last successful pattern match (not counting

any matches hidden within a BLOCK or eval() enclosed by the current BLOCK). Example:

perl v5.26.1 2018-11-19 219

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

local $_ = 'abcdefghi';
/def/;
print "$`:$&:$'\n"; # prints abc:def:ghi

See ‘‘Performance issues’’ above for the serious performance implications of using this variable
(even once) in your code.

This variable is read-only and dynamically-scoped.

Mnemonic: ' often follows a quoted string.

${ˆPOSTMATCH}
This is similar to $' ($POSTMATCH) except that it does not incur the performance penalty
associated with that variable.

See ‘‘Performance issues’’ above.

In Perl v5.18 and earlier, it is only guaranteed to return a defined value when the pattern was
compiled or executed with the /p modifier. In Perl v5.20, the /p modifier does nothing, so
${ˆPOSTMATCH} does the same thing as $POSTMATCH.

This variable was added in Perl v5.10.0.

This variable is read-only and dynamically-scoped.

$LAST_PAREN_MATCH
$+ The text matched by the last bracket of the last successful search pattern. This is useful if you

don’t know which one of a set of alternative patterns matched. For example:

/Version: (.*)|Revision: (.*)/ && ($rev = $+);

This variable is read-only and dynamically-scoped.

Mnemonic: be positive and forward looking.

$LAST_SUBMATCH_RESULT
$ˆN The text matched by the used group most-recently closed (i.e. the group with the rightmost

closing parenthesis) of the last successful search pattern.

This is primarily used inside (?{...}) blocks for examining text recently matched. For
example, to effectively capture text to a variable (in addition to $1, $2, etc.), replace (...) with

(?:(...)(?{ $var = $ˆN }))

By setting and then using $var in this way relieves you from having to worry about exactly
which numbered set of parentheses they are.

This variable was added in Perl v5.8.0.

Mnemonic: the (possibly) Nested parenthesis that most recently closed.

@LAST_MATCH_END
@+ This array holds the offsets of the ends of the last successful submatches in the currently active

dynamic scope. $+[0] is the offset into the string of the end of the entire match. This is the
same value as what the pos function returns when called on the variable that was matched
against. The nth element of this array holds the offset of the nth submatch, so $+[1] is the
offset past where $1 ends, $+[2] the offset past where $2 ends, and so on. You can use $#+ to
determine how many subgroups were in the last successful match. See the examples given for the
@− variable.

This variable was added in Perl v5.6.0.

%{ˆCAPTURE}
%LAST_PAREN_MATCH
%+ Similar to @+, the %+ hash allows access to the named capture buffers, should they exist, in the

last successful match in the currently active dynamic scope.

For example, $+{foo} is equivalent to $1 after the following match:

'foo' =˜ /(?<foo>foo)/;

220 2018-11-19 perl v5.26.1

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

The keys of the %+ hash list only the names of buffers that have captured (and that are thus
associated to defined values).

The underlying behaviour of %+ is provided by the Tie::Hash::NamedCapture module.

Note: %− and %+ are tied views into a common internal hash associated with the last successful
regular expression. Therefore mixing iterative access to them via each may have unpredictable
results. Likewise, if the last successful match changes, then the results may be surprising.

This variable was added in Perl v5.10.0. The %{ˆCAPTURE} alias was added in 5.25.7.

This variable is read-only and dynamically-scoped.

@LAST_MATCH_START
@− $−[0] is the offset of the start of the last successful match. $−[n] is the offset of the start of

the substring matched by n−th subpattern, or undef if the subpattern did not match.

Thus, after a match against $_, $& coincides with substr $_, $−[0], $+[0] − $−[0].
Similarly, $n coincides with substr $_, $−[n], $+[n] − $−[n] if $−[n] is defined,
and $+ coincides with substr $_, $−[$#−], $+[$#−] − $−[$#−]. One can use $#−
to find the last matched subgroup in the last successful match. Contrast with $#+, the number of
subgroups in the regular expression. Compare with @+.

This array holds the offsets of the beginnings of the last successful submatches in the currently
active dynamic scope. $−[0] is the offset into the string of the beginning of the entire match.
The nth element of this array holds the offset of the nth submatch, so $−[1] is the offset where
$1 begins, $−[2] the offset where $2 begins, and so on.

After a match against some variable $var:

$` is the same as substr($var, 0, $−[0])
$& is the same as substr($var, $−[0], $+[0] − $−[0])
$' is the same as substr($var, $+[0])
$1 is the same as substr($var, $−[1], $+[1] − $−[1])
$2 is the same as substr($var, $−[2], $+[2] − $−[2])
$3 is the same as substr($var, $−[3], $+[3] − $−[3])

This variable was added in Perl v5.6.0.

%{ˆCAPTURE_ALL}
%− Similar to %+, this variable allows access to the named capture groups in the last successful

match in the currently active dynamic scope. To each capture group name found in the regular
expression, it associates a reference to an array containing the list of values captured by all
buffers with that name (should there be several of them), in the order where they appear.

Here’s an example:

if ('1234' =˜ /(?<A>1)(?2)(?<A>3)(?4)/) {
foreach my $bufname (sort keys %−) {

my $ary = $−{$bufname};
foreach my $idx (0..$#$ary) {

print "\$−{$bufname}[$idx] : ",
(defined($ary−>[$idx])

? "'$ary−>[$idx]'"
: "undef"),

"\n";
}

}
}

would print out:

perl v5.26.1 2018-11-19 221

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

$−{A}[0] : '1'
$−{A}[1] : '3'
$−{B}[0] : '2'
$−{B}[1] : '4'

The keys of the %− hash correspond to all buffer names found in the regular expression.

The behaviour of %− is implemented via the Tie::Hash::NamedCapture module.

Note: %− and %+ are tied views into a common internal hash associated with the last successful
regular expression. Therefore mixing iterative access to them via each may have unpredictable
results. Likewise, if the last successful match changes, then the results may be surprising.

This variable was added in Perl v5.10.0. The %{ˆCAPTURE_ALL} alias was added in 5.25.7.

This variable is read-only and dynamically-scoped.

$LAST_REGEXP_CODE_RESULT
$ˆR The result of evaluation of the last successful (?{ code }) regular expression assertion (see

perlre). May be written to.

This variable was added in Perl 5.005.

${ˆRE_DEBUG_FLAGS}
The current value of the regex debugging flags. Set to 0 for no debug output even when the re
'debug' module is loaded. See re for details.

This variable was added in Perl v5.10.0.

${ˆRE_TRIE_MAXBUF}
Controls how certain regex optimisations are applied and how much memory they utilize. This
value by default is 65536 which corresponds to a 512kB temporary cache. Set this to a higher
value to trade memory for speed when matching large alternations. Set it to a lower value if you
want the optimisations to be as conservative of memory as possible but still occur, and set it to a
negative value to prevent the optimisation and conserve the most memory. Under normal
situations this variable should be of no interest to you.

This variable was added in Perl v5.10.0.

Variables related to filehandles
Variables that depend on the currently selected filehandle may be set by calling an appropriate object
method on the IO::Handle object, although this is less efficient than using the regular built-in variables.
(Summary lines below for this contain the word HANDLE.) First you must say

use IO::Handle;

after which you may use either

method HANDLE EXPR

or more safely,

HANDLE−>method(EXPR)

Each method returns the old value of the IO::Handle attribute. The methods each take an optional
EXPR, which, if supplied, specifies the new value for the IO::Handle attribute in question. If not
supplied, most methods do nothing to the current value — except for autoflush(), which will assume a
1 for you, just to be different.

Because loading in the IO::Handle class is an expensive operation, you should learn how to use the
regular built-in variables.

A few of these variables are considered ‘‘read-only’’. This means that if you try to assign to this variable,
either directly or indirectly through a reference, you’ll raise a run-time exception.

You should be very careful when modifying the default values of most special variables described in this
document. In most cases you want to localize these variables before changing them, since if you don’t, the
change may affect other modules which rely on the default values of the special variables that you have
changed. This is one of the correct ways to read the whole file at once:

222 2018-11-19 perl v5.26.1

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

open my $fh, "<", "foo" or die $!;
local $/; # enable localized slurp mode
my $content = <$fh>;
close $fh;

But the following code is quite bad:

open my $fh, "<", "foo" or die $!;
undef $/; # enable slurp mode
my $content = <$fh>;
close $fh;

since some other module, may want to read data from some file in the default ‘‘line mode’’, so if the code
we have just presented has been executed, the global value of $/ is now changed for any other code
running inside the same Perl interpreter.

Usually when a variable is localized you want to make sure that this change affects the shortest scope
possible. So unless you are already inside some short {} block, you should create one yourself. For
example:

my $content = '';
open my $fh, "<", "foo" or die $!;
{

local $/;
$content = <$fh>;

}
close $fh;

Here is an example of how your own code can go broken:

for (1..3){
$\ = "\r\n";
nasty_break();
print "$_";

}

sub nasty_break {
$\ = "\f";
do something with $_

}

You probably expect this code to print the equivalent of

"1\r\n2\r\n3\r\n"

but instead you get:

"1\f2\f3\f"

Why? Because nasty_break() modifies $\ without localizing it first. The value you set in
nasty_break() is still there when you return. The fix is to add local() so the value doesn’t leak out
of nasty_break():

local $\ = "\f";

It’s easy to notice the problem in such a short example, but in more complicated code you are looking for
trouble if you don’t localize changes to the special variables.

$ARGV Contains the name of the current file when reading from <>.

@ARGV The array @ARGV contains the command-line arguments intended for the script. $#ARGV is
generally the number of arguments minus one, because $ARGV[0] is the first argument, not the
program’s command name itself. See ‘‘$0’’ for the command name.

ARGV The special filehandle that iterates over command-line filenames in @ARGV. Usually written as
the null filehandle in the angle operator <>. Note that currently ARGV only has its magical effect
within the <> operator; elsewhere it is just a plain filehandle corresponding to the last file opened
by <>. In particular, passing *ARGV as a parameter to a function that expects a filehandle may
not cause your function to automatically read the contents of all the files in @ARGV.

perl v5.26.1 2018-11-19 223

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

ARGVOUT

The special filehandle that points to the currently open output file when doing edit-in-place
processing with −i. Useful when you have to do a lot of inserting and don’t want to keep
modifying $_. See perlrun for the −i switch.

IO::Handle−>output_field_separator(EXPR)
$OUTPUT_FIELD_SEPARATOR
$OFS
$, The output field separator for the print operator. If defined, this value is printed between each of

print’s arguments. Default is undef.

You cannot call output_field_separator() on a handle, only as a static method. See
IO::Handle.

Mnemonic: what is printed when there is a ‘‘,’’ in your print statement.

HANDLE−>input_line_number(EXPR)
$INPUT_LINE_NUMBER
$NR
$. Current line number for the last filehandle accessed.

Each filehandle in Perl counts the number of lines that have been read from it. (Depending on the
value of $/, Perl’s idea of what constitutes a line may not match yours.) When a line is read
from a filehandle (via readline() or <>), or when tell() or seek() is called on it, $.
becomes an alias to the line counter for that filehandle.

You can adjust the counter by assigning to $., but this will not actually move the seek pointer.
Localizing $. will not localize the filehandle’s line count. Instead, it will localize perl’s notion of
which filehandle $. is currently aliased to.

$. is reset when the filehandle is closed, but not when an open filehandle is reopened without an
intervening close(). For more details, see ‘‘I/O Operators’’ in perlop. Because <> never does
an explicit close, line numbers increase across ARGV files (but see examples in ‘‘eof ’’ in
perlfunc).

You can also use HANDLE−>input_line_number(EXPR) to access the line counter for a
given filehandle without having to worry about which handle you last accessed.

Mnemonic: many programs use ‘‘.’’ to mean the current line number.

IO::Handle−>input_record_separator(EXPR)
$INPUT_RECORD_SEPARATOR
$RS
$/ The input record separator, newline by default. This influences Perl’s idea of what a ‘‘line’’ is.

Works like awk’s RS variable, including treating empty lines as a terminator if set to the null
string (an empty line cannot contain any spaces or tabs). You may set it to a multi-character
string to match a multi-character terminator, or to undef to read through the end of file. Setting
it to "\n\n" means something slightly different than setting to "", if the file contains
consecutive empty lines. Setting to "" will treat two or more consecutive empty lines as a single
empty line. Setting to "\n\n" will blindly assume that the next input character belongs to the
next paragraph, even if it’s a newline.

local $/; # enable "slurp" mode
local $_ = <FH>; # whole file now here
s/\n[\t]+/ /g;

Remember: the value of $/ is a string, not a regex. awk has to be better for something. :−)

Setting $/ to a reference to an integer, scalar containing an integer, or scalar that’s convertible to
an integer will attempt to read records instead of lines, with the maximum record size being the
referenced integer number of characters. So this:

local $/ = \32768; # or \"32768", or \$var_containing_32768
open my $fh, "<", $myfile or die $!;
local $_ = <$fh>;

224 2018-11-19 perl v5.26.1

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

will read a record of no more than 32768 characters from $fh. If you’re not reading from a
record-oriented file (or your OS doesn’t hav e record-oriented files), then you’ll likely get a full
chunk of data with every read. If a record is larger than the record size you’ve set, you’ll get the
record back in pieces. Trying to set the record size to zero or less is deprecated and will cause $/
to have the value of ‘‘undef ’’, which will cause reading in the (rest of the) whole file.

As of 5.19.9 setting $/ to any other form of reference will throw a fatal exception. This is in
preparation for supporting new ways to set $/ in the future.

On VMS only, record reads bypass PerlIO layers and any associated buffering, so you must not
mix record and non-record reads on the same filehandle. Record mode mixes with line mode
only when the same buffering layer is in use for both modes.

You cannot call input_record_separator() on a handle, only as a static method. See
IO::Handle.

See also ‘‘Newlines’’ in perlport. Also see ‘‘$.’’.

Mnemonic: / delimits line boundaries when quoting poetry.

IO::Handle−>output_record_separator(EXPR)
$OUTPUT_RECORD_SEPARATOR
$ORS
$\ The output record separator for the print operator. If defined, this value is printed after the last of

print’s arguments. Default is undef.

You cannot call output_record_separator() on a handle, only as a static method. See
IO::Handle.

Mnemonic: you set $\ instead of adding ‘‘\n’’ at the end of the print. Also, it’s just like $/, but
it’s what you get ‘‘back’’ from Perl.

HANDLE−>autoflush(EXPR)
$OUTPUT_AUTOFLUSH
$| If set to nonzero, forces a flush right away and after every write or print on the currently selected

output channel. Default is 0 (regardless of whether the channel is really buffered by the system or
not; $| tells you only whether you’ve asked Perl explicitly to flush after each write). STDOUT

will typically be line buffered if output is to the terminal and block buffered otherwise. Setting
this variable is useful primarily when you are outputting to a pipe or socket, such as when you are
running a Perl program under rsh and want to see the output as it’s happening. This has no effect
on input buffering. See ‘‘getc’’ in perlfunc for that. See ‘‘select’’ in perlfunc on how to select the
output channel. See also IO::Handle.

Mnemonic: when you want your pipes to be piping hot.

${ˆLAST_FH}
This read-only variable contains a reference to the last-read filehandle. This is set by
<HANDLE>, readline, tell, eof and seek. This is the same handle that $. and tell and
eof without arguments use. It is also the handle used when Perl appends ‘‘, <STDIN> line 1’’ to
an error or warning message.

This variable was added in Perl v5.18.0.

Variables related to formats

The special variables for formats are a subset of those for filehandles. See perlform for more information
about Perl’s formats.

$ACCUMULATOR
$ˆA The current value of the write() accumulator for format() lines. A format contains

formline() calls that put their result into $ˆA. After calling its format, write() prints out
the contents of $ˆA and empties. So you never really see the contents of $ˆA unless you call
formline() yourself and then look at it. See perlform and ‘‘formline PICTURE,LIST’’ in
perlfunc.

perl v5.26.1 2018-11-19 225

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

IO::Handle−>format_formfeed(EXPR)
$FORMAT_FORMFEED
$ˆL What formats output as a form feed. The default is \f.

You cannot call format_formfeed() on a handle, only as a static method. See IO::Handle.

HANDLE−>format_page_number(EXPR)
$FORMAT_PAGE_NUMBER
$% The current page number of the currently selected output channel.

Mnemonic: % is page number in nroff.

HANDLE−>format_lines_left(EXPR)
$FORMAT_LINES_LEFT
$− The number of lines left on the page of the currently selected output channel.

Mnemonic: lines_on_page − lines_printed.

IO::Handle−>format_line_break_characters EXPR

$FORMAT_LINE_BREAK_CHARACTERS
$: The current set of characters after which a string may be broken to fill continuation fields

(starting with ˆ) in a format. The default is ‘‘ \n−’’, to break on a space, newline, or a hyphen.

You cannot call format_line_break_characters() on a handle, only as a static
method. See IO::Handle.

Mnemonic: a ‘‘colon’’ in poetry is a part of a line.

HANDLE−>format_lines_per_page(EXPR)
$FORMAT_LINES_PER_PAGE
$= The current page length (printable lines) of the currently selected output channel. The default is

60.

Mnemonic: = has horizontal lines.

HANDLE−>format_top_name(EXPR)
$FORMAT_TOP_NAME
$ˆ The name of the current top-of-page format for the currently selected output channel. The default

is the name of the filehandle with _TOP appended. For example, the default format top name for
the STDOUT filehandle is STDOUT_TOP.

Mnemonic: points to top of page.

HANDLE−>format_name(EXPR)
$FORMAT_NAME
$˜ The name of the current report format for the currently selected output channel. The default

format name is the same as the filehandle name. For example, the default format name for the
STDOUT filehandle is just STDOUT.

Mnemonic: brother to $ˆ.

Error Variables
The variables $@, $!, $ˆE, and $? contain information about different types of error conditions that may
appear during execution of a Perl program. The variables are shown ordered by the ‘‘distance’’ between the
subsystem which reported the error and the Perl process. They correspond to errors detected by the Perl
interpreter, C library, operating system, or an external program, respectively.

To illustrate the differences between these variables, consider the following Perl expression, which uses a
single-quoted string. After execution of this statement, perl may have set all four special error variables:

eval q{
open my $pipe, "/cdrom/install |" or die $!;
my @res = <$pipe>;
close $pipe or die "bad pipe: $?, $!";

};

When perl executes the eval() expression, it translates the open(), <PIPE>, and close calls in the C
run-time library and thence to the operating system kernel. perl sets $! to the C library’s errno if one of
these calls fails.

226 2018-11-19 perl v5.26.1

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

$@ is set if the string to be eval−ed did not compile (this may happen if open or close were imported
with bad prototypes), or if Perl code executed during evaluation die()d. In these cases the value of $@ is
the compile error, or the argument to die (which will interpolate $! and $?). (See also Fatal, though.)

Under a few operating systems, $ˆE may contain a more verbose error indicator, such as in this case,
‘‘CDROM tray not closed.’’ Systems that do not support extended error messages leave $ˆE the same as
$!.

Finally, $? may be set to a non−0 value if the external program /cdrom/install fails. The upper eight bits
reflect specific error conditions encountered by the program (the program’s exit() value). The lower
eight bits reflect mode of failure, like signal death and core dump information. See wait (2) for details. In
contrast to $! and $ˆE, which are set only if an error condition is detected, the variable $? is set on each
wait or pipe close, overwriting the old value. This is more like $@, which on every eval() is always
set on failure and cleared on success.

For more details, see the individual descriptions at $@, $!, $ˆE, and $?.

${ˆCHILD_ERROR_NATIVE}
The native status returned by the last pipe close, backtick (``) command, successful call to
wait() or waitpid(), or from the system() operator. On POSIX-like systems this value
can be decoded with the WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG,

WIFSTOPPED, WSTOPSIG and WIFCONTINUED functions provided by the POSIX module.

Under VMS this reflects the actual VMS exit status; i.e. it is the same as $? when the pragma use
vmsish 'status' is in effect.

This variable was added in Perl v5.10.0.

$EXTENDED_OS_ERROR
$ˆE Error information specific to the current operating system. At the moment, this differs from

"$!" under only VMS, OS/2, and Win32 (and for MacPerl). On all other platforms, $ˆE is
always just the same as $!.

Under VMS, $ˆE provides the VMS status value from the last system error. This is more specific
information about the last system error than that provided by $!. This is particularly important
when $! is set to EVMSERR.

Under OS/2, $ˆE is set to the error code of the last call to OS/2 API either via CRT, or directly
from perl.

Under Win32, $ˆE always returns the last error information reported by the Win32 call
GetLastError() which describes the last error from within the Win32 API. Most
Win32−specific code will report errors via $ˆE. ANSI C and Unix-like calls set errno and so
most portable Perl code will report errors via $!.

Caveats mentioned in the description of "$!" generally apply to $ˆE, also.

This variable was added in Perl 5.003.

Mnemonic: Extra error explanation.

$EXCEPTIONS_BEING_CAUGHT
$ˆS Current state of the interpreter.

$ˆS State
−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
undef Parsing module, eval, or main program
true (1) Executing an eval
false (0) Otherwise

The first state may happen in $SIG{_ _DIE_ _} and $SIG{_ _WARN_ _} handlers.

The English name $EXCEPTIONS_BEING_CAUGHT is slightly misleading, because the undef
value does not indicate whether exceptions are being caught, since compilation of the main
program does not catch exceptions.

This variable was added in Perl 5.004.

perl v5.26.1 2018-11-19 227

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

$WARNING
$ˆW The current value of the warning switch, initially true if −w was used, false otherwise, but

directly modifiable.

See also warnings.

Mnemonic: related to the −w switch.

${ˆWARNING_BITS}
The current set of warning checks enabled by the use warnings pragma. It has the same
scoping as the $ˆH and %ˆH variables. The exact values are considered internal to the warnings
pragma and may change between versions of Perl.

This variable was added in Perl v5.6.0.

$OS_ERROR
$ERRNO
$! When referenced, $! retrieves the current value of the C errno integer variable. If $! is

assigned a numerical value, that value is stored in errno. When referenced as a string, $!
yields the system error string corresponding to errno.

Many system or library calls set errno if they fail, to indicate the cause of failure. They usually
do not set errno to zero if they succeed. This means errno, hence $!, is meaningful only
immediately after a failure:

if (open my $fh, "<", $filename) {
Here $! is meaningless.
...

}
else {

ONLY here is $! meaningful.
...
Already here $! might be meaningless.

}
Since here we might have either success or failure,
$! is meaningless.

Here, meaningless means that $! may be unrelated to the outcome of the open() operator.
Assignment to $! is similarly ephemeral. It can be used immediately before invoking the die()
operator, to set the exit value, or to inspect the system error string corresponding to error n, or to
restore $! to a meaningful state.

Mnemonic: What just went bang?

%OS_ERROR
%ERRNO
%! Each element of %! has a true value only if $! is set to that value. For example, $!{ENOENT}

is true if and only if the current value of $! is ENOENT; that is, if the most recent error was ‘‘No
such file or directory’’ (or its moral equivalent: not all operating systems give that exact error, and
certainly not all languages). The specific true value is not guaranteed, but in the past has
generally been the numeric value of $!. To check if a particular key is meaningful on your
system, use exists $!{the_key}; for a list of legal keys, use keys %!. See Errno for
more information, and also see ‘‘$!’’.

This variable was added in Perl 5.005.

$CHILD_ERROR
$? The status returned by the last pipe close, backtick (``) command, successful call to wait() or

waitpid(), or from the system() operator. This is just the 16−bit status word returned by
the traditional Unix wait() system call (or else is made up to look like it). Thus, the exit value
of the subprocess is really ($? >> 8), and $? & 127 gives which signal, if any, the process
died from, and $? & 128 reports whether there was a core dump.

Additionally, if the h_errno variable is supported in C, its value is returned via $? if any
gethost*() function fails.

228 2018-11-19 perl v5.26.1

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

If you have installed a signal handler for SIGCHLD, the value of $? will usually be wrong
outside that handler.

Inside an END subroutine $? contains the value that is going to be given to exit(). You can
modify $? in an END subroutine to change the exit status of your program. For example:

END {
$? = 1 if $? == 255; # die would make it 255

}

Under VMS, the pragma use vmsish 'status' makes $? reflect the actual VMS exit status,
instead of the default emulation of POSIX status; see ‘‘$?’’ in perlvms for details.

Mnemonic: similar to sh and ksh.

$EVAL_ERROR
$@ The Perl error from the last eval operator, i.e. the last exception that was caught. For eval

BLOCK, this is either a runtime error message or the string or reference die was called with.
The eval STRING form also catches syntax errors and other compile time exceptions.

If no error occurs, eval sets $@ to the empty string.

Warning messages are not collected in this variable. You can, however, set up a routine to
process warnings by setting $SIG{_ _WARN_ _} as described in ‘‘%SIG’’.

Mnemonic: Where was the error ‘‘at’’?

Variables related to the interpreter state
These variables provide information about the current interpreter state.

$COMPILING
$ˆC The current value of the flag associated with the −c switch. Mainly of use with −MO=... to allow

code to alter its behavior when being compiled, such as for example to AUTOLOAD at compile
time rather than normal, deferred loading. Setting $ˆC = 1 is similar to calling B::minus_c.

This variable was added in Perl v5.6.0.

$DEBUGGING
$ˆD The current value of the debugging flags. May be read or set. Like its command-line equivalent,

you can use numeric or symbolic values, e.g. $ˆD = 10 or $ˆD = "st". See "−Dnumber" in
perlrun. The contents of this variable also affects the debugger operation. See ‘‘Debugger
Internals’’ in perldebguts.

Mnemonic: value of −D switch.

${ˆENCODING}
This variable is no longer supported.

It used to hold the object reference to the Encode object that was used to convert the source
code to Unicode.

Its purpose was to allow your non-ASCII Perl scripts not to have to be written in UTF−8; this was
useful before editors that worked on UTF−8 encoded text were common, but that was long ago. It
caused problems, such as affecting the operation of other modules that weren’t expecting it,
causing general mayhem.

If you need something like this functionality, it is recommended that use you a simple source
filter, such as Filter::Encoding.

If you are coming here because code of yours is being adversely affected by someone’s use of this
variable, you can usually work around it by doing this:

local ${ˆENCODING};

near the beginning of the functions that are getting broken. This undefines the variable during the
scope of execution of the including function.

This variable was added in Perl 5.8.2 and removed in 5.26.0.

perl v5.26.1 2018-11-19 229

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

${ˆGLOBAL_PHASE}
The current phase of the perl interpreter.

Possible values are:

CONSTRUCT

The PerlInterpreter* is being constructed via perl_construct. This value
is mostly there for completeness and for use via the underlying C variable PL_phase.
It’s not really possible for Perl code to be executed unless construction of the interpreter
is finished.

START This is the global compile-time. That includes, basically, every BEGIN block executed
directly or indirectly from during the compile-time of the top-level program.

This phase is not called ‘‘BEGIN’’ to avoid confusion with BEGIN−blocks, as those are
executed during compile-time of any compilation unit, not just the top-level program.
A new, localised compile-time entered at run-time, for example by constructs as eval
"use SomeModule" are not global interpreter phases, and therefore aren’t reflected
by ${ˆGLOBAL_PHASE}.

CHECK Execution of any CHECK blocks.

INIT Similar to ‘‘CHECK’’, but for INIT−blocks, not CHECK blocks.

RUN The main run-time, i.e. the execution of PL_main_root.

END Execution of any END blocks.

DESTRUCT

Global destruction.

Also note that there’s no value for UNITCHECK-blocks. That’s because those are run for each
compilation unit individually, and therefore is not a global interpreter phase.

Not every program has to go through each of the possible phases, but transition from one phase to
another can only happen in the order described in the above list.

An example of all of the phases Perl code can see:

BEGIN { print "compile−time: ${ˆGLOBAL_PHASE}\n" }

INIT { print "init−time: ${ˆGLOBAL_PHASE}\n" }

CHECK { print "check−time: ${ˆGLOBAL_PHASE}\n" }

{
package Print::Phase;

sub new {
my ($class, $time) = @_;
return bless \$time, $class;

}

sub DESTROY {
my $self = shift;
print "$$self: ${ˆGLOBAL_PHASE}\n";

}
}

print "run−time: ${ˆGLOBAL_PHASE}\n";

my $runtime = Print::Phase−>new(
"lexical variables are garbage collected before END"

);

END { print "end−time: ${ˆGLOBAL_PHASE}\n" }

230 2018-11-19 perl v5.26.1

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

our $destruct = Print::Phase−>new(
"package variables are garbage collected after END"

);

This will print out

compile−time: START
check−time: CHECK
init−time: INIT
run−time: RUN
lexical variables are garbage collected before END: RUN
end−time: END
package variables are garbage collected after END: DESTRUCT

This variable was added in Perl 5.14.0.

$ˆH WARNING: This variable is strictly for internal use only. Its availability, behavior, and contents
are subject to change without notice.

This variable contains compile-time hints for the Perl interpreter. At the end of compilation of a
BLOCK the value of this variable is restored to the value when the interpreter started to compile
the BLOCK.

When perl begins to parse any block construct that provides a lexical scope (e.g., eval body,
required file, subroutine body, loop body, or conditional block), the existing value of $ˆH is
saved, but its value is left unchanged. When the compilation of the block is completed, it regains
the saved value. Between the points where its value is saved and restored, code that executes
within BEGIN blocks is free to change the value of $ˆH.

This behavior provides the semantic of lexical scoping, and is used in, for instance, the use
strict pragma.

The contents should be an integer; different bits of it are used for different pragmatic flags.
Here’s an example:

sub add_100 { $ˆH |= 0x100 }

sub foo {
BEGIN { add_100() }
bar−>baz($boon);

}

Consider what happens during execution of the BEGIN block. At this point the BEGIN block has
already been compiled, but the body of foo() is still being compiled. The new value of $ˆH
will therefore be visible only while the body of foo() is being compiled.

Substitution of BEGIN { add_100() } block with:

BEGIN { require strict; strict−>import('vars') }

demonstrates how use strict 'vars' is implemented. Here’s a conditional version of the
same lexical pragma:

BEGIN {
require strict; strict−>import('vars') if $condition

}

This variable was added in Perl 5.003.

%ˆH The %ˆH hash provides the same scoping semantic as $ˆH. This makes it useful for
implementation of lexically scoped pragmas. See perlpragma. All the entries are stringified
when accessed at runtime, so only simple values can be accommodated. This means no pointers
to objects, for example.

When putting items into %ˆH, in order to avoid conflicting with other users of the hash there is a
convention regarding which keys to use. A module should use only keys that begin with the

perl v5.26.1 2018-11-19 231

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

module’s name (the name of its main package) and a ‘‘/’’ character. For example, a module
Foo::Bar should use keys such as Foo::Bar/baz.

This variable was added in Perl v5.6.0.

${ˆOPEN}
An internal variable used by PerlIO. A string in two parts, separated by a \0 byte, the first part
describes the input layers, the second part describes the output layers.

This variable was added in Perl v5.8.0.

$PERLDB
$ˆP The internal variable for debugging support. The meanings of the various bits are subject to

change, but currently indicate:

0x01 Debug subroutine enter/exit.

0x02 Line-by-line debugging. Causes DB::DB() subroutine to be called for each statement
executed. Also causes saving source code lines (like 0x400).

0x04 Switch off optimizations.

0x08 Preserve more data for future interactive inspections.

0x10 Keep info about source lines on which a subroutine is defined.

0x20 Start with single-step on.

0x40 Use subroutine address instead of name when reporting.

0x80 Report goto &subroutine as well.

0x100 Provide informative ‘‘file’’ names for evals based on the place they were compiled.

0x200 Provide informative names to anonymous subroutines based on the place they were
compiled.

0x400 Save source code lines into @{"_<$filename"}.

0x800 When saving source, include evals that generate no subroutines.

0x1000
When saving source, include source that did not compile.

Some bits may be relevant at compile-time only, some at run-time only. This is a new mechanism
and the details may change. See also perldebguts.

${ˆTAINT}
Reflects if taint mode is on or off. 1 for on (the program was run with −T), 0 for off, −1 when
only taint warnings are enabled (i.e. with −t or −TU).

This variable is read-only.

This variable was added in Perl v5.8.0.

${ˆUNICODE}
Reflects certain Unicode settings of Perl. See perlrun documentation for the −C switch for more
information about the possible values.

This variable is set during Perl startup and is thereafter read-only.

This variable was added in Perl v5.8.2.

${ˆUTF8CACHE}
This variable controls the state of the internal UTF−8 offset caching code. 1 for on (the default), 0
for off, −1 to debug the caching code by checking all its results against linear scans, and
panicking on any discrepancy.

This variable was added in Perl v5.8.9. It is subject to change or removal without notice, but is
currently used to avoid recalculating the boundaries of multi-byte UTF−8−encoded characters.

${ˆUTF8LOCALE}
This variable indicates whether a UTF−8 locale was detected by perl at startup. This information
is used by perl when it’s in adjust−utf8ness−to−locale mode (as when run with the −CL

232 2018-11-19 perl v5.26.1

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

command-line switch); see perlrun for more info on this.

This variable was added in Perl v5.8.8.

Deprecated and removed variables
Deprecating a variable announces the intent of the perl maintainers to eventually remove the variable from
the language. It may still be available despite its status. Using a deprecated variable triggers a warning.

Once a variable is removed, its use triggers an error telling you the variable is unsupported.

See perldiag for details about error messages.

$# $# was a variable that could be used to format printed numbers. After a deprecation cycle, its
magic was removed in Perl v5.10.0 and using it now triggers a warning: $# is no longer
supported.

This is not the sigil you use in front of an array name to get the last index, like $#array. That’s
still how you get the last index of an array in Perl. The two hav e nothing to do with each other.

Deprecated in Perl 5.

Removed in Perl v5.10.0.

$* $* was a variable that you could use to enable multiline matching. After a deprecation cycle, its
magic was removed in Perl v5.10.0. Using it now triggers a warning: $* is no longer
supported. You should use the /s and /m regexp modifiers instead.

Deprecated in Perl 5.

Removed in Perl v5.10.0.

$[This variable stores the index of the first element in an array, and of the first character in a
substring. The default is 0, but you could theoretically set it to 1 to make Perl behave more like
awk (or Fortran) when subscripting and when evaluating the index() and substr() functions.

As of release 5 of Perl, assignment to $[is treated as a compiler directive, and cannot influence
the behavior of any other file. (That’s why you can only assign compile-time constants to it.) Its
use is highly discouraged.

Prior to Perl v5.10.0, assignment to $[could be seen from outer lexical scopes in the same file,
unlike other compile-time directives (such as strict). Using local() on it would bind its value
strictly to a lexical block. Now it is always lexically scoped.

As of Perl v5.16.0, it is implemented by the arybase module. See arybase for more details on its
behaviour.

Under use v5.16, or no feature "array_base", $[no longer has any effect, and
always contains 0. Assigning 0 to it is permitted, but any other value will produce an error.

Mnemonic: [begins subscripts.

Deprecated in Perl v5.12.0.

perl v5.26.1 2018-11-19 233

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

NAME
perlrun − how to execute the Perl interpreter

SYNOPSIS
perl [−sTtuUWX] [−hv] [−V[:configvar]]

[−cw] [−d[t][:debugger]] [−D[number/list]]
[−pna] [−Fpattern] [−l[octal]] [−0[octal/hexadecimal]]
[−Idir] [−m[−]module] [−M[−]’module...’] [−f] [−C [number/list]] [−S]
[−x[dir]] [−i[extension]]
[[−e|−E] ’command’] [−−] [programfile] [argument]...

DESCRIPTION
The normal way to run a Perl program is by making it directly executable, or else by passing the name of
the source file as an argument on the command line. (An interactive Perl environment is also
possible — see perldebug for details on how to do that.) Upon startup, Perl looks for your program in one
of the following places:

1. Specified line by line via −e or −E switches on the command line.

2. Contained in the file specified by the first filename on the command line. (Note that systems
supporting the #! notation invoke interpreters this way. See ‘‘Location of Perl’’.)

3. Passed in implicitly via standard input. This works only if there are no filename arguments — to pass
arguments to a STDIN-read program you must explicitly specify a ‘‘−’’ for the program name.

With methods 2 and 3, Perl starts parsing the input file from the beginning, unless you’ve specified a −x
switch, in which case it scans for the first line starting with #! and containing the word ‘‘perl’’, and starts
there instead. This is useful for running a program embedded in a larger message. (In this case you would
indicate the end of the program using the __END_ _ token.)

The #! line is always examined for switches as the line is being parsed. Thus, if you’re on a machine that
allows only one argument with the #! line, or worse, doesn’t even recognize the #! line, you still can get
consistent switch behaviour regardless of how Perl was invoked, even if −x was used to find the beginning
of the program.

Because historically some operating systems silently chopped off kernel interpretation of the #! line after
32 characters, some switches may be passed in on the command line, and some may not; you could even
get a ‘‘−’’ without its letter, if you’re not careful. You probably want to make sure that all your switches
fall either before or after that 32−character boundary. Most switches don’t actually care if they’re
processed redundantly, but getting a ‘‘−’’ instead of a complete switch could cause Perl to try to execute
standard input instead of your program. And a partial −I switch could also cause odd results.

Some switches do care if they are processed twice, for instance combinations of −l and −0. Either put all
the switches after the 32−character boundary (if applicable), or replace the use of −0digits by BEGIN{ $/
= "\0digits"; }.

Parsing of the #! switches starts wherever ‘‘perl’’ is mentioned in the line. The sequences ‘‘−*’’ and ‘‘− ’’
are specifically ignored so that you could, if you were so inclined, say

#!/bin/sh
#! −*−perl−*−
eval 'exec perl −x −wS $0 ${1+"$@"}'

if 0;

to let Perl see the −p switch.

A similar trick involves the env program, if you have it.

#!/usr/bin/env perl

The examples above use a relative path to the perl interpreter, getting whatever version is first in the user’s
path. If you want a specific version of Perl, say, perl5.14.1, you should place that directly in the #! line’s
path.

If the #! line does not contain the word ‘‘perl’’ nor the word ‘‘indir’’, the program named after the #! is
executed instead of the Perl interpreter. This is slightly bizarre, but it helps people on machines that don’t
do #!, because they can tell a program that their SHELL is /usr/bin/perl, and Perl will then dispatch the
program to the correct interpreter for them.

234 2018-11-19 perl v5.26.1

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

After locating your program, Perl compiles the entire program to an internal form. If there are any
compilation errors, execution of the program is not attempted. (This is unlike the typical shell script, which
might run part-way through before finding a syntax error.)

If the program is syntactically correct, it is executed. If the program runs off the end without hitting an
exit() or die() operator, an implicit exit(0) is provided to indicate successful completion.

#! and quoting on non-Unix systems
Unix’s #! technique can be simulated on other systems:

OS/2

Put

extproc perl −S −your_switches

as the first line in *.cmd file (−S due to a bug in cmd.exe’s ‘extproc’ handling).

MS-DOS
Create a batch file to run your program, and codify it in ALTERNATE_SHEBANG (see the dosish.h file
in the source distribution for more information).

Win95/NT
The Win95/NT installation, when using the ActiveState installer for Perl, will modify the Registry to
associate the .pl extension with the perl interpreter. If you install Perl by other means (including
building from the sources), you may have to modify the Registry yourself. Note that this means you
can no longer tell the difference between an executable Perl program and a Perl library file.

VMS

Put

$ perl −mysw 'f$env("procedure")' 'p1' 'p2' 'p3' 'p4' 'p5' 'p6' 'p7' 'p8' !
$ exit++ + ++$status != 0 and $exit = $status = undef;

at the top of your program, where −mysw are any command line switches you want to pass to Perl.
You can now inv oke the program directly, by saying perl program, or as a DCL procedure, by
saying @program (or implicitly via DCL$PATH by just using the name of the program).

This incantation is a bit much to remember, but Perl will display it for you if you say perl
"−V:startperl".

Command-interpreters on non-Unix systems have rather different ideas on quoting than Unix shells. You’ll
need to learn the special characters in your command-interpreter (*, \ and " are common) and how to
protect whitespace and these characters to run one-liners (see −e below).

On some systems, you may have to change single-quotes to double ones, which you must not do on Unix or
Plan 9 systems. You might also have to change a single % to a %%.

For example:

Unix
perl −e 'print "Hello world\n"'

MS−DOS, etc.
perl −e "print \"Hello world\n\""

VMS
perl −e "print ""Hello world\n"""

The problem is that none of this is reliable: it depends on the command and it is entirely possible neither
works. If 4DOS were the command shell, this would probably work better:

perl −e "print <Ctrl−x>"Hello world\n<Ctrl−x>""

CMD.EXE in Windows NT slipped a lot of standard Unix functionality in when nobody was looking, but
just try to find documentation for its quoting rules.

There is no general solution to all of this. It’s just a mess.

perl v5.26.1 2018-11-19 235

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

Location of Perl
It may seem obvious to say, but Perl is useful only when users can easily find it. When possible, it’s good
for both /usr/bin/perl and /usr/local/bin/perl to be symlinks to the actual binary. If that can’t be done,
system administrators are strongly encouraged to put (symlinks to) perl and its accompanying utilities into
a directory typically found along a user’s PATH, or in some other obvious and convenient place.

In this documentation, #!/usr/bin/perl on the first line of the program will stand in for whatever
method works on your system. You are advised to use a specific path if you care about a specific version.

#!/usr/local/bin/perl5.14

or if you just want to be running at least version, place a statement like this at the top of your program:

use 5.014;

Command Switches
As with all standard commands, a single-character switch may be clustered with the following switch, if
any.

#!/usr/bin/perl −spi.orig # same as −s −p −i.orig

A −− signals the end of options and disables further option processing. Any arguments after the −− are
treated as filenames and arguments.

Switches include:

−0[octal/hexadecimal]
specifies the input record separator ($/) as an octal or hexadecimal number. If there are no digits,
the null character is the separator. Other switches may precede or follow the digits. For example, if
you have a version of find which can print filenames terminated by the null character, you can say
this:

find . −name '*.orig' −print0 | perl −n0e unlink

The special value 00 will cause Perl to slurp files in paragraph mode. Any value 0400 or above will
cause Perl to slurp files whole, but by convention the value 0777 is the one normally used for this
purpose.

You can also specify the separator character using hexadecimal notation: −0xHHH..., where the H are
valid hexadecimal digits. Unlike the octal form, this one may be used to specify any Unicode
character, even those beyond 0xFF. So if you really want a record separator of 0777, specify it as
−0x1FF. (This means that you cannot use the −x option with a directory name that consists of
hexadecimal digits, or else Perl will think you have specified a hex number to −0.)

−a turns on autosplit mode when used with a −n or −p. An implicit split command to the @F array is
done as the first thing inside the implicit while loop produced by the −n or −p.

perl −ane 'print pop(@F), "\n";'

is equivalent to

while (<>) {
@F = split(' ');
print pop(@F), "\n";

}

An alternate delimiter may be specified using −F.

−a implicitly sets −n.

−C [number/list]
The −C flag controls some of the Perl Unicode features.

As of 5.8.1, the −C can be followed either by a number or a list of option letters. The letters, their
numeric values, and effects are as follows; listing the letters is equal to summing the numbers.

236 2018-11-19 perl v5.26.1

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

I 1 STDIN is assumed to be in UTF−8
O 2 STDOUT will be in UTF−8
E 4 STDERR will be in UTF−8
S 7 I + O + E
i 8 UTF−8 is the default PerlIO layer for input streams
o 16 UTF−8 is the default PerlIO layer for output streams
D 24 i + o
A 32 the @ARGV elements are expected to be strings encoded

in UTF−8
L 64 normally the "IOEioA" are unconditional, the L makes

them conditional on the locale environment variables
(the LC_ALL, LC_CTYPE, and LANG, in the order of
decreasing precedence) −− if the variables indicate
UTF−8, then the selected "IOEioA" are in effect

a 256 Set ${ˆUTF8CACHE} to −1, to run the UTF−8 caching
code in debugging mode.

For example, −COE and −C6 will both turn on UTF−8−ness on both STDOUT and STDERR.

Repeating letters is just redundant, not cumulative nor toggling.

The io options mean that any subsequent open() (or similar I/O operations) in the current file scope
will have the :utf8 PerlIO layer implicitly applied to them, in other words, UTF−8 is expected from
any input stream, and UTF−8 is produced to any output stream. This is just the default, with explicit
layers in open() and with binmode() one can manipulate streams as usual.

−C on its own (not followed by any number or option list), or the empty string "" for the
PERL_UNICODE environment variable, has the same effect as −CSDL. In other words, the standard
I/O handles and the default open() layer are UTF−8−fied but only if the locale environment
variables indicate a UTF−8 locale. This behaviour follows the implicit (and problematic) UTF−8

behaviour of Perl 5.8.0. (See ‘‘UTF−8 no longer default under UTF−8 locales’’ in perl581delta.)

You can use −C0 (or "0" for PERL_UNICODE) to explicitly disable all the above Unicode features.

The read-only magic variable ${ˆUNICODE} reflects the numeric value of this setting. This
variable is set during Perl startup and is thereafter read-only. If you want runtime effects, use the
three-arg open() (see ‘‘open’’ in perlfunc), the two-arg binmode() (see ‘‘binmode’’ in perlfunc), and
the open pragma (see open).

(In Perls earlier than 5.8.1 the −C switch was a Win32−only switch that enabled the use of Unicode-
aw are ‘‘wide system call’’ Win32 APIs. This feature was practically unused, however, and the
command line switch was therefore ‘‘recycled’’.)

Note: Since perl 5.10.1, if the −C option is used on the #! line, it must be specified on the command
line as well, since the standard streams are already set up at this point in the execution of the perl
interpreter. You can also use binmode() to set the encoding of an I/O stream.

−c causes Perl to check the syntax of the program and then exit without executing it. Actually, it will
execute any BEGIN, UNITCHECK, or CHECK blocks and any use statements: these are considered
as occurring outside the execution of your program. INIT and END blocks, however, will be
skipped.

−d
−dt runs the program under the Perl debugger. See perldebug. If t is specified, it indicates to the

debugger that threads will be used in the code being debugged.

−d:MOD[=bar,baz]
−dt:MOD[=bar,baz]

runs the program under the control of a debugging, profiling, or tracing module installed as
Devel::MOD. E.g., −d:DProf executes the program using the Devel::DProf profiler. As with
the −M flag, options may be passed to the Devel::MOD package where they will be received and
interpreted by the Devel::MOD::import routine. Again, like −M, use −−d:−MOD to call
Devel::MOD::unimport instead of import. The comma-separated list of options must follow a
= character. If t is specified, it indicates to the debugger that threads will be used in the code being
debugged. See perldebug.

perl v5.26.1 2018-11-19 237

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

−Dletters
−Dnumber

sets debugging flags. This switch is enabled only if your perl binary has been built with debugging
enabled: normal production perls won’t hav e been.

For example, to watch how perl executes your program, use −Dtls. Another nice value is −Dx, which
lists your compiled syntax tree, and −Dr displays compiled regular expressions; the format of the
output is explained in perldebguts.

As an alternative, specify a number instead of list of letters (e.g., −D14 is equivalent to −Dtls):

1 p Tokenizing and parsing (with v, displays parse
stack)

2 s Stack snapshots (with v, displays all stacks)
4 l Context (loop) stack processing
8 t Trace execution
16 o Method and overloading resolution
32 c String/numeric conversions
64 P Print profiling info, source file input state
128 m Memory and SV allocation
256 f Format processing
512 r Regular expression parsing and execution
1024 x Syntax tree dump
2048 u Tainting checks
4096 U Unofficial, User hacking (reserved for private,

unreleased use)
8192 H Hash dump −− usurps values()
16384 X Scratchpad allocation
32768 D Cleaning up
65536 S Op slab allocation
131072 T Tokenizing
262144 R Include reference counts of dumped variables

(eg when using −Ds)
524288 J show s,t,P−debug (don't Jump over) on opcodes within

package DB
1048576 v Verbose: use in conjunction with other flags
2097152 C Copy On Write
4194304 A Consistency checks on internal structures
8388608 q quiet − currently only suppresses the "EXECUTING"

message
16777216 M trace smart match resolution
33554432 B dump suBroutine definitions, including special

Blocks like BEGIN
67108864 L trace Locale−related info; what gets output is very

subject to change
134217728 i trace PerlIO layer processing. Set PERLIO_DEBUG to

the filename to trace to.

All these flags require −DDEBUGGING when you compile the Perl executable (but see :opd in
Devel::Peek or ‘‘’debug’ mode’’ in re which may change this). See the INSTALL file in the Perl
source distribution for how to do this.

If you’re just trying to get a print out of each line of Perl code as it executes, the way that sh −x
provides for shell scripts, you can’t use Perl’s −D switch. Instead do this

If you have "env" utility
env PERLDB_OPTS="NonStop=1 AutoTrace=1 frame=2" perl −dS program

Bourne shell syntax
$ PERLDB_OPTS="NonStop=1 AutoTrace=1 frame=2" perl −dS program

csh syntax

238 2018-11-19 perl v5.26.1

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

% (setenv PERLDB_OPTS "NonStop=1 AutoTrace=1 frame=2"; perl −dS program)

See perldebug for details and variations.

−e commandline
may be used to enter one line of program. If −e is given, Perl will not look for a filename in the
argument list. Multiple −e commands may be given to build up a multi-line script. Make sure to use
semicolons where you would in a normal program.

−E commandline
behaves just like −e, except that it implicitly enables all optional features (in the main compilation
unit). See feature.

−f Disable executing $Config{sitelib}/sitecustomize.pl at startup.

Perl can be built so that it by default will try to execute $Config{sitelib}/sitecustomize.pl at startup
(in a BEGIN block). This is a hook that allows the sysadmin to customize how Perl behaves. It can
for instance be used to add entries to the @INC array to make Perl find modules in non-standard
locations.

Perl actually inserts the following code:

BEGIN {
do { local $!; −f "$Config{sitelib}/sitecustomize.pl"; }

&& do "$Config{sitelib}/sitecustomize.pl";
}

Since it is an actual do (not a require), sitecustomize.pl doesn’t need to return a true value. The
code is run in package main, in its own lexical scope. However, if the script dies, $@ will not be set.

The value of $Config{sitelib} is also determined in C code and not read from Config.pm,
which is not loaded.

The code is executed very early. For example, any changes made to @INC will show up in the output
of ‘perl −V‘. Of course, END blocks will be likewise executed very late.

To determine at runtime if this capability has been compiled in your perl, you can check the value of
$Config{usesitecustomize}.

−Fpattern
specifies the pattern to split on for −a. The pattern may be surrounded by //, "", or '', otherwise it
will be put in single quotes. You can’t use literal whitespace or NUL characters in the pattern.

−F implicitly sets both −a and −n.

−h prints a summary of the options.

−i[extension]
specifies that files processed by the <> construct are to be edited in-place. It does this by renaming
the input file, opening the output file by the original name, and selecting that output file as the default
for print() statements. The extension, if supplied, is used to modify the name of the old file to make a
backup copy, following these rules:

If no extension is supplied, and your system supports it, the original file is kept open without a name
while the output is redirected to a new file with the original filename. When perl exits, cleanly or not,
the original file is unlinked.

If the extension doesn’t contain a *, then it is appended to the end of the current filename as a suffix.
If the extension does contain one or more * characters, then each * is replaced with the current
filename. In Perl terms, you could think of this as:

($backup = $extension) =˜ s/*/$file_name/g;

This allows you to add a prefix to the backup file, instead of (or in addition to) a suffix:

$ perl −pi'orig_*' −e 's/bar/baz/' fileA # backup to
'orig_fileA'

Or even to place backup copies of the original files into another directory (provided the directory
already exists):

perl v5.26.1 2018-11-19 239

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

$ perl −pi'old/*.orig' −e 's/bar/baz/' fileA # backup to
'old/fileA.orig'

These sets of one-liners are equivalent:

$ perl −pi −e 's/bar/baz/' fileA # overwrite current file
$ perl −pi'*' −e 's/bar/baz/' fileA # overwrite current file

$ perl −pi'.orig' −e 's/bar/baz/' fileA # backup to 'fileA.orig'
$ perl −pi'*.orig' −e 's/bar/baz/' fileA # backup to 'fileA.orig'

From the shell, saying

$ perl −p −i.orig −e "s/foo/bar/; ... "

is the same as using the program:

#!/usr/bin/perl −pi.orig
s/foo/bar/;

which is equivalent to

#!/usr/bin/perl
$extension = '.orig';
LINE: while (<>) {

if ($ARGV ne $oldargv) {
if ($extension !˜ /*/) {

$backup = $ARGV . $extension;
}
else {

($backup = $extension) =˜ s/*/$ARGV/g;
}
rename($ARGV, $backup);
open(ARGVOUT, ">$ARGV");
select(ARGVOUT);
$oldargv = $ARGV;

}
s/foo/bar/;

}
continue {

print; # this prints to original filename
}
select(STDOUT);

except that the −i form doesn’t need to compare $ARGV to $oldargv to know when the filename
has changed. It does, however, use ARGVOUT for the selected filehandle. Note that STDOUT is
restored as the default output filehandle after the loop.

As shown above, Perl creates the backup file whether or not any output is actually changed. So this
is just a fancy way to copy files:

$ perl −p −i'/some/file/path/*' −e 1 file1 file2 file3...
or

$ perl −p −i'.orig' −e 1 file1 file2 file3...

You can use eof without parentheses to locate the end of each input file, in case you want to append
to each file, or reset line numbering (see example in ‘‘eof ’’ in perlfunc).

If, for a given file, Perl is unable to create the backup file as specified in the extension then it will skip
that file and continue on with the next one (if it exists).

For a discussion of issues surrounding file permissions and −i, see ‘‘Why does Perl let me delete
read-only files? Why does −i clobber protected files? Isn’t this a bug in Perl?’’ in perlfaq5.

You cannot use −i to create directories or to strip extensions from files.

Perl does not expand ˜ in filenames, which is good, since some folks use it for their backup files:

240 2018-11-19 perl v5.26.1

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

$ perl −pi˜ −e 's/foo/bar/' file1 file2 file3...

Note that because −i renames or deletes the original file before creating a new file of the same name,
Unix-style soft and hard links will not be preserved.

Finally, the −i switch does not impede execution when no files are given on the command line. In
this case, no backup is made (the original file cannot, of course, be determined) and processing
proceeds from STDIN to STDOUT as might be expected.

−Idirectory
Directories specified by −I are prepended to the search path for modules (@INC).

−l[octnum]
enables automatic line-ending processing. It has two separate effects. First, it automatically chomps
$/ (the input record separator) when used with −n or −p. Second, it assigns $\ (the output record
separator) to have the value of octnum so that any print statements will have that separator added
back on. If octnum is omitted, sets $\ to the current value of $/. For instance, to trim lines to 80
columns:

perl −lpe 'substr($_, 80) = ""'

Note that the assignment $\ = $/ is done when the switch is processed, so the input record
separator can be different than the output record separator if the −l switch is followed by a −0 switch:

gnufind / −print0 | perl −ln0e 'print "found $_" if −p'

This sets $\ to newline and then sets $/ to the null character.

−m[−]module
−M[−]module
−M[−]’module ...’
−[mM][−]module=arg[,arg]...

−mmodule executes use module (); before executing your program.

−Mmodule executes use module ; before executing your program. You can use quotes to add extra
code after the module name, e.g., '−MMODULE qw(foo bar)'.

If the first character after the −M or −m is a dash (−) then the ’use’ is replaced with ’no’.

A little builtin syntactic sugar means you can also say −mMODULE=foo,bar or
−MMODULE=foo,bar as a shortcut for ’−MMODULE qw(foo bar)’. This avoids the need to use
quotes when importing symbols. The actual code generated by −MMODULE=foo,bar is use
module split(/,/,q{foo,bar}). Note that the = form removes the distinction between −m
and −M; that is, −mMODULE=foo,bar is the same as −MMODULE=foo,bar.

A consequence of this is that −MMODULE=number never does a version check, unless
MODULE::import() itself is set up to do a version check, which could happen for example if
MODULE inherits from Exporter.

−n causes Perl to assume the following loop around your program, which makes it iterate over filename
arguments somewhat like sed −n or awk:

LINE:
while (<>) {

... # your program goes here
}

Note that the lines are not printed by default. See ‘‘−p’’ to hav e lines printed. If a file named by an
argument cannot be opened for some reason, Perl warns you about it and moves on to the next file.

Also note that <> passes command line arguments to ‘‘open’’ in perlfunc, which doesn’t necessarily
interpret them as file names. See perlop for possible security implications.

Here is an efficient way to delete all files that haven’t been modified for at least a week:

find . −mtime +7 −print | perl −nle unlink

This is faster than using the −exec switch of find because you don’t hav e to start a process on every
filename found (but it’s not faster than using the −delete switch available in newer versions of find. It

perl v5.26.1 2018-11-19 241

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

does suffer from the bug of mishandling newlines in pathnames, which you can fix if you follow the
example under −0.

BEGIN and END blocks may be used to capture control before or after the implicit program loop, just
as in awk.

−p causes Perl to assume the following loop around your program, which makes it iterate over filename
arguments somewhat like sed:

LINE:
while (<>) {

... # your program goes here
} continue {

print or die "−p destination: $!\n";
}

If a file named by an argument cannot be opened for some reason, Perl warns you about it, and moves
on to the next file. Note that the lines are printed automatically. An error occurring during printing is
treated as fatal. To suppress printing use the −n switch. A −p overrides a −n switch.

BEGIN and END blocks may be used to capture control before or after the implicit loop, just as in
awk.

−s enables rudimentary switch parsing for switches on the command line after the program name but
before any filename arguments (or before an argument of −−). Any switch found there is removed
from @ARGV and sets the corresponding variable in the Perl program. The following program prints
‘‘1’’ if the program is invoked with a −xyz switch, and ‘‘abc’’ if it is inv oked with −xyz=abc.

#!/usr/bin/perl −s
if ($xyz) { print "$xyz\n" }

Do note that a switch like −−help creates the variable ${−help}, which is not compliant with use
strict "refs". Also, when using this option on a script with warnings enabled you may get a
lot of spurious ‘‘used only once’’ warnings.

−S makes Perl use the PATH environment variable to search for the program unless the name of the
program contains path separators.

On some platforms, this also makes Perl append suffixes to the filename while searching for it. For
example, on Win32 platforms, the ‘‘.bat’’ and ‘‘.cmd’’ suffixes are appended if a lookup for the
original name fails, and if the name does not already end in one of those suffixes. If your Perl was
compiled with DEBUGGING turned on, using the −Dp switch to Perl shows how the search
progresses.

Typically this is used to emulate #! startup on platforms that don’t support #!. It’s also convenient
when debugging a script that uses #!, and is thus normally found by the shell’s $PATH search
mechanism.

This example works on many platforms that have a shell compatible with Bourne shell:

#!/usr/bin/perl
eval 'exec /usr/bin/perl −wS $0 ${1+"$@"}'

if $running_under_some_shell;

The system ignores the first line and feeds the program to /bin/sh, which proceeds to try to execute
the Perl program as a shell script. The shell executes the second line as a normal shell command, and
thus starts up the Perl interpreter. On some systems $0 doesn’t always contain the full pathname, so
the −S tells Perl to search for the program if necessary. After Perl locates the program, it parses the
lines and ignores them because the variable $running_under_some_shell is never true. If the
program will be interpreted by csh, you will need to replace ${1+"$@"} with $*, even though that
doesn’t understand embedded spaces (and such) in the argument list. To start up sh rather than csh,
some systems may have to replace the #! line with a line containing just a colon, which will be
politely ignored by Perl. Other systems can’t control that, and need a totally devious construct that
will work under any of csh, sh, or Perl, such as the following:

242 2018-11-19 perl v5.26.1

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

eval '(exit $?0)' && eval 'exec perl −wS $0 ${1+"$@"}'
& eval 'exec /usr/bin/perl −wS $0 $argv:q'

if $running_under_some_shell;

If the filename supplied contains directory separators (and so is an absolute or relative pathname),
and if that file is not found, platforms that append file extensions will do so and try to look for the file
with those extensions added, one by one.

On DOS-like platforms, if the program does not contain directory separators, it will first be searched
for in the current directory before being searched for on the PATH. On Unix platforms, the program
will be searched for strictly on the PATH.

−t Like −T, but taint checks will issue warnings rather than fatal errors. These warnings can now be
controlled normally with no warnings qw(taint).

Note: This is not a substitute for −T! This is meant to be used only as a temporary development aid
while securing legacy code: for real production code and for new secure code written from scratch,
always use the real −T.

−T turns on ‘‘taint’’ so you can test them. Ordinarily these checks are done only when running setuid or
setgid. It’s a good idea to turn them on explicitly for programs that run on behalf of someone else
whom you might not necessarily trust, such as CGI programs or any internet servers you might write
in Perl. See perlsec for details. For security reasons, this option must be seen by Perl quite early;
usually this means it must appear early on the command line or in the #! line for systems which
support that construct.

−u This switch causes Perl to dump core after compiling your program. You can then in theory take this
core dump and turn it into an executable file by using the undump program (not supplied). This
speeds startup at the expense of some disk space (which you can minimize by stripping the
executable). (Still, a ‘‘hello world’’ executable comes out to about 200K on my machine.) If you
want to execute a portion of your program before dumping, use the dump() operator instead. Note:
availability of undump is platform specific and may not be available for a specific port of Perl.

−U allows Perl to do unsafe operations. Currently the only ‘‘unsafe’’ operations are attempting to unlink
directories while running as superuser and running setuid programs with fatal taint checks turned into
warnings. Note that warnings must be enabled along with this option to actually generate the taint-
check warnings.

−v prints the version and patchlevel of your perl executable.

−V prints summary of the major perl configuration values and the current values of @INC.

−V:configvar
Prints to STDOUT the value of the named configuration variable(s), with multiples when your
configvar argument looks like a regex (has non-letters). For example:

$ perl −V:libc
libc='/lib/libc−2.2.4.so';

$ perl −V:lib.
libs='−lnsl −lgdbm −ldb −ldl −lm −lcrypt −lutil −lc';
libc='/lib/libc−2.2.4.so';

$ perl −V:lib.*
libpth='/usr/local/lib /lib /usr/lib';
libs='−lnsl −lgdbm −ldb −ldl −lm −lcrypt −lutil −lc';
lib_ext='.a';
libc='/lib/libc−2.2.4.so';
libperl='libperl.a';
....

Additionally, extra colons can be used to control formatting. A trailing colon suppresses the linefeed
and terminator ‘‘;’’, allowing you to embed queries into shell commands. (mnemonic: PATH

separator ‘‘:’’.)

$ echo "compression−vars: " `perl −V:z.*: ` " are here !"
compression−vars: zcat='' zip='zip' are here !

perl v5.26.1 2018-11-19 243

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

A leading colon removes the ‘‘name=’’ part of the response, this allows you to map to the name you
need. (mnemonic: empty label)

$ echo "goodvfork="`./perl −Ilib −V::usevfork`
goodvfork=false;

Leading and trailing colons can be used together if you need positional parameter values without the
names. Note that in the case below, the PERL_API params are returned in alphabetical order.

$ echo building_on `perl −V::osname: −V::PERL_API_.*:` now
building_on 'linux' '5' '1' '9' now

−w prints warnings about dubious constructs, such as variable names mentioned only once and scalar
variables used before being set; redefined subroutines; references to undefined filehandles;
filehandles opened read-only that you are attempting to write on; values used as a number that don’t
look like numbers; using an array as though it were a scalar; if your subroutines recurse more than
100 deep; and innumerable other things.

This switch really just enables the global $ˆW variable; normally, the lexically scoped use
warnings pragma is preferred. You can disable or promote into fatal errors specific warnings using
__WARN_ _ hooks, as described in perlvar and ‘‘warn’’ in perlfunc. See also perldiag and perltrap.
A fine-grained warning facility is also available if you want to manipulate entire classes of warnings;
see warnings.

−W Enables all warnings regardless of no warnings or $ˆW. See warnings.

−X Disables all warnings regardless of use warnings or $ˆW. See warnings.

−x
−xdirectory

tells Perl that the program is embedded in a larger chunk of unrelated text, such as in a mail message.
Leading garbage will be discarded until the first line that starts with #! and contains the string
‘‘perl’’. Any meaningful switches on that line will be applied.

All references to line numbers by the program (warnings, errors, ...) will treat the #! line as the first
line. Thus a warning on the 2nd line of the program, which is on the 100th line in the file will be
reported as line 2, not as line 100. This can be overridden by using the #line directive. (See
‘‘Plain Old Comments (Not!)’’ in perlsyn)

If a directory name is specified, Perl will switch to that directory before running the program. The −x
switch controls only the disposal of leading garbage. The program must be terminated with
__END_ _ if there is trailing garbage to be ignored; the program can process any or all of the
trailing garbage via the DATA filehandle if desired.

The directory, if specified, must appear immediately following the −x with no intervening
whitespace.

ENVIRONMENT
HOME Used if chdir has no argument.

LOGDIR Used if chdir has no argument and HOME is not set.

PATH Used in executing subprocesses, and in finding the program if −S is used.

PERL5LIB A list of directories in which to look for Perl library files before looking in the standard
library and the current directory. Any architecture-specific and version-specific directories,
such as version/archname/, version/, or archname/ under the specified locations are
automatically included if they exist, with this lookup done at interpreter startup time. In
addition, any directories matching the entries in $Config{inc_version_list} are
added. (These typically would be for older compatible perl versions installed in the same
directory tree.)

If PERL5LIB is not defined, PERLLIB is used. Directories are separated (like in PATH) by a
colon on Unixish platforms and by a semicolon on Windows (the proper path separator
being given by the command perl −V:path_sep).

When running taint checks, either because the program was running setuid or setgid, or the
−T or −t switch was specified, neither PERL5LIB nor PERLLIB is consulted. The program

244 2018-11-19 perl v5.26.1

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

should instead say:

use lib "/my/directory";

PERL5OPT Command-line options (switches). Switches in this variable are treated as if they were on
ev ery Perl command line. Only the −[CDIMUdmtwW] switches are allowed. When
running taint checks (either because the program was running setuid or setgid, or because
the −T or −t switch was used), this variable is ignored. If PERL5OPT begins with −T,
tainting will be enabled and subsequent options ignored. If PERL5OPT begins with −t,
tainting will be enabled, a writable dot removed from @INC, and subsequent options
honored.

PERLIO A space (or colon) separated list of PerlIO layers. If perl is built to use PerlIO system for IO

(the default) these layers affect Perl’s IO.

It is conventional to start layer names with a colon (for example, :perlio) to emphasize
their similarity to variable ‘‘attributes’’. But the code that parses layer specification strings,
which is also used to decode the PERLIO environment variable, treats the colon as a
separator.

An unset or empty PERLIO is equivalent to the default set of layers for your platform; for
example, :unix:perlio on Unix-like systems and :unix:crlf on Windows and other
DOS-like systems.

The list becomes the default for all Perl’s IO. Consequently only built-in layers can appear in
this list, as external layers (such as :encoding()) need IO in order to load them! See
‘‘open pragma’’ for how to add external encodings as defaults.

Layers it makes sense to include in the PERLIO environment variable are briefly summarized
below. For more details see PerlIO.

:bytes A pseudolayer that turns the :utf8 flag off for the layer below; unlikely to be
useful on its own in the global PERLIO environment variable. You perhaps were
thinking of :crlf:bytes or :perlio:bytes.

:crlf A layer which does CRLF to "\n" translation distinguishing ‘‘text’’ and ‘‘binary’’
files in the manner of MS-DOS and similar operating systems. (It currently does
not mimic MS-DOS as far as treating of Control-Z as being an end-of-file marker.)

:mmap A layer that implements ‘‘reading’’ of files by using mmap(2) to make an entire
file appear in the process’s address space, and then using that as PerlIO’s ‘‘buffer’’.

:perlio This is a re-implementation of stdio-like buffering written as a PerlIO layer. As
such it will call whatever layer is below it for its operations, typically :unix.

:pop An experimental pseudolayer that removes the topmost layer. Use with the same
care as is reserved for nitroglycerine.

:raw A pseudolayer that manipulates other layers. Applying the :raw layer is
equivalent to calling binmode($fh). It makes the stream pass each byte as-is
without translation. In particular, both CRLF translation and intuiting :utf8 from
the locale are disabled.

Unlike in earlier versions of Perl, :raw is not just the inverse of :crlf: other
layers which would affect the binary nature of the stream are also removed or
disabled.

:stdio This layer provides a PerlIO interface by wrapping system’s ANSI C ‘‘stdio’’
library calls. The layer provides both buffering and IO. Note that the :stdio
layer does not do CRLF translation even if that is the platform’s normal behaviour.
You will need a :crlf layer above it to do that.

:unix Low-level layer that calls read, write, lseek, etc.

:utf8 A pseudolayer that enables a flag in the layer below to tell Perl that output should
be in utf8 and that input should be regarded as already in valid utf8 form.
WARNING: It does not check for validity and as such should be handled with
extreme caution for input, because security violations can occur with non-

perl v5.26.1 2018-11-19 245

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

shortest UTF−8 encodings, etc. Generally :encoding(UTF−8) is the best
option when reading UTF−8 encoded data.

:win32 On Win32 platforms this experimental layer uses native ‘‘handle’’ IO rather than a
Unix-like numeric file descriptor layer. Known to be buggy in this release (5.14).

The default set of layers should give acceptable results on all platforms

For Unix platforms that will be the equivalent of ‘‘unix perlio’’ or ‘‘stdio’’. Configure is set
up to prefer the ‘‘stdio’’ implementation if the system’s library provides for fast access to the
buffer; otherwise, it uses the ‘‘unix perlio’’ implementation.

On Win32 the default in this release (5.14) is ‘‘unix crlf’’. Win32’s ‘‘stdio’’ has a number of
bugs/mis−features for Perl IO which are somewhat depending on the version and vendor of
the C compiler. Using our own crlf layer as the buffer avoids those issues and makes
things more uniform. The crlf layer provides CRLF conversion as well as buffering.

This release (5.14) uses unix as the bottom layer on Win32, and so still uses the C
compiler’s numeric file descriptor routines. There is an experimental native win32 layer,
which is expected to be enhanced and should eventually become the default under Win32.

The PERLIO environment variable is completely ignored when Perl is run in taint mode.

PERLIO_DEBUG

If set to the name of a file or device when Perl is run with the −Di command-line switch, the
logging of certain operations of the PerlIO subsystem will be redirected to the specified file
rather than going to stderr, which is the default. The file is opened in append mode. Typical
uses are in Unix:

% env PERLIO_DEBUG=/tmp/perlio.log perl −Di script ...

and under Win32, the approximately equivalent:

> set PERLIO_DEBUG=CON
perl −Di script ...

This functionality is disabled for setuid scripts, for scripts run with −T, and for scripts run
on a Perl built without −DDEBUGGING support.

PERLLIB A list of directories in which to look for Perl library files before looking in the standard
library and the current directory. If PERL5LIB is defined, PERLLIB is not used.

The PERLLIB environment variable is completely ignored when Perl is run in taint mode.

PERL5DB The command used to load the debugger code. The default is:

BEGIN { require "perl5db.pl" }

The PERL5DB environment variable is only used when Perl is started with a bare −d switch.

PERL5DB_THREADED

If set to a true value, indicates to the debugger that the code being debugged uses threads.

PERL5SHELL (specific to the Win32 port)
On Win32 ports only, may be set to an alternative shell that Perl must use internally for
executing ‘‘backtick’’ commands or system(). Default is cmd.exe /x/d/c on
WindowsNT and command.com /c on Windows95. The value is considered space-
separated. Precede any character that needs to be protected, like a space or backslash, with
another backslash.

Note that Perl doesn’t use COMSPEC for this purpose because COMSPEC has a high degree
of variability among users, leading to portability concerns. Besides, Perl can use a shell that
may not be fit for interactive use, and setting COMSPEC to such a shell may interfere with
the proper functioning of other programs (which usually look in COMSPEC to find a shell fit
for interactive use).

Before Perl 5.10.0 and 5.8.8, PERL5SHELL was not taint checked when running external
commands. It is recommended that you explicitly set (or delete) $ENV{PERL5SHELL}
when running in taint mode under Windows.

246 2018-11-19 perl v5.26.1

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

PERL_ALLOW_NON_IFS_LSP (specific to the Win32 port)
Set to 1 to allow the use of non-IFS compatible LSPs (Layered Service Providers). Perl
normally searches for an IFS-compatible LSP because this is required for its emulation of
Windows sockets as real filehandles. However, this may cause problems if you have a
firewall such as McAfee Guardian, which requires that all applications use its LSP but which
is not IFS-compatible, because clearly Perl will normally avoid using such an LSP.

Setting this environment variable to 1 means that Perl will simply use the first suitable LSP

enumerated in the catalog, which keeps McAfee Guardian happy — and in that particular
case Perl still works too because McAfee Guardian’s LSP actually plays other games which
allow applications requiring IFS compatibility to work.

PERL_DEBUG_MSTATS

Relevant only if Perl is compiled with the malloc included with the Perl distribution; that
is, if perl −V:d_mymalloc is ‘‘define’’.

If set, this dumps out memory statistics after execution. If set to an integer greater than one,
also dumps out memory statistics after compilation.

PERL_DESTRUCT_LEVEL

Relevant only if your Perl executable was built with −DDEBUGGING, this controls the
behaviour of global destruction of objects and other references. See
‘‘PERL_DESTRUCT_LEVEL’’ in perlhacktips for more information.

PERL_DL_NONLAZY

Set to "1" to have Perl resolve all undefined symbols when it loads a dynamic library. The
default behaviour is to resolve symbols when they are used. Setting this variable is useful
during testing of extensions, as it ensures that you get an error on misspelled function names
ev en if the test suite doesn’t call them.

PERL_ENCODING

If using the use encoding pragma without an explicit encoding name, the
PERL_ENCODING environment variable is consulted for an encoding name.

PERL_HASH_SEED

(Since Perl 5.8.1, new semantics in Perl 5.18.0) Used to override the randomization of
Perl’s internal hash function. The value is expressed in hexadecimal, and may include a
leading 0x. Truncated patterns are treated as though they are suffixed with sufficient 0’s as
required.

If the option is provided, and PERL_PERTURB_KEYS is NOT set, then a value of ’0’
implies PERL_PERTURB_KEYS=0 and any other value implies
PERL_PERTURB_KEYS=2.

PLEASE NOTE: The hash seed is sensitive information. Hashes are randomized to protect
against local and remote attacks against Perl code. By manually setting a seed, this
protection may be partially or completely lost.

See ‘‘Algorithmic Complexity Attacks’’ in perlsec, ‘‘PERL_PERTURB_KEYS’’, and
‘‘PERL_HASH_SEED_DEBUG’’ for more information.

PERL_PERTURB_KEYS

(Since Perl 5.18.0) Set to "0" or "NO" then traversing keys will be repeatable from run to
run for the same PERL_HASH_SEED. Insertion into a hash will not change the order, except
to provide for more space in the hash. When combined with setting PERL_HASH_SEED this
mode is as close to pre 5.18 behavior as you can get.

When set to "1" or "RANDOM" then traversing keys will be randomized. Every time a hash
is inserted into the key order will change in a random fashion. The order may not be
repeatable in a following program run even if the PERL_HASH_SEED has been specified.
This is the default mode for perl.

When set to "2" or "DETERMINISTIC" then inserting keys into a hash will cause the key
order to change, but in a way that is repeatable from program run to program run.

NOTE: Use of this option is considered insecure, and is intended only for debugging non-

perl v5.26.1 2018-11-19 247

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

deterministic behavior in Perl’s hash function. Do not use it in production.

See ‘‘Algorithmic Complexity Attacks’’ in perlsec and ‘‘PERL_HASH_SEED’’ and
‘‘PERL_HASH_SEED_DEBUG’’ for more information. You can get and set the key traversal
mask for a specific hash by using the hash_traversal_mask() function from
Hash::Util.

PERL_HASH_SEED_DEBUG

(Since Perl 5.8.1.) Set to "1" to display (to STDERR) information about the hash function,
seed, and what type of key traversal randomization is in effect at the beginning of execution.
This, combined with ‘‘PERL_HASH_SEED’’ and ‘‘PERL_PERTURB_KEYS’’ is intended to aid
in debugging nondeterministic behaviour caused by hash randomization.

Note that any information about the hash function, especially the hash seed is sensitive
information: by knowing it, one can craft a denial-of-service attack against Perl code, even
remotely; see ‘‘Algorithmic Complexity Attacks’’ in perlsec for more information. Do not
disclose the hash seed to people who don’t need to know it. See also hash_seed() and
key_traversal_mask() in Hash::Util.

An example output might be:

HASH_FUNCTION = ONE_AT_A_TIME_HARD HASH_SEED = 0x652e9b9349a7a032 PERTURB_KEYS = 1 (RANDOM)

PERL_MEM_LOG

If your Perl was configured with −Accflags=−DPERL_MEM_LOG, setting the
environment variable PERL_MEM_LOG enables logging debug messages. The value has the
form <number>[m][s][t], where number is the file descriptor number you want to
write to (2 is default), and the combination of letters specifies that you want information
about (m)emory and/or (s)v, optionally with (t)imestamps. For example,
PERL_MEM_LOG=1mst logs all information to stdout. You can write to other opened file
descriptors in a variety of ways:

$ 3>foo3 PERL_MEM_LOG=3m perl ...

PERL_ROOT (specific to the VMS port)
A translation-concealed rooted logical name that contains Perl and the logical device for the
@INC path on VMS only. Other logical names that affect Perl on VMS include PERLSHR,

PERL_ENV_TABLES, and SYS$TIMEZONE_DIFFERENTIAL, but are optional and discussed
further in perlvms and in README.vms in the Perl source distribution.

PERL_SIGNALS

Av ailable in Perls 5.8.1 and later. If set to "unsafe", the pre−Perl−5.8.0 signal behaviour
(which is immediate but unsafe) is restored. If set to safe, then safe (but deferred) signals
are used. See ‘‘Deferred Signals (Safe Signals)’’ in perlipc.

PERL_UNICODE

Equivalent to the −C command-line switch. Note that this is not a boolean variable. Setting
this to "1" is not the right way to ‘‘enable Unicode’’ (whatever that would mean). You can
use "0" to ‘‘disable Unicode’’, though (or alternatively unset PERL_UNICODE in your shell
before starting Perl). See the description of the −C switch for more information.

PERL_USE_UNSAFE_INC

If perl has been configured to not have the current directory in @INC by default, this variable
can be set to "1" to reinstate it. It’s primarily intended for use while building and testing
modules that have not been updated to deal with ‘‘.’’ not being in @INC and should not be
set in the environment for day-to-day use.

SYS$LOGIN (specific to the VMS port)
Used if chdir has no argument and HOME and LOGDIR are not set.

Perl also has environment variables that control how Perl handles data specific to particular natural
languages; see perllocale.

Perl and its various modules and components, including its test frameworks, may sometimes make use of
certain other environment variables. Some of these are specific to a particular platform. Please consult the
appropriate module documentation and any documentation for your platform (like perlsolaris, perllinux,
perlmacosx, perlwin32, etc) for variables peculiar to those specific situations.

248 2018-11-19 perl v5.26.1

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

Perl makes all environment variables available to the program being executed, and passes these along to any
child processes it starts. However, programs running setuid would do well to execute the following lines
before doing anything else, just to keep people honest:

$ENV{PATH} = "/bin:/usr/bin"; # or whatever you need
$ENV{SHELL} = "/bin/sh" if exists $ENV{SHELL};
delete @ENV{qw(IFS CDPATH ENV BASH_ENV)};

perl v5.26.1 2018-11-19 249

PERLREFTUT(1) Perl Programmers Reference Guide PERLREFTUT(1)

NAME
perlreftut − Mark’s very short tutorial about references

DESCRIPTION
One of the most important new features in Perl 5 was the capability to manage complicated data structures
like multidimensional arrays and nested hashes. To enable these, Perl 5 introduced a feature called
references, and using references is the key to managing complicated, structured data in Perl. Unfortunately,
there’s a lot of funny syntax to learn, and the main manual page can be hard to follow. The manual is quite
complete, and sometimes people find that a problem, because it can be hard to tell what is important and
what isn’t.

Fortunately, you only need to know 10% of what’s in the main page to get 90% of the benefit. This page
will show you that 10%.

Who Needs Complicated Data Structures?
One problem that comes up all the time is needing a hash whose values are lists. Perl has hashes, of course,
but the values have to be scalars; they can’t be lists.

Why would you want a hash of lists? Let’s take a simple example: You have a file of city and country
names, like this:

Chicago, USA
Frankfurt, Germany
Berlin, Germany
Washington, USA
Helsinki, Finland
New York, USA

and you want to produce an output like this, with each country mentioned once, and then an alphabetical
list of the cities in that country:

Finland: Helsinki.
Germany: Berlin, Frankfurt.
USA: Chicago, New York, Washington.

The natural way to do this is to have a hash whose keys are country names. Associated with each country
name key is a list of the cities in that country. Each time you read a line of input, split it into a country and
a city, look up the list of cities already known to be in that country, and append the new city to the list.
When you’re done reading the input, iterate over the hash as usual, sorting each list of cities before you
print it out.

If hash values couldn’t be lists, you lose. You’d probably have to combine all the cities into a single string
somehow, and then when time came to write the output, you’d hav e to break the string into a list, sort the
list, and turn it back into a string. This is messy and error-prone. And it’s frustrating, because Perl already
has perfectly good lists that would solve the problem if only you could use them.

The Solution
By the time Perl 5 rolled around, we were already stuck with this design: Hash values must be scalars. The
solution to this is references.

A reference is a scalar value that refers to an entire array or an entire hash (or to just about anything else).
Names are one kind of reference that you’re already familiar with. Think of the President of the United
States: a messy, inconvenient bag of blood and bones. But to talk about him, or to represent him in a
computer program, all you need is the easy, convenient scalar string ‘‘Barack Obama’’.

References in Perl are like names for arrays and hashes. They’re Perl’s private, internal names, so you can
be sure they’re unambiguous. Unlike ‘‘Barack Obama’’, a reference only refers to one thing, and you
always know what it refers to. If you have a reference to an array, you can recover the entire array from it.
If you have a reference to a hash, you can recover the entire hash. But the reference is still an easy,
compact scalar value.

You can’t hav e a hash whose values are arrays; hash values can only be scalars. We’re stuck with that. But
a single reference can refer to an entire array, and references are scalars, so you can have a hash of
references to arrays, and it’ll act a lot like a hash of arrays, and it’ll be just as useful as a hash of arrays.

We’ll come back to this city-country problem later, after we’ve seen some syntax for managing references.

250 2018-11-19 perl v5.26.1

PERLREFTUT(1) Perl Programmers Reference Guide PERLREFTUT(1)

Syntax
There are just two ways to make a reference, and just two ways to use it once you have it.

Making References
Make Rule 1

If you put a \ in front of a variable, you get a reference to that variable.

$aref = \@array; # $aref now holds a reference to @array
$href = \%hash; # $href now holds a reference to %hash
$sref = \$scalar; # $sref now holds a reference to $scalar

Once the reference is stored in a variable like $aref or $href, you can copy it or store it just the same as
any other scalar value:

$xy = $aref; # $xy now holds a reference to @array
$p[3] = $href; # $p[3] now holds a reference to %hash
$z = $p[3]; # $z now holds a reference to %hash

These examples show how to make references to variables with names. Sometimes you want to make an
array or a hash that doesn’t hav e a name. This is analogous to the way you like to be able to use the string
"\n" or the number 80 without having to store it in a named variable first.

Make Rule 2

[ITEMS] makes a new, anonymous array, and returns a reference to that array. { ITEMS } makes a
new, anonymous hash, and returns a reference to that hash.

$aref = [1, "foo", undef, 13];
$aref now holds a reference to an array

$href = { APR => 4, AUG => 8 };
$href now holds a reference to a hash

The references you get from rule 2 are the same kind of references that you get from rule 1:

This:
$aref = [1, 2, 3];

Does the same as this:
@array = (1, 2, 3);
$aref = \@array;

The first line is an abbreviation for the following two lines, except that it doesn’t create the superfluous
array variable @array.

If you write just [], you get a new, empty anonymous array. If you write just {}, you get a new, empty
anonymous hash.

Using References
What can you do with a reference once you have it? It’s a scalar value, and we’ve seen that you can store it
as a scalar and get it back again just like any scalar. There are just two more ways to use it:

Use Rule 1

You can always use an array reference, in curly braces, in place of the name of an array. For example,
@{$aref} instead of @array.

Here are some examples of that:

Arrays:

@a @{$aref} An array
reverse @a reverse @{$aref} Reverse the array
$a[3] ${$aref}[3] An element of the array
$a[3] = 17; ${$aref}[3] = 17 Assigning an element

On each line are two expressions that do the same thing. The left-hand versions operate on the array @a.
The right-hand versions operate on the array that is referred to by $aref. Once they find the array they’re
operating on, both versions do the same things to the arrays.

perl v5.26.1 2018-11-19 251

PERLREFTUT(1) Perl Programmers Reference Guide PERLREFTUT(1)

Using a hash reference is exactly the same:

%h %{$href} A hash
keys %h keys %{$href} Get the keys from the hash
$h{'red'} ${$href}{'red'} An element of the hash
$h{'red'} = 17 ${$href}{'red'} = 17 Assigning an element

Whatever you want to do with a reference, Use Rule 1 tells you how to do it. You just write the Perl code
that you would have written for doing the same thing to a regular array or hash, and then replace the array
or hash name with {$reference}. ‘‘How do I loop over an array when all I have is a reference?’’ Well,
to loop over an array, you would write

for my $element (@array) {
...

}

so replace the array name, @array, with the reference:

for my $element (@{$aref}) {
...

}

‘‘How do I print out the contents of a hash when all I have is a reference?’’ First write the code for printing
out a hash:

for my $key (keys %hash) {
print "$key => $hash{$key}\n";

}

And then replace the hash name with the reference:

for my $key (keys %{$href}) {
print "$key => ${$href}{$key}\n";

}

Use Rule 2

Use Rule 1 is all you really need, because it tells you how to do absolutely everything you ever need to do
with references. But the most common thing to do with an array or a hash is to extract a single element,
and the Use Rule 1 notation is cumbersome. So there is an abbreviation.

${$aref}[3] is too hard to read, so you can write $aref−>[3] instead.

${$href}{red} is too hard to read, so you can write $href−>{red} instead.

If $aref holds a reference to an array, then $aref−>[3] is the fourth element of the array. Don’t
confuse this with $aref[3], which is the fourth element of a totally different array, one deceptively
named @aref. $aref and @aref are unrelated the same way that $item and @item are.

Similarly, $href−>{'red'} is part of the hash referred to by the scalar variable $href, perhaps even
one with no name. $href{'red'} is part of the deceptively named %href hash. It’s easy to forget to
leave out the −>, and if you do, you’ll get bizarre results when your program gets array and hash elements
out of totally unexpected hashes and arrays that weren’t the ones you wanted to use.

An Example
Let’s see a quick example of how all this is useful.

First, remember that [1, 2, 3] makes an anonymous array containing (1, 2, 3), and gives you a
reference to that array.

Now think about

@a = ([1, 2, 3],
[4, 5, 6],
[7, 8, 9]

);

@a is an array with three elements, and each one is a reference to another array.

$a[1] is one of these references. It refers to an array, the array containing (4, 5, 6), and because it is
a reference to an array, Use Rule 2 says that we can write $a[1]−>[2] to get the third element from that

252 2018-11-19 perl v5.26.1

PERLREFTUT(1) Perl Programmers Reference Guide PERLREFTUT(1)

array. $a[1]−>[2] is the 6. Similarly, $a[0]−>[1] is the 2. What we have here is like a two-
dimensional array; you can write $a[ROW]−>[COLUMN] to get or set the element in any row and any
column of the array.

The notation still looks a little cumbersome, so there’s one more abbreviation:

Arrow Rule
In between two subscripts, the arrow is optional.

Instead of $a[1]−>[2], we can write $a[1][2]; it means the same thing. Instead of $a[0]−>[1] =
23, we can write $a[0][1] = 23; it means the same thing.

Now it really looks like two-dimensional arrays!

You can see why the arrows are important. Without them, we would have had to write ${$a[1]}[2]
instead of $a[1][2]. For three-dimensional arrays, they let us write $x[2][3][5] instead of the
unreadable ${${$x[2]}[3]}[5].

Solution
Here’s the answer to the problem I posed earlier, of reformatting a file of city and country names.

1 my %table;

2 while (<>) {
3 chomp;
4 my ($city, $country) = split /, /;
5 $table{$country} = [] unless exists $table{$country};
6 push @{$table{$country}}, $city;
7 }

8 for my $country (sort keys %table) {
9 print "$country: ";
10 my @cities = @{$table{$country}};
11 print join ', ', sort @cities;
12 print ".\n";
13 }

The program has two pieces: Lines 2−7 read the input and build a data structure, and lines 8−13 analyze the
data and print out the report. We’re going to have a hash, %table, whose keys are country names, and
whose values are references to arrays of city names. The data structure will look like this:

%table
+−−−−−−−+−−−+
| | | +−−−−−−−−−−−+−−−−−−−−+
|Germany| *−−−−>| Frankfurt | Berlin |
| | | +−−−−−−−−−−−+−−−−−−−−+
+−−−−−−−+−−−+
| | | +−−−−−−−−−−+
|Finland| *−−−−>| Helsinki |
| | | +−−−−−−−−−−+
+−−−−−−−+−−−+
| | | +−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−+
| USA | *−−−−>| Chicago | Washington | New York |
| | | +−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−+
+−−−−−−−+−−−+

We’ll look at output first. Supposing we already have this structure, how do we print it out?

8 for my $country (sort keys %table) {
9 print "$country: ";
10 my @cities = @{$table{$country}};
11 print join ', ', sort @cities;
12 print ".\n";
13 }

%table is an ordinary hash, and we get a list of keys from it, sort the keys, and loop over the keys as

perl v5.26.1 2018-11-19 253

PERLREFTUT(1) Perl Programmers Reference Guide PERLREFTUT(1)

usual. The only use of references is in line 10. $table{$country} looks up the key $country in the
hash and gets the value, which is a reference to an array of cities in that country. Use Rule 1 says that we
can recover the array by saying @{$table{$country}}. Line 10 is just like

@cities = @array;

except that the name array has been replaced by the reference {$table{$country}}. The @ tells
Perl to get the entire array. Having gotten the list of cities, we sort it, join it, and print it out as usual.

Lines 2−7 are responsible for building the structure in the first place. Here they are again:

2 while (<>) {
3 chomp;
4 my ($city, $country) = split /, /;
5 $table{$country} = [] unless exists $table{$country};
6 push @{$table{$country}}, $city;
7 }

Lines 2−4 acquire a city and country name. Line 5 looks to see if the country is already present as a key in
the hash. If it’s not, the program uses the [] notation (Make Rule 2) to manufacture a new, empty
anonymous array of cities, and installs a reference to it into the hash under the appropriate key.

Line 6 installs the city name into the appropriate array. $table{$country} now holds a reference to
the array of cities seen in that country so far. Line 6 is exactly like

push @array, $city;

except that the name array has been replaced by the reference {$table{$country}}. The push
adds a city name to the end of the referred-to array.

There’s one fine point I skipped. Line 5 is unnecessary, and we can get rid of it.

2 while (<>) {
3 chomp;
4 my ($city, $country) = split /, /;
5 #### $table{$country} = [] unless exists $table{$country};
6 push @{$table{$country}}, $city;
7 }

If there’s already an entry in %table for the current $country, then nothing is different. Line 6 will
locate the value in $table{$country}, which is a reference to an array, and push $city into the
array. But what does it do when $country holds a key, say Greece, that is not yet in %table?

This is Perl, so it does the exact right thing. It sees that you want to push Athens onto an array that
doesn’t exist, so it helpfully makes a new, empty, anonymous array for you, installs it into %table, and
then pushes Athens onto it. This is called autovivification−−bringing things to life automatically. Perl
saw that the key wasn’t in the hash, so it created a new hash entry automatically. Perl saw that you wanted
to use the hash value as an array, so it created a new empty array and installed a reference to it in the hash
automatically. And as usual, Perl made the array one element longer to hold the new city name.

The Rest
I promised to give you 90% of the benefit with 10% of the details, and that means I left out 90% of the
details. Now that you have an overview of the important parts, it should be easier to read the perlref
manual page, which discusses 100% of the details.

Some of the highlights of perlref:

• You can make references to anything, including scalars, functions, and other references.

• In Use Rule 1, you can omit the curly brackets whenever the thing inside them is an atomic scalar
variable like $aref. For example, @$aref is the same as @{$aref}, and $$aref[1] is the same
as ${$aref}[1]. If you’re just starting out, you may want to adopt the habit of always including
the curly brackets.

• This doesn’t copy the underlying array:

$aref2 = $aref1;

You get two references to the same array. If you modify $aref1−>[23] and then look at
$aref2−>[23] you’ll see the change.

254 2018-11-19 perl v5.26.1

PERLREFTUT(1) Perl Programmers Reference Guide PERLREFTUT(1)

To copy the array, use

$aref2 = [@{$aref1}];

This uses [...] notation to create a new anonymous array, and $aref2 is assigned a reference to
the new array. The new array is initialized with the contents of the array referred to by $aref1.

Similarly, to copy an anonymous hash, you can use

$href2 = {%{$href1}};

• To see if a variable contains a reference, use the ref function. It returns true if its argument is a
reference. Actually it’s a little better than that: It returns HASH for hash references and ARRAY for
array references.

• If you try to use a reference like a string, you get strings like

ARRAY(0x80f5dec) or HASH(0x826afc0)

If you ever see a string that looks like this, you’ll know you printed out a reference by mistake.

A side effect of this representation is that you can use eq to see if two references refer to the same
thing. (But you should usually use == instead because it’s much faster.)

• You can use a string as if it were a reference. If you use the string "foo" as an array reference, it’s
taken to be a reference to the array @foo. This is called a symbolic reference. The declaration use
strict 'refs' disables this feature, which can cause all sorts of trouble if you use it by accident.

You might prefer to go on to perllol instead of perlref; it discusses lists of lists and multidimensional arrays
in detail. After that, you should move on to perldsc; it’s a Data Structure Cookbook that shows recipes for
using and printing out arrays of hashes, hashes of arrays, and other kinds of data.

Summary
Everyone needs compound data structures, and in Perl the way you get them is with references. There are
four important rules for managing references: Two for making references and two for using them. Once
you know these rules you can do most of the important things you need to do with references.

Credits
Author: Mark Jason Dominus, Plover Systems (mjd−perl−ref+@plover.com)

This article originally appeared in The Perl Journal (<http://www.tpj.com/>) volume 3, #2. Reprinted
with permission.

The original title was Understand References Today.

Distribution Conditions
Copyright 1998 The Perl Journal.

This documentation is free; you can redistribute it and/or modify it under the same terms as Perl itself.

Irrespective of its distribution, all code examples in these files are hereby placed into the public domain.
You are permitted and encouraged to use this code in your own programs for fun or for profit as you see fit.
A simple comment in the code giving credit would be courteous but is not required.

perl v5.26.1 2018-11-19 255

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

NAME
perldsc − Perl Data Structures Cookbook

DESCRIPTION
Perl lets us have complex data structures. You can write something like this and all of a sudden, you’d hav e
an array with three dimensions!

for my $x (1 .. 10) {
for my $y (1 .. 10) {

for my $z (1 .. 10) {
$AoA[$x][$y][$z] =

$x ** $y + $z;
}

}
}

Alas, however simple this may appear, underneath it’s a much more elaborate construct than meets the eye!

How do you print it out? Why can’t you say just print @AoA? How do you sort it? How can you pass
it to a function or get one of these back from a function? Is it an object? Can you save it to disk to read
back later? How do you access whole rows or columns of that matrix? Do all the values have to be
numeric?

As you see, it’s quite easy to become confused. While some small portion of the blame for this can be
attributed to the reference-based implementation, it’s really more due to a lack of existing documentation
with examples designed for the beginner.

This document is meant to be a detailed but understandable treatment of the many different sorts of data
structures you might want to develop. It should also serve as a cookbook of examples. That way, when you
need to create one of these complex data structures, you can just pinch, pilfer, or purloin a drop-in example
from here.

Let’s look at each of these possible constructs in detail. There are separate sections on each of the
following:

• arrays of arrays

• hashes of arrays

• arrays of hashes

• hashes of hashes

• more elaborate constructs

But for now, let’s look at general issues common to all these types of data structures.

REFERENCES
The most important thing to understand about all data structures in Perl — including multidimensional
arrays — is that even though they might appear otherwise, Perl @ARRAYs and %HASHes are all internally
one-dimensional. They can hold only scalar values (meaning a string, number, or a reference). They
cannot directly contain other arrays or hashes, but instead contain references to other arrays or hashes.

You can’t use a reference to an array or hash in quite the same way that you would a real array or hash. For
C or C++ programmers unused to distinguishing between arrays and pointers to the same, this can be
confusing. If so, just think of it as the difference between a structure and a pointer to a structure.

You can (and should) read more about references in perlref. Briefly, references are rather like pointers that
know what they point to. (Objects are also a kind of reference, but we won’t be needing them right
aw ay — if ever.) This means that when you have something which looks to you like an access to a two-or-
more-dimensional array and/or hash, what’s really going on is that the base type is merely a one-
dimensional entity that contains references to the next level. It’s just that you can use it as though it were a
two-dimensional one. This is actually the way almost all C multidimensional arrays work as well.

$array[7][12] # array of arrays
$array[7]{string} # array of hashes
$hash{string}[7] # hash of arrays
$hash{string}{'another string'} # hash of hashes

256 2018-11-19 perl v5.26.1

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

Now, because the top level contains only references, if you try to print out your array in with a simple
print() function, you’ll get something that doesn’t look very nice, like this:

my @AoA = ([2, 3], [4, 5, 7], [0]);
print $AoA[1][2];

7
print @AoA;

ARRAY(0x83c38)ARRAY(0x8b194)ARRAY(0x8b1d0)

That’s because Perl doesn’t (ev er) implicitly dereference your variables. If you want to get at the thing a
reference is referring to, then you have to do this yourself using either prefix typing indicators, like
${$blah}, @{$blah}, @{$blah[$i]}, or else postfix pointer arrows, like $a−>[3], $h−>{fred},
or even $ob−>method()−>[3].

COMMON MISTAKES
The two most common mistakes made in constructing something like an array of arrays is either
accidentally counting the number of elements or else taking a reference to the same memory location
repeatedly. Here’s the case where you just get the count instead of a nested array:

for my $i (1..10) {
my @array = somefunc($i);
$AoA[$i] = @array; # WRONG!

}

That’s just the simple case of assigning an array to a scalar and getting its element count. If that’s what you
really and truly want, then you might do well to consider being a tad more explicit about it, like this:

for my $i (1..10) {
my @array = somefunc($i);
$counts[$i] = scalar @array;

}

Here’s the case of taking a reference to the same memory location again and again:

Either without strict or having an outer−scope my @array;
declaration.

for my $i (1..10) {
@array = somefunc($i);
$AoA[$i] = \@array; # WRONG!

}

So, what’s the big problem with that? It looks right, doesn’t it? After all, I just told you that you need an
array of references, so by golly, you’ve made me one!

Unfortunately, while this is true, it’s still broken. All the references in @AoA refer to the very same place,
and they will therefore all hold whatever was last in @array! It’s similar to the problem demonstrated in
the following C program:

#include <pwd.h>
main() {

struct passwd *getpwnam(), *rp, *dp;
rp = getpwnam("root");
dp = getpwnam("daemon");

printf("daemon name is %s\nroot name is %s\n",
dp−>pw_name, rp−>pw_name);

}

Which will print

daemon name is daemon
root name is daemon

The problem is that both rp and dp are pointers to the same location in memory! In C, you’d hav e to
remember to malloc() yourself some new memory. In Perl, you’ll want to use the array constructor [] or
the hash constructor {} instead. Here’s the right way to do the preceding broken code fragments:

perl v5.26.1 2018-11-19 257

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

Either without strict or having an outer−scope my @array;
declaration.

for my $i (1..10) {
@array = somefunc($i);
$AoA[$i] = [@array];

}

The square brackets make a reference to a new array with a copy of what’s in @array at the time of the
assignment. This is what you want.

Note that this will produce something similar, but it’s much harder to read:

Either without strict or having an outer−scope my @array;
declaration.
for my $i (1..10) {

@array = 0 .. $i;
@{$AoA[$i]} = @array;

}

Is it the same? Well, maybe so — and maybe not. The subtle difference is that when you assign something
in square brackets, you know for sure it’s always a brand new reference with a new copy of the data.
Something else could be going on in this new case with the @{$AoA[$i]} dereference on the left-hand-
side of the assignment. It all depends on whether $AoA[$i] had been undefined to start with, or whether
it already contained a reference. If you had already populated @AoA with references, as in

$AoA[3] = \@another_array;

Then the assignment with the indirection on the left-hand-side would use the existing reference that was
already there:

@{$AoA[3]} = @array;

Of course, this would have the ‘‘interesting’’ effect of clobbering @another_array. (Have you ever
noticed how when a programmer says something is ‘‘interesting’’, that rather than meaning ‘‘intriguing’’,
they’re disturbingly more apt to mean that it’s ‘‘annoying’’, ‘‘difficult’’, or both? :−)

So just remember always to use the array or hash constructors with [] or {}, and you’ll be fine, although
it’s not always optimally efficient.

Surprisingly, the following dangerous-looking construct will actually work out fine:

for my $i (1..10) {
my @array = somefunc($i);
$AoA[$i] = \@array;

}

That’s because my() is more of a run-time statement than it is a compile-time declaration per se. This
means that the my() variable is remade afresh each time through the loop. So even though it looks as
though you stored the same variable reference each time, you actually did not! This is a subtle distinction
that can produce more efficient code at the risk of misleading all but the most experienced of programmers.
So I usually advise against teaching it to beginners. In fact, except for passing arguments to functions, I
seldom like to see the gimme-a-reference operator (backslash) used much at all in code. Instead, I advise
beginners that they (and most of the rest of us) should try to use the much more easily understood
constructors [] and {} instead of relying upon lexical (or dynamic) scoping and hidden reference-counting
to do the right thing behind the scenes.

In summary:

$AoA[$i] = [@array]; # usually best
$AoA[$i] = \@array; # perilous; just how my() was that array?
@{ $AoA[$i] } = @array; # way too tricky for most programmers

CAVEAT ON PRECEDENCE
Speaking of things like @{$AoA[$i]}, the following are actually the same thing:

258 2018-11-19 perl v5.26.1

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

$aref−>[2][2] # clear
$$aref[2][2] # confusing

That’s because Perl’s precedence rules on its five prefix dereferencers (which look like someone swearing:
$ @ * % &) make them bind more tightly than the postfix subscripting brackets or braces! This will no
doubt come as a great shock to the C or C++ programmer, who is quite accustomed to using *a[i] to mean
what’s pointed to by the i’th element of a. That is, they first take the subscript, and only then dereference
the thing at that subscript. That’s fine in C, but this isn’t C.

The seemingly equivalent construct in Perl, $$aref[$i] first does the deref of $aref, making it take
$aref as a reference to an array, and then dereference that, and finally tell you the i’th value of the array
pointed to by $AoA. If you wanted the C notion, you’d hav e to write ${$AoA[$i]} to force the
$AoA[$i] to get evaluated first before the leading $ dereferencer.

WHY YOU SHOULD ALWA YS use strict
If this is starting to sound scarier than it’s worth, relax. Perl has some features to help you avoid its most
common pitfalls. The best way to avoid getting confused is to start every program like this:

#!/usr/bin/perl −w
use strict;

This way, you’ll be forced to declare all your variables with my() and also disallow accidental ‘‘symbolic
dereferencing’’. Therefore if you’d done this:

my $aref = [
["fred", "barney", "pebbles", "bambam", "dino",],
["homer", "bart", "marge", "maggie",],
["george", "jane", "elroy", "judy",],

];

print $aref[2][2];

The compiler would immediately flag that as an error at compile time, because you were accidentally
accessing @aref, an undeclared variable, and it would thereby remind you to write instead:

print $aref−>[2][2]

DEBUGGING
You can use the debugger’s x command to dump out complex data structures. For example, given the
assignment to $AoA above, here’s the debugger output:

DB<1> x $AoA
$AoA = ARRAY(0x13b5a0)

0 ARRAY(0x1f0a24)
0 'fred'
1 'barney'
2 'pebbles'
3 'bambam'
4 'dino'

1 ARRAY(0x13b558)
0 'homer'
1 'bart'
2 'marge'
3 'maggie'

2 ARRAY(0x13b540)
0 'george'
1 'jane'
2 'elroy'
3 'judy'

CODE EXAMPLES
Presented with little comment (these will get their own manpages someday) here are short code examples
illustrating access of various types of data structures.

perl v5.26.1 2018-11-19 259

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

ARRAYS OF ARRAYS
Declaration of an ARRAY OF ARRAYS

@AoA = (
["fred", "barney"],
["george", "jane", "elroy"],
["homer", "marge", "bart"],

);

Generation of an ARRAY OF ARRAYS

reading from file
while (<>) {

push @AoA, [split];
}

calling a function
for $i (1 .. 10) {

$AoA[$i] = [somefunc($i)];
}

using temp vars
for $i (1 .. 10) {

@tmp = somefunc($i);
$AoA[$i] = [@tmp];

}

add to an existing row
push @{ $AoA[0] }, "wilma", "betty";

Access and Printing of an ARRAY OF ARRAYS

one element
$AoA[0][0] = "Fred";

another element
$AoA[1][1] =˜ s/(\w)/\u$1/;

print the whole thing with refs
for $aref (@AoA) {

print "\t [@$aref],\n";
}

print the whole thing with indices
for $i (0 .. $#AoA) {

print "\t [@{$AoA[$i]}],\n";
}

print the whole thing one at a time
for $i (0 .. $#AoA) {

for $j (0 .. $#{ $AoA[$i] }) {
print "elt $i $j is $AoA[$i][$j]\n";

}
}

HASHES OF ARRAYS
Declaration of a HASH OF ARRAYS

%HoA = (
flintstones => ["fred", "barney"],
jetsons => ["george", "jane", "elroy"],
simpsons => ["homer", "marge", "bart"],

);

260 2018-11-19 perl v5.26.1

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

Generation of a HASH OF ARRAYS

reading from file
flintstones: fred barney wilma dino
while (<>) {

next unless s/ˆ(.*?):\s*//;
$HoA{$1} = [split];

}

reading from file; more temps
flintstones: fred barney wilma dino
while ($line = <>) {

($who, $rest) = split /:\s*/, $line, 2;
@fields = split ' ', $rest;
$HoA{$who} = [@fields];

}

calling a function that returns a list
for $group ("simpsons", "jetsons", "flintstones") {

$HoA{$group} = [get_family($group)];
}

likewise, but using temps
for $group ("simpsons", "jetsons", "flintstones") {

@members = get_family($group);
$HoA{$group} = [@members];

}

append new members to an existing family
push @{ $HoA{"flintstones"} }, "wilma", "betty";

Access and Printing of a HASH OF ARRAYS

one element
$HoA{flintstones}[0] = "Fred";

another element
$HoA{simpsons}[1] =˜ s/(\w)/\u$1/;

print the whole thing
foreach $family (keys %HoA) {

print "$family: @{ $HoA{$family} }\n"
}

print the whole thing with indices
foreach $family (keys %HoA) {

print "family: ";
foreach $i (0 .. $#{ $HoA{$family} }) {

print " $i = $HoA{$family}[$i]";
}
print "\n";

}

print the whole thing sorted by number of members
foreach $family (sort { @{$HoA{$b}} <=> @{$HoA{$a}} } keys %HoA) {

print "$family: @{ $HoA{$family} }\n"
}

print the whole thing sorted by number of members and name
foreach $family (sort {

@{$HoA{$b}} <=> @{$HoA{$a}}

perl v5.26.1 2018-11-19 261

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

||
$a cmp $b

} keys %HoA)
{

print "$family: ", join(", ", sort @{ $HoA{$family} }), "\n";
}

ARRAYS OF HASHES
Declaration of an ARRAY OF HASHES

@AoH = (
{

Lead => "fred",
Friend => "barney",

},
{

Lead => "george",
Wife => "jane",
Son => "elroy",

},
{

Lead => "homer",
Wife => "marge",
Son => "bart",

}
);

Generation of an ARRAY OF HASHES

reading from file
format: LEAD=fred FRIEND=barney
while (<>) {

$rec = {};
for $field (split) {

($key, $value) = split /=/, $field;
$rec−>{$key} = $value;

}
push @AoH, $rec;

}

reading from file
format: LEAD=fred FRIEND=barney
no temp
while (<>) {

push @AoH, { split /[\s+=]/ };
}

calling a function that returns a key/value pair list, like
"lead","fred","daughter","pebbles"
while (%fields = getnextpairset()) {

push @AoH, { %fields };
}

likewise, but using no temp vars
while (<>) {

push @AoH, { parsepairs($_) };
}

add key/value to an element
$AoH[0]{pet} = "dino";
$AoH[2]{pet} = "santa's little helper";

262 2018-11-19 perl v5.26.1

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

Access and Printing of an ARRAY OF HASHES

one element
$AoH[0]{lead} = "fred";

another element
$AoH[1]{lead} =˜ s/(\w)/\u$1/;

print the whole thing with refs
for $href (@AoH) {

print "{ ";
for $role (keys %$href) {

print "$role=$href−>{$role} ";
}
print "}\n";

}

print the whole thing with indices
for $i (0 .. $#AoH) {

print "$i is { ";
for $role (keys %{ $AoH[$i] }) {

print "$role=$AoH[$i]{$role} ";
}
print "}\n";

}

print the whole thing one at a time
for $i (0 .. $#AoH) {

for $role (keys %{ $AoH[$i] }) {
print "elt $i $role is $AoH[$i]{$role}\n";

}
}

HASHES OF HASHES
Declaration of a HASH OF HASHES

%HoH = (
flintstones => {

lead => "fred",
pal => "barney",

},
jetsons => {

lead => "george",
wife => "jane",
"his boy" => "elroy",

},
simpsons => {

lead => "homer",
wife => "marge",
kid => "bart",

},
);

Generation of a HASH OF HASHES

perl v5.26.1 2018-11-19 263

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

reading from file
flintstones: lead=fred pal=barney wife=wilma pet=dino
while (<>) {

next unless s/ˆ(.*?):\s*//;
$who = $1;
for $field (split) {

($key, $value) = split /=/, $field;
$HoH{$who}{$key} = $value;

}

reading from file; more temps
while (<>) {

next unless s/ˆ(.*?):\s*//;
$who = $1;
$rec = {};
$HoH{$who} = $rec;
for $field (split) {

($key, $value) = split /=/, $field;
$rec−>{$key} = $value;

}
}

calling a function that returns a key,value hash
for $group ("simpsons", "jetsons", "flintstones") {

$HoH{$group} = { get_family($group) };
}

likewise, but using temps
for $group ("simpsons", "jetsons", "flintstones") {

%members = get_family($group);
$HoH{$group} = { %members };

}

append new members to an existing family
%new_folks = (

wife => "wilma",
pet => "dino",

);

for $what (keys %new_folks) {
$HoH{flintstones}{$what} = $new_folks{$what};

}

Access and Printing of a HASH OF HASHES

one element
$HoH{flintstones}{wife} = "wilma";

another element
$HoH{simpsons}{lead} =˜ s/(\w)/\u$1/;

print the whole thing
foreach $family (keys %HoH) {

print "$family: { ";
for $role (keys %{ $HoH{$family} }) {

print "$role=$HoH{$family}{$role} ";
}
print "}\n";

}

264 2018-11-19 perl v5.26.1

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

print the whole thing somewhat sorted
foreach $family (sort keys %HoH) {

print "$family: { ";
for $role (sort keys %{ $HoH{$family} }) {

print "$role=$HoH{$family}{$role} ";
}
print "}\n";

}

print the whole thing sorted by number of members
foreach $family (sort { keys %{$HoH{$b}} <=> keys %{$HoH{$a}} }

keys %HoH)
{

print "$family: { ";
for $role (sort keys %{ $HoH{$family} }) {

print "$role=$HoH{$family}{$role} ";
}
print "}\n";

}

establish a sort order (rank) for each role
$i = 0;
for (qw(lead wife son daughter pal pet)) { $rank{$_} = ++$i }

now print the whole thing sorted by number of members
foreach $family (sort { keys %{ $HoH{$b} } <=> keys %{ $HoH{$a} } }

keys %HoH)
{

print "$family: { ";
and print these according to rank order
for $role (sort { $rank{$a} <=> $rank{$b} }

keys %{ $HoH{$family} })
{

print "$role=$HoH{$family}{$role} ";
}
print "}\n";

}

MORE ELABORATE RECORDS
Declaration of MORE ELABORATE RECORDS

Here’s a sample showing how to create and use a record whose fields are of many different sorts:

$rec = {
TEXT => $string,
SEQUENCE => [@old_values],
LOOKUP => { %some_table },
THATCODE => \&some_function,
THISCODE => sub { $_[0] ** $_[1] },
HANDLE => *STDOUT,

};

print $rec−>{TEXT};

print $rec−>{SEQUENCE}[0];
$last = pop @ { $rec−>{SEQUENCE} };

print $rec−>{LOOKUP}{"key"};
($first_k, $first_v) = each %{ $rec−>{LOOKUP} };

perl v5.26.1 2018-11-19 265

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

$answer = $rec−>{THATCODE}−>($arg);
$answer = $rec−>{THISCODE}−>($arg1, $arg2);

careful of extra block braces on fh ref
print { $rec−>{HANDLE} } "a string\n";

use FileHandle;
$rec−>{HANDLE}−>autoflush(1);
$rec−>{HANDLE}−>print(" a string\n");

Declaration of a HASH OF COMPLEX RECORDS

%TV = (
flintstones => {

series => "flintstones",
nights => [qw(monday thursday friday)],
members => [

{ name => "fred", role => "lead", age => 36, },
{ name => "wilma", role => "wife", age => 31, },
{ name => "pebbles", role => "kid", age => 4, },

],
},

jetsons => {
series => "jetsons",
nights => [qw(wednesday saturday)],
members => [

{ name => "george", role => "lead", age => 41, },
{ name => "jane", role => "wife", age => 39, },
{ name => "elroy", role => "kid", age => 9, },

],
},

simpsons => {
series => "simpsons",
nights => [qw(monday)],
members => [

{ name => "homer", role => "lead", age => 34, },
{ name => "marge", role => "wife", age => 37, },
{ name => "bart", role => "kid", age => 11, },

],
},

);

Generation of a HASH OF COMPLEX RECORDS

reading from file
this is most easily done by having the file itself be
in the raw data format as shown above. perl is happy
to parse complex data structures if declared as data, so
sometimes it's easiest to do that

here's a piece by piece build up
$rec = {};
$rec−>{series} = "flintstones";
$rec−>{nights} = [find_days()];

@members = ();
assume this file in field=value syntax
while (<>) {

%fields = split /[\s=]+/;

266 2018-11-19 perl v5.26.1

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

push @members, { %fields };
}
$rec−>{members} = [@members];

now remember the whole thing
$TV{ $rec−>{series} } = $rec;

###
now, you might want to make interesting extra fields that
include pointers back into the same data structure so if
change one piece, it changes everywhere, like for example
if you wanted a {kids} field that was a reference
to an array of the kids' records without having duplicate
records and thus update problems.
###
foreach $family (keys %TV) {

$rec = $TV{$family}; # temp pointer
@kids = ();
for $person (@{ $rec−>{members} }) {

if ($person−>{role} =˜ /kid|son|daughter/) {
push @kids, $person;

}
}
REMEMBER: $rec and $TV{$family} point to same data!!
$rec−>{kids} = [@kids];

}

you copied the array, but the array itself contains pointers
to uncopied objects. this means that if you make bart get
older via

$TV{simpsons}{kids}[0]{age}++;

then this would also change in
print $TV{simpsons}{members}[2]{age};

because $TV{simpsons}{kids}[0] and $TV{simpsons}{members}[2]
both point to the same underlying anonymous hash table

print the whole thing
foreach $family (keys %TV) {

print "the $family";
print " is on during @{ $TV{$family}{nights} }\n";
print "its members are:\n";
for $who (@{ $TV{$family}{members} }) {

print " $who−>{name} ($who−>{role}), age $who−>{age}\n";
}
print "it turns out that $TV{$family}{lead} has ";
print scalar (@{ $TV{$family}{kids} }), " kids named ";
print join (", ", map { $_−>{name} } @{ $TV{$family}{kids} });
print "\n";

}

Database Ties
You cannot easily tie a multilevel data structure (such as a hash of hashes) to a dbm file. The first problem
is that all but GDBM and Berkeley DB have size limitations, but beyond that, you also have problems with
how references are to be represented on disk. One experimental module that does partially attempt to
address this need is the MLDBM module. Check your nearest CPAN site as described in perlmodlib for
source code to MLDBM.

perl v5.26.1 2018-11-19 267

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

SEE ALSO
perlref, perllol, perldata, perlobj

AUTHOR
Tom Christiansen <tchrist@perl.com>

268 2018-11-19 perl v5.26.1

PERLREQUICK(1) Perl Programmers Reference Guide PERLREQUICK(1)

NAME
perlrequick − Perl regular expressions quick start

DESCRIPTION
This page covers the very basics of understanding, creating and using regular expressions (’regexes’) in
Perl.

The Guide
This page assumes you already know things, like what a ‘‘pattern’’ is, and the basic syntax of using them.
If you don’t, see perlretut.

Simple word matching
The simplest regex is simply a word, or more generally, a string of characters. A regex consisting of a word
matches any string that contains that word:

"Hello World" =˜ /World/; # matches

In this statement, World is a regex and the // enclosing /World/ tells Perl to search a string for a match.
The operator =˜ associates the string with the regex match and produces a true value if the regex matched,
or false if the regex did not match. In our case, World matches the second word in "Hello World", so
the expression is true. This idea has several variations.

Expressions like this are useful in conditionals:

print "It matches\n" if "Hello World" =˜ /World/;

The sense of the match can be reversed by using !˜ operator:

print "It doesn't match\n" if "Hello World" !˜ /World/;

The literal string in the regex can be replaced by a variable:

$greeting = "World";
print "It matches\n" if "Hello World" =˜ /$greeting/;

If you’re matching against $_, the $_ =˜ part can be omitted:

$_ = "Hello World";
print "It matches\n" if /World/;

Finally, the // default delimiters for a match can be changed to arbitrary delimiters by putting an 'm' out
front:

"Hello World" =˜ m!World!; # matches, delimited by '!'
"Hello World" =˜ m{World}; # matches, note the matching '{}'
"/usr/bin/perl" =˜ m"/perl"; # matches after '/usr/bin',

'/' becomes an ordinary char

Regexes must match a part of the string exactly in order for the statement to be true:

"Hello World" =˜ /world/; # doesn't match, case sensitive
"Hello World" =˜ /o W/; # matches, ' ' is an ordinary char
"Hello World" =˜ /World /; # doesn't match, no ' ' at end

Perl will always match at the earliest possible point in the string:

"Hello World" =˜ /o/; # matches 'o' in 'Hello'
"That hat is red" =˜ /hat/; # matches 'hat' in 'That'

Not all characters can be used ’as is’ in a match. Some characters, called metacharacters, are reserved for
use in regex notation. The metacharacters are

{}[]()ˆ$.|*+?\

A metacharacter can be matched by putting a backslash before it:

"2+2=4" =˜ /2+2/; # doesn't match, + is a metacharacter
"2+2=4" =˜ /2\+2/; # matches, \+ is treated like an ordinary +
'C:\WIN32' =˜ /C:\\WIN/; # matches
"/usr/bin/perl" =˜ /\/usr\/bin\/perl/; # matches

In the last regex, the forward slash '/' is also backslashed, because it is used to delimit the regex.

Non-printable ASCII characters are represented by escape sequences. Common examples are \t for a tab,

perl v5.26.1 2018-11-19 269

PERLREQUICK(1) Perl Programmers Reference Guide PERLREQUICK(1)

\n for a newline, and \r for a carriage return. Arbitrary bytes are represented by octal escape sequences,
e.g., \033, or hexadecimal escape sequences, e.g., \x1B:

"1000\t2000" =˜ m(0\t2) # matches
"cat" =˜ /\143\x61\x74/ # matches in ASCII, but

a weird way to spell cat

Regexes are treated mostly as double-quoted strings, so variable substitution works:

$foo = 'house';
'cathouse' =˜ /cat$foo/; # matches
'housecat' =˜ /${foo}cat/; # matches

With all of the regexes above, if the regex matched anywhere in the string, it was considered a match. To
specify where it should match, we would use the anchor metacharacters ˆ and $. The anchor ˆ means
match at the beginning of the string and the anchor $ means match at the end of the string, or before a
newline at the end of the string. Some examples:

"housekeeper" =˜ /keeper/; # matches
"housekeeper" =˜ /ˆkeeper/; # doesn't match
"housekeeper" =˜ /keeper$/; # matches
"housekeeper\n" =˜ /keeper$/; # matches
"housekeeper" =˜ /ˆhousekeeper$/; # matches

Using character classes
A character class allows a set of possible characters, rather than just a single character, to match at a
particular point in a regex. Character classes are denoted by brackets [...], with the set of characters to
be possibly matched inside. Here are some examples:

/cat/; # matches 'cat'
/[bcr]at/; # matches 'bat', 'cat', or 'rat'
"abc" =˜ /[cab]/; # matches 'a'

In the last statement, even though 'c' is the first character in the class, the earliest point at which the regex
can match is 'a'.

/[yY][eE][sS]/; # match 'yes' in a case−insensitive way
'yes', 'Yes', 'YES', etc.

/yes/i; # also match 'yes' in a case−insensitive way

The last example shows a match with an 'i' modifier, which makes the match case-insensitive.

Character classes also have ordinary and special characters, but the sets of ordinary and special characters
inside a character class are different than those outside a character class. The special characters for a
character class are −]\ˆ$ and are matched using an escape:

/[\]c]def/; # matches ']def' or 'cdef'
$x = 'bcr';
/[$x]at/; # matches 'bat, 'cat', or 'rat'
/[\$x]at/; # matches '$at' or 'xat'
/[\\$x]at/; # matches '\at', 'bat, 'cat', or 'rat'

The special character '−' acts as a range operator within character classes, so that the unwieldy
[0123456789] and [abc...xyz] become the svelte [0−9] and [a−z]:

/item[0−9]/; # matches 'item0' or ... or 'item9'
/[0−9a−fA−F]/; # matches a hexadecimal digit

If '−' is the first or last character in a character class, it is treated as an ordinary character.

The special character ˆ in the first position of a character class denotes a negated character class, which
matches any character but those in the brackets. Both [...] and [ˆ...] must match a character, or the
match fails. Then

/[ˆa]at/; # doesn't match 'aat' or 'at', but matches
all other 'bat', 'cat, '0at', '%at', etc.

/[ˆ0−9]/; # matches a non−numeric character
/[aˆ]at/; # matches 'aat' or 'ˆat'; here 'ˆ' is ordinary

270 2018-11-19 perl v5.26.1

PERLREQUICK(1) Perl Programmers Reference Guide PERLREQUICK(1)

Perl has several abbreviations for common character classes. (These definitions are those that Perl uses in
ASCII-safe mode with the /a modifier. Otherwise they could match many more non-ASCII Unicode
characters as well. See ‘‘Backslash sequences’’ in perlrecharclass for details.)

• \d is a digit and represents

[0−9]

• \s is a whitespace character and represents

[\ \t\r\n\f]

• \w is a word character (alphanumeric or _) and represents

[0−9a−zA−Z_]

• \D is a negated \d; it represents any character but a digit

[ˆ0−9]

• \S is a negated \s; it represents any non-whitespace character

[ˆ\s]

• \W is a negated \w; it represents any non-word character

[ˆ\w]

• The period ’.’ matches any character but ‘‘\n’’

The \d\s\w\D\S\W abbreviations can be used both inside and outside of character classes. Here are
some in use:

/\d\d:\d\d:\d\d/; # matches a hh:mm:ss time format
/[\d\s]/; # matches any digit or whitespace character
/\w\W\w/; # matches a word char, followed by a

non−word char, followed by a word char
/..rt/; # matches any two chars, followed by 'rt'
/end\./; # matches 'end.'
/end[.]/; # same thing, matches 'end.'

The word anchor \b matches a boundary between a word character and a non-word character \w\W or
\W\w:

$x = "Housecat catenates house and cat";
$x =˜ /\bcat/; # matches cat in 'catenates'
$x =˜ /cat\b/; # matches cat in 'housecat'
$x =˜ /\bcat\b/; # matches 'cat' at end of string

In the last example, the end of the string is considered a word boundary.

For natural language processing (so that, for example, apostrophes are included in words), use instead
\b{wb}

"don't" =˜ / .+? \b{wb} /x; # matches the whole string

Matching this or that
We can match different character strings with the alternation metacharacter '|'. To match dog or cat,
we form the regex dog|cat. As before, Perl will try to match the regex at the earliest possible point in
the string. At each character position, Perl will first try to match the first alternative, dog. If dog doesn’t
match, Perl will then try the next alternative, cat. If cat doesn’t match either, then the match fails and
Perl moves to the next position in the string. Some examples:

"cats and dogs" =˜ /cat|dog|bird/; # matches "cat"
"cats and dogs" =˜ /dog|cat|bird/; # matches "cat"

Even though dog is the first alternative in the second regex, cat is able to match earlier in the string.

"cats" =˜ /c|ca|cat|cats/; # matches "c"
"cats" =˜ /cats|cat|ca|c/; # matches "cats"

At a given character position, the first alternative that allows the regex match to succeed will be the one that
matches. Here, all the alternatives match at the first string position, so the first matches.

perl v5.26.1 2018-11-19 271

PERLREQUICK(1) Perl Programmers Reference Guide PERLREQUICK(1)

Grouping things and hierarchical matching
The grouping metacharacters () allow a part of a regex to be treated as a single unit. Parts of a regex are
grouped by enclosing them in parentheses. The regex house(cat|keeper) means match house
followed by either cat or keeper. Some more examples are

/(a|b)b/; # matches 'ab' or 'bb'
/(ˆa|b)c/; # matches 'ac' at start of string or 'bc' anywhere

/house(cat|)/; # matches either 'housecat' or 'house'
/house(cat(s|)|)/; # matches either 'housecats' or 'housecat' or

'house'. Note groups can be nested.

"20" =˜ /(19|20|)\d\d/; # matches the null alternative '()\d\d',
because '20\d\d' can't match

Extracting matches
The grouping metacharacters () also allow the extraction of the parts of a string that matched. For each
grouping, the part that matched inside goes into the special variables $1, $2, etc. They can be used just as
ordinary variables:

extract hours, minutes, seconds
$time =˜ /(\d\d):(\d\d):(\d\d)/; # match hh:mm:ss format
$hours = $1;
$minutes = $2;
$seconds = $3;

In list context, a match /regex/ with groupings will return the list of matched values ($1,$2,...).
So we could rewrite it as

($hours, $minutes, $second) = ($time =˜ /(\d\d):(\d\d):(\d\d)/);

If the groupings in a regex are nested, $1 gets the group with the leftmost opening parenthesis, $2 the next
opening parenthesis, etc. For example, here is a complex regex and the matching variables indicated below
it:

/(ab(cd|ef)((gi)|j))/;
1 2 34

Associated with the matching variables $1, $2, ... are the backreferences \g1, \g2, ... Backreferences
are matching variables that can be used inside a regex:

/(\w\w\w)\s\g1/; # find sequences like 'the the' in string

$1, $2, ... should only be used outside of a regex, and \g1, \g2, ... only inside a regex.

Matching repetitions
The quantifier metacharacters ?, *, +, and {} allow us to determine the number of repeats of a portion of
a regex we consider to be a match. Quantifiers are put immediately after the character, character class, or
grouping that we want to specify. They hav e the following meanings:

• a? = match ’a’ 1 or 0 times

• a* = match ’a’ 0 or more times, i.e., any number of times

• a+ = match ’a’ 1 or more times, i.e., at least once

• a{n,m} = match at least n times, but not more than m times.

• a{n,} = match at least n or more times

• a{n} = match exactly n times

Here are some examples:

272 2018-11-19 perl v5.26.1

PERLREQUICK(1) Perl Programmers Reference Guide PERLREQUICK(1)

/[a−z]+\s+\d*/; # match a lowercase word, at least some space, and
any number of digits

/(\w+)\s+\g1/; # match doubled words of arbitrary length
$year =˜ /ˆ\d{2,4}$/; # make sure year is at least 2 but not more

than 4 digits
$year =˜ /ˆ\d{4}$|ˆ\d{2}$/; # better match; throw out 3 digit dates

These quantifiers will try to match as much of the string as possible, while still allowing the regex to match.
So we have

$x = 'the cat in the hat';
$x =˜ /ˆ(.*)(at)(.*)$/; # matches,

$1 = 'the cat in the h'
$2 = 'at'
$3 = '' (0 matches)

The first quantifier .* grabs as much of the string as possible while still having the regex match. The
second quantifier .* has no string left to it, so it matches 0 times.

More matching
There are a few more things you might want to know about matching operators. The global modifier /g
allows the matching operator to match within a string as many times as possible. In scalar context,
successive matches against a string will have /g jump from match to match, keeping track of position in
the string as it goes along. You can get or set the position with the pos() function. For example,

$x = "cat dog house"; # 3 words
while ($x =˜ /(\w+)/g) {

print "Word is $1, ends at position ", pos $x, "\n";
}

prints

Word is cat, ends at position 3
Word is dog, ends at position 7
Word is house, ends at position 13

A failed match or changing the target string resets the position. If you don’t want the position reset after
failure to match, add the /c, as in /regex/gc.

In list context, /g returns a list of matched groupings, or if there are no groupings, a list of matches to the
whole regex. So

@words = ($x =˜ /(\w+)/g); # matches,
$word[0] = 'cat'
$word[1] = 'dog'
$word[2] = 'house'

Search and replace
Search and replace is performed using s/regex/replacement/modifiers. The replacement is
a Perl double-quoted string that replaces in the string whatever is matched with the regex. The operator
=˜ is also used here to associate a string with s///. If matching against $_, the $_ =˜ can be dropped.
If there is a match, s/// returns the number of substitutions made; otherwise it returns false. Here are a
few examples:

$x = "Time to feed the cat!";
$x =˜ s/cat/hacker/; # $x contains "Time to feed the hacker!"
$y = "'quoted words'";
$y =˜ s/ˆ'(.*)'$/$1/; # strip single quotes,

$y contains "quoted words"

With the s/// operator, the matched variables $1, $2, etc. are immediately available for use in the
replacement expression. With the global modifier, s///g will search and replace all occurrences of the
regex in the string:

perl v5.26.1 2018-11-19 273

PERLREQUICK(1) Perl Programmers Reference Guide PERLREQUICK(1)

$x = "I batted 4 for 4";
$x =˜ s/4/four/; # $x contains "I batted four for 4"
$x = "I batted 4 for 4";
$x =˜ s/4/four/g; # $x contains "I batted four for four"

The non-destructive modifier s///r causes the result of the substitution to be returned instead of
modifying $_ (or whatever variable the substitute was bound to with =˜):

$x = "I like dogs.";
$y = $x =˜ s/dogs/cats/r;
print "$x $y\n"; # prints "I like dogs. I like cats."

$x = "Cats are great.";
print $x =˜ s/Cats/Dogs/r =˜ s/Dogs/Frogs/r =˜

s/Frogs/Hedgehogs/r, "\n";
prints "Hedgehogs are great."

@foo = map { s/[a−z]/X/r } qw(a b c 1 2 3);
@foo is now qw(X X X 1 2 3)

The evaluation modifier s///e wraps an eval{...} around the replacement string and the evaluated
result is substituted for the matched substring. Some examples:

reverse all the words in a string
$x = "the cat in the hat";
$x =˜ s/(\w+)/reverse $1/ge; # $x contains "eht tac ni eht tah"

convert percentage to decimal
$x = "A 39% hit rate";
$x =˜ s!(\d+)%!$1/100!e; # $x contains "A 0.39 hit rate"

The last example shows that s/// can use other delimiters, such as s!!! and s{}{}, and even s{}//.
If single quotes are used s''', then the regex and replacement are treated as single-quoted strings.

The split operator
split /regex/, string splits string into a list of substrings and returns that list. The regex
determines the character sequence that string is split with respect to. For example, to split a string into
words, use

$x = "Calvin and Hobbes";
@word = split /\s+/, $x; # $word[0] = 'Calvin'

$word[1] = 'and'
$word[2] = 'Hobbes'

To extract a comma-delimited list of numbers, use

$x = "1.618,2.718, 3.142";
@const = split /,\s*/, $x; # $const[0] = '1.618'

$const[1] = '2.718'
$const[2] = '3.142'

If the empty regex // is used, the string is split into individual characters. If the regex has groupings, then
the list produced contains the matched substrings from the groupings as well:

$x = "/usr/bin";
@parts = split m!(/)!, $x; # $parts[0] = ''

$parts[1] = '/'
$parts[2] = 'usr'
$parts[3] = '/'
$parts[4] = 'bin'

Since the first character of $x matched the regex, split prepended an empty initial element to the list.

use re 'strict'
New in v5.22, this applies stricter rules than otherwise when compiling regular expression patterns. It can
find things that, while legal, may not be what you intended.

274 2018-11-19 perl v5.26.1

PERLREQUICK(1) Perl Programmers Reference Guide PERLREQUICK(1)

See ’strict’ in re.

BUGS
None.

SEE ALSO
This is just a quick start guide. For a more in-depth tutorial on regexes, see perlretut and for the reference
page, see perlre.

AUTHOR AND COPYRIGHT
Copyright (c) 2000 Mark Kvale All rights reserved.

This document may be distributed under the same terms as Perl itself.

Acknowledgments
The author would like to thank Mark-Jason Dominus, Tom Christiansen, Ilya Zakharevich, Brad Hughes,
and Mike Giroux for all their helpful comments.

perl v5.26.1 2018-11-19 275

PERLSTYLE(1) Perl Programmers Reference Guide PERLSTYLE(1)

NAME
perlstyle − Perl style guide

DESCRIPTION
Each programmer will, of course, have his or her own preferences in regards to formatting, but there are
some general guidelines that will make your programs easier to read, understand, and maintain.

The most important thing is to run your programs under the −w flag at all times. You may turn it off
explicitly for particular portions of code via the no warnings pragma or the $ˆW variable if you must.
You should also always run under use strict or know the reason why not. The use sigtrap and
ev en use diagnostics pragmas may also prove useful.

Regarding aesthetics of code lay out, about the only thing Larry cares strongly about is that the closing
curly bracket of a multi-line BLOCK should line up with the keyword that started the construct. Beyond
that, he has other preferences that aren’t so strong:

• 4−column indent.

• Opening curly on same line as keyword, if possible, otherwise line up.

• Space before the opening curly of a multi-line BLOCK.

• One-line BLOCK may be put on one line, including curlies.

• No space before the semicolon.

• Semicolon omitted in ‘‘short’’ one-line BLOCK.

• Space around most operators.

• Space around a ‘‘complex’’ subscript (inside brackets).

• Blank lines between chunks that do different things.

• Uncuddled elses.

• No space between function name and its opening parenthesis.

• Space after each comma.

• Long lines broken after an operator (except and and or).

• Space after last parenthesis matching on current line.

• Line up corresponding items vertically.

• Omit redundant punctuation as long as clarity doesn’t suffer.

Larry has his reasons for each of these things, but he doesn’t claim that everyone else’s mind works the
same as his does.

Here are some other more substantive style issues to think about:

• Just because you CAN do something a particular way doesn’t mean that you SHOULD do it that way.
Perl is designed to give you several ways to do anything, so consider picking the most readable one.
For instance

open(FOO,$foo) || die "Can't open $foo: $!";

is better than

die "Can't open $foo: $!" unless open(FOO,$foo);

because the second way hides the main point of the statement in a modifier. On the other hand

print "Starting analysis\n" if $verbose;

is better than

$verbose && print "Starting analysis\n";

because the main point isn’t whether the user typed −v or not.

Similarly, just because an operator lets you assume default arguments doesn’t mean that you have to
make use of the defaults. The defaults are there for lazy systems programmers writing one-shot
programs. If you want your program to be readable, consider supplying the argument.

276 2018-11-19 perl v5.26.1

PERLSTYLE(1) Perl Programmers Reference Guide PERLSTYLE(1)

Along the same lines, just because you CAN omit parentheses in many places doesn’t mean that you
ought to:

return print reverse sort num values %array;
return print(reverse(sort num (values(%array))));

When in doubt, parenthesize. At the very least it will let some poor schmuck bounce on the % key in
vi.

Even if you aren’t in doubt, consider the mental welfare of the person who has to maintain the code
after you, and who will probably put parentheses in the wrong place.

• Don’t go through silly contortions to exit a loop at the top or the bottom, when Perl provides the last
operator so you can exit in the middle. Just ‘‘outdent’’ it a little to make it more visible:

LINE:
for (;;) {

statements;
last LINE if $foo;
next LINE if /ˆ#/;
statements;

}

• Don’t be afraid to use loop labels — they’re there to enhance readability as well as to allow multilevel
loop breaks. See the previous example.

• Av oid using grep() (or map()) or ‘backticks‘ in a void context, that is, when you just throw away
their return values. Those functions all have return values, so use them. Otherwise use a foreach()
loop or the system() function instead.

• For portability, when using features that may not be implemented on every machine, test the construct
in an eval to see if it fails. If you know what version or patchlevel a particular feature was
implemented, you can test $] ($PERL_VERSION in English) to see if it will be there. The
Config module will also let you interrogate values determined by the Configure program when Perl
was installed.

• Choose mnemonic identifiers. If you can’t remember what mnemonic means, you’ve got a problem.

• While short identifiers like $gotit are probably ok, use underscores to separate words in longer
identifiers. It is generally easier to read $var_names_like_this than $VarNamesLikeThis,
especially for non-native speakers of English. It’s also a simple rule that works consistently with
VAR_NAMES_LIKE_THIS.

Package names are sometimes an exception to this rule. Perl informally reserves lowercase module
names for ‘‘pragma’’ modules like integer and strict. Other modules should begin with a
capital letter and use mixed case, but probably without underscores due to limitations in primitive file
systems’ representations of module names as files that must fit into a few sparse bytes.

• You may find it helpful to use letter case to indicate the scope or nature of a variable. For example:

$ALL_CAPS_HERE constants only (beware clashes with perl vars!)
$Some_Caps_Here package−wide global/static
$no_caps_here function scope my() or local() variables

Function and method names seem to work best as all lowercase. E.g., $obj−>as_string().

You can use a leading underscore to indicate that a variable or function should not be used outside the
package that defined it.

• If you have a really hairy regular expression, use the /x or /xx modifiers and put in some whitespace
to make it look a little less like line noise. Don’t use slash as a delimiter when your regexp has slashes
or backslashes.

• Use the new and and or operators to avoid having to parenthesize list operators so much, and to
reduce the incidence of punctuation operators like && and ||. Call your subroutines as if they were
functions or list operators to avoid excessive ampersands and parentheses.

• Use here documents instead of repeated print() statements.

perl v5.26.1 2018-11-19 277

PERLSTYLE(1) Perl Programmers Reference Guide PERLSTYLE(1)

• Line up corresponding things vertically, especially if it’d be too long to fit on one line anyway.

$IDX = $ST_MTIME;
$IDX = $ST_ATIME if $opt_u;
$IDX = $ST_CTIME if $opt_c;
$IDX = $ST_SIZE if $opt_s;

mkdir $tmpdir, 0700 or die "can't mkdir $tmpdir: $!";
chdir($tmpdir) or die "can't chdir $tmpdir: $!";
mkdir 'tmp', 0777 or die "can't mkdir $tmpdir/tmp: $!";

• Always check the return codes of system calls. Good error messages should go to STDERR, include
which program caused the problem, what the failed system call and arguments were, and (VERY

IMPORTANT) should contain the standard system error message for what went wrong. Here’s a simple
but sufficient example:

opendir(D, $dir) or die "can't opendir $dir: $!";

• Line up your transliterations when it makes sense:

tr [abc]
[xyz];

• Think about reusability. Why waste brainpower on a one-shot when you might want to do something
like it again? Consider generalizing your code. Consider writing a module or object class. Consider
making your code run cleanly with use strict and use warnings (or −w) in effect. Consider
giving away your code. Consider changing your whole world view. Consider... oh, never mind.

• Try to document your code and use Pod formatting in a consistent way. Here are commonly expected
conventions:

• use C<> for function, variable and module names (and more generally anything that can be
considered part of code, like filehandles or specific values). Note that function names are
considered more readable with parentheses after their name, that is function().

• use B<> for commands names like cat or grep.

• use F<> or C<> for file names. F<> should be the only Pod code for file names, but as most Pod
formatters render it as italic, Unix and Windows paths with their slashes and backslashes may be
less readable, and better rendered with C<>.

• Be consistent.

• Be nice.

278 2018-11-19 perl v5.26.1

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

NAME
perltrap − Perl traps for the unwary

DESCRIPTION
The biggest trap of all is forgetting to use warnings or use the −w switch; see warnings and perlrun.
The second biggest trap is not making your entire program runnable under use strict. The third
biggest trap is not reading the list of changes in this version of Perl; see perldelta.

Awk Traps
Accustomed awk users should take special note of the following:

• A Perl program executes only once, not once for each input line. You can do an implicit loop with −n
or −p.

• The English module, loaded via

use English;

allows you to refer to special variables (like $/) with names (like $RS), as though they were in awk;
see perlvar for details.

• Semicolons are required after all simple statements in Perl (except at the end of a block). Newline is
not a statement delimiter.

• Curly brackets are required on ifs and whiles.

• Variables begin with ‘‘$’’, ‘‘@’’ or ‘‘%’’ in Perl.

• Arrays index from 0. Likewise string positions in substr() and index().

• You hav e to decide whether your array has numeric or string indices.

• Hash values do not spring into existence upon mere reference.

• You hav e to decide whether you want to use string or numeric comparisons.

• Reading an input line does not split it for you. You get to split it to an array yourself. And the split()
operator has different arguments than awk’s.

• The current input line is normally in $_, not $0. It generally does not have the newline stripped. ($0
is the name of the program executed.) See perlvar.

• $<digit> does not refer to fields — it refers to substrings matched by the last match pattern.

• The print() statement does not add field and record separators unless you set $, and $\. You can set
$OFS and $ORS if you’re using the English module.

• You must open your files before you print to them.

• The range operator is ‘‘..’’, not comma. The comma operator works as in C.

• The match operator is ‘‘=˜’’, not ‘‘˜’’. (‘‘˜’’ is the one’s complement operator, as in C.)

• The exponentiation operator is ‘‘**’’, not ‘‘ˆ’’. ‘‘ˆ’’ is the XOR operator, as in C. (You know, one
could get the feeling that awk is basically incompatible with C.)

• The concatenation operator is ‘‘.’’, not the null string. (Using the null string would render /pat/
/pat/ unparsable, because the third slash would be interpreted as a division operator — the tokenizer
is in fact slightly context sensitive for operators like ‘‘/’’, ‘‘?’’, and ‘‘>’’. And in fact, ‘‘.’’ itself can be
the beginning of a number.)

• The next, exit, and continue keywords work differently.

• The following variables work differently:

perl v5.26.1 2018-11-19 279

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

Awk Perl
ARGC scalar @ARGV (compare with $#ARGV)
ARGV[0] $0
FILENAME $ARGV
FNR $. − something
FS (whatever you like)
NF $#Fld, or some such
NR $.
OFMT $#
OFS $,
ORS $\
RLENGTH length($&)
RS $/
RSTART length($`)
SUBSEP $;

• You cannot set $RS to a pattern, only a string.

• When in doubt, run the awk construct through a2p and see what it gives you.

C/C++ Traps
Cerebral C and C++ programmers should take note of the following:

• Curly brackets are required on if’s and while’s.

• You must use elsif rather than else if.

• The break and continue keywords from C become in Perl last and next, respectively. Unlike
in C, these do not work within a do { } while construct. See ‘‘Loop Control’’ in perlsyn.

• The switch statement is called given/when and only available in perl 5.10 or newer. See ‘‘Switch
Statements’’ in perlsyn.

• Variables begin with ‘‘$’’, ‘‘@’’ or ‘‘%’’ in Perl.

• Comments begin with ‘‘#’’, not ‘‘/*’’ or ‘‘//’’. Perl may interpret C/C++ comments as division
operators, unterminated regular expressions or the defined-or operator.

• You can’t take the address of anything, although a similar operator in Perl is the backslash, which
creates a reference.

• ARGV must be capitalized. $ARGV[0] is C’s argv[1], and argv[0] ends up in $0.

• System calls such as link(), unlink(), rename(), etc. return nonzero for success, not 0. (system(),
however, returns zero for success.)

• Signal handlers deal with signal names, not numbers. Use kill −l to find their names on your
system.

JavaScript Traps
Judicious JavaScript programmers should take note of the following:

• In Perl, binary + is always addition. $string1 + $string2 converts both strings to numbers and
then adds them. To concatenate two strings, use the . operator.

• The + unary operator doesn’t do anything in Perl. It exists to avoid syntactic ambiguities.

• Unlike for...in, Perl’s for (also spelled foreach) does not allow the left-hand side to be an
arbitrary expression. It must be a variable:

for my $variable (keys %hash) {
...

}

Furthermore, don’t forget the keys in there, as foreach my $kv (%hash) {} iterates over the
keys and values, and is generally not useful ($kv would be a key, then a value, and so on).

• To iterate over the indices of an array, use foreach my $i (0 .. $#array) {}. foreach
my $v (@array) {} iterates over the values.

280 2018-11-19 perl v5.26.1

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

• Perl requires braces following if, while, foreach, etc.

• In Perl, else if is spelled elsif.

• ? : has higher precedence than assignment. In JavaScript, one can write:

condition ? do_something() : variable = 3

and the variable is only assigned if the condition is false. In Perl, you need parentheses:

$condition ? do_something() : ($variable = 3);

Or just use if.

• Perl requires semicolons to separate statements.

• Variables declared with my only affect code after the declaration. You cannot write $x = 1; my
$x; and expect the first assignment to affect the same variable. It will instead assign to an $x
declared previously in an outer scope, or to a global variable.

Note also that the variable is not visible until the following statement. This means that in my $x =
1 + $x the second $x refers to one declared previously.

• my variables are scoped to the current block, not to the current function. If you write {my $x;}
$x;, the second $x does not refer to the one declared inside the block.

• An object’s members cannot be made accessible as variables. The closest Perl equivalent to
with(object) { method() } is for, which can alias $_ to the object:

for ($object) {
$_−>method;

}

• The object or class on which a method is called is passed as one of the method’s arguments, not as a
separate this value.

Sed Traps
Seasoned sed programmers should take note of the following:

• A Perl program executes only once, not once for each input line. You can do an implicit loop with −n
or −p.

• Backreferences in substitutions use ‘‘$’’ rather than ‘‘\’’.

• The pattern matching metacharacters ‘‘(’’, ‘‘)’’, and ‘‘|’’ do not have backslashes in front.

• The range operator is ..., rather than comma.

Shell Traps
Sharp shell programmers should take note of the following:

• The backtick operator does variable interpolation without regard to the presence of single quotes in the
command.

• The backtick operator does no translation of the return value, unlike csh.

• Shells (especially csh) do sev eral levels of substitution on each command line. Perl does substitution
in only certain constructs such as double quotes, backticks, angle brackets, and search patterns.

• Shells interpret scripts a little bit at a time. Perl compiles the entire program before executing it
(except for BEGIN blocks, which execute at compile time).

• The arguments are available via @ARGV, not $1, $2, etc.

• The environment is not automatically made available as separate scalar variables.

• The shell’s test uses ‘‘=’’, ‘‘!=’’, ‘‘<’’ etc for string comparisons and ‘‘−eq’’, ‘‘−ne’’, ‘‘−lt’’ etc for
numeric comparisons. This is the reverse of Perl, which uses eq, ne, lt for string comparisons, and
==, != < etc for numeric comparisons.

Perl Traps
Practicing Perl Programmers should take note of the following:

• Remember that many operations behave differently in a list context than they do in a scalar one. See
perldata for details.

perl v5.26.1 2018-11-19 281

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

• Av oid barewords if you can, especially all lowercase ones. You can’t tell by just looking at it whether
a bareword is a function or a string. By using quotes on strings and parentheses on function calls, you
won’t ever get them confused.

• You cannot discern from mere inspection which builtins are unary operators (like chop() and chdir())
and which are list operators (like print() and unlink()). (Unless prototyped, user-defined subroutines
can only be list operators, never unary ones.) See perlop and perlsub.

• People have a hard time remembering that some functions default to $_, or @ARGV, or whatever, but
that others which you might expect to do not.

• The <FH> construct is not the name of the filehandle, it is a readline operation on that handle. The
data read is assigned to $_ only if the file read is the sole condition in a while loop:

while (<FH>) { }
while (defined($_ = <FH>)) { }..
<FH>; # data discarded!

• Remember not to use = when you need =˜; these two constructs are quite different:

$x = /foo/;
$x =˜ /foo/;

• The do {} construct isn’t a real loop that you can use loop control on.

• Use my() for local variables whenever you can get away with it (but see perlform for where you
can’t). Using local() actually gives a local value to a global variable, which leaves you open to
unforeseen side-effects of dynamic scoping.

• If you localize an exported variable in a module, its exported value will not change. The local name
becomes an alias to a new value but the external name is still an alias for the original.

As always, if any of these are ever officially declared as bugs, they’ll be fixed and removed.

282 2018-11-19 perl v5.26.1

PERLBOOK(1) Perl Programmers Reference Guide PERLBOOK(1)

NAME
perlbook − Books about and related to Perl

DESCRIPTION
There are many books on Perl and Perl-related. A few of these are good, some are OK, but many aren’t
worth your money. There is a list of these books, some with extensive reviews, at <http://books.perl.org/> .
We list some of the books here, and while listing a book implies our endorsement, don’t think that not
including a book means anything.

Most of these books are available online through Safari Books Online (<http://safaribooksonline.com/>).

The most popular books
The major reference book on Perl, written by the creator of Perl, is Programming Perl:

Programming Perl (the ‘‘Camel Book’’):
by Tom Christiansen, brian d foy, Larry Wall with Jon Orwant
ISBN 978−0−596−00492−7 [4th edition February 2012]
ISBN 978−1−4493−9890−3 [ebook]
http://oreilly.com/catalog/9780596004927

The Ram is a cookbook with hundreds of examples of using Perl to accomplish specific tasks:

The Perl Cookbook (the ‘‘Ram Book’’):
by Tom Christiansen and Nathan Torkington,
with Foreword by Larry Wall
ISBN 978−0−596−00313−5 [2nd Edition August 2003]
ISBN 978−0−596−15888−0 [ebook]
http://oreilly.com/catalog/9780596003135/

If you want to learn the basics of Perl, you might start with the Llama book, which assumes that you
already know a little about programming:

Learning Perl (the ‘‘Llama Book’’)
by Randal L. Schwartz, Tom Phoenix, and brian d foy
ISBN 978−1−4493−0358−7 [6th edition June 2011]
ISBN 978−1−4493−0458−4 [ebook]
http://www.learning−perl.com/

The tutorial started in the Llama continues in the Alpaca, which introduces the intermediate features of
references, data structures, object-oriented programming, and modules:

Intermediate Perl (the ‘‘Alpaca Book’’)
by Randal L. Schwartz and brian d foy, with Tom Phoenix

foreword by Damian Conway
ISBN 978−1−4493−9309−0 [2nd edition August 2012]
ISBN 978−1−4493−0459−1 [ebook]
http://www.intermediateperl.com/

References
You might want to keep these desktop references close by your keyboard:

Perl 5 Pocket Reference
by Johan Vromans
ISBN 978−1−4493−0370−9 [5th edition July 2011]
ISBN 978−1−4493−0813−1 [ebook]
http://oreilly.com/catalog/0636920018476/

Perl Debugger Pocket Reference
by Richard Foley
ISBN 978−0−596−00503−0 [1st edition January 2004]
ISBN 978−0−596−55625−9 [ebook]
http://oreilly.com/catalog/9780596005030/

Regular Expression Pocket Reference

perl v5.26.1 2018-11-19 283

PERLBOOK(1) Perl Programmers Reference Guide PERLBOOK(1)

by Tony Stubblebine
ISBN 978−0−596−51427−3 [2nd edition July 2007]
ISBN 978−0−596−55782−9 [ebook]
http://oreilly.com/catalog/9780596514273/

Tutorials
Beginning Perl

(There are 2 books with this title)

by Curtis 'Ovid' Poe
ISBN 978−1−118−01384−7
http://www.wrox.com/WileyCDA/WroxTitle/productCd−1118013840.html

by James Lee
ISBN 1−59059−391−X [3rd edition April 2010 & ebook]
http://www.apress.com/9781430227939

Learning Perl (the ‘‘Llama Book’’)
by Randal L. Schwartz, Tom Phoenix, and brian d foy
ISBN 978−1−4493−0358−7 [6th edition June 2011]
ISBN 978−1−4493−0458−4 [ebook]
http://www.learning−perl.com/

Intermediate Perl (the ‘‘Alpaca Book’’)
by Randal L. Schwartz and brian d foy, with Tom Phoenix

foreword by Damian Conway
ISBN 978−1−4493−9309−0 [2nd edition August 2012]
ISBN 978−1−4493−0459−1 [ebook]
http://www.intermediateperl.com/

Mastering Perl
by brian d foy

ISBN 9978−1−4493−9311−3 [2st edition January 2014]
ISBN 978−1−4493−6487−8 [ebook]
http://www.masteringperl.org/

Effective Perl Programming
by Joseph N. Hall, Joshua A. McAdams, brian d foy
ISBN 0−321−49694−9 [2nd edition 2010]
http://www.effectiveperlprogramming.com/

Task-Oriented
Writing Perl Modules for CPAN

by Sam Tregar
ISBN 1−59059−018−X [1st edition August 2002 & ebook]
http://www.apress.com/9781590590188

The Perl Cookbook
by Tom Christiansen and Nathan Torkington,

with Foreword by Larry Wall
ISBN 978−0−596−00313−5 [2nd Edition August 2003]
ISBN 978−0−596−15888−0 [ebook]
http://oreilly.com/catalog/9780596003135/

Automating System Administration with Perl
by David N. Blank−Edelman
ISBN 978−0−596−00639−6 [2nd edition May 2009]
ISBN 978−0−596−80251−6 [ebook]
http://oreilly.com/catalog/9780596006396

Real World SQL Server Administration with Perl
by Linchi Shea
ISBN 1−59059−097−X [1st edition July 2003 & ebook]
http://www.apress.com/9781590590973

284 2018-11-19 perl v5.26.1

PERLBOOK(1) Perl Programmers Reference Guide PERLBOOK(1)

Special Topics
Regular Expressions Cookbook

by Jan Goyvaerts and Steven Levithan
ISBN 978−1−4493−1943−4 [2nd edition August 2012]
ISBN 978−1−4493−2747−7 [ebook]
http://shop.oreilly.com/product/0636920023630.do

Programming the Perl DBI

by Tim Bunce and Alligator Descartes
ISBN 978−1−56592−699−8 [February 2000]
ISBN 978−1−4493−8670−2 [ebook]
http://oreilly.com/catalog/9781565926998

Perl Best Practices
by Damian Conway
ISBN 978−0−596−00173−5 [1st edition July 2005]
ISBN 978−0−596−15900−9 [ebook]
http://oreilly.com/catalog/9780596001735

Higher-Order Perl
by Mark−Jason Dominus
ISBN 1−55860−701−3 [1st edition March 2005]
free ebook http://hop.perl.plover.com/book/
http://hop.perl.plover.com/

Mastering Regular Expressions
by Jeffrey E. F. Friedl
ISBN 978−0−596−52812−6 [3rd edition August 2006]
ISBN 978−0−596−55899−4 [ebook]
http://oreilly.com/catalog/9780596528126

Network Programming with Perl
by Lincoln Stein
ISBN 0−201−61571−1 [1st edition 2001]
http://www.pearsonhighered.com/educator/product/Network−Programming−with−Perl/9780201615715.page

Perl Template Toolkit
by Darren Chamberlain, Dave Cross, and Andy Wardley
ISBN 978−0−596−00476−7 [December 2003]
ISBN 978−1−4493−8647−4 [ebook]
http://oreilly.com/catalog/9780596004767

Object Oriented Perl
by Damian Conway

with foreword by Randal L. Schwartz
ISBN 1−884777−79−1 [1st edition August 1999 & ebook]
http://www.manning.com/conway/

Data Munging with Perl
by Dave Cross
ISBN 1−930110−00−6 [1st edition 2001 & ebook]
http://www.manning.com/cross

Mastering Perl/Tk
by Steve Lidie and Nancy Walsh
ISBN 978−1−56592−716−2 [1st edition January 2002]
ISBN 978−0−596−10344−6 [ebook]
http://oreilly.com/catalog/9781565927162

Extending and Embedding Perl
by Tim Jenness and Simon Cozens
ISBN 1−930110−82−0 [1st edition August 2002 & ebook]
http://www.manning.com/jenness

perl v5.26.1 2018-11-19 285

PERLBOOK(1) Perl Programmers Reference Guide PERLBOOK(1)

Pro Perl Debugging
by Richard Foley with Andy Lester
ISBN 1−59059−454−1 [1st edition July 2005 & ebook]
http://www.apress.com/9781590594544

Free (as in beer) books
Some of these books are available as free downloads.

Higher-Order Perl: <http://hop.perl.plover.com/>

Modern Perl: <http://onyxneon.com/books/modern_perl/>

Other interesting, non-Perl books
You might notice several familiar Perl concepts in this collection of ACM columns from Jon Bentley. The
similarity to the title of the major Perl book (which came later) is not completely accidental:

Programming Pearls
by Jon Bentley
ISBN 978−0−201−65788−3 [2 edition, October 1999]

More Pro gramming Pearls
by Jon Bentley
ISBN 0−201−11889−0 [January 1988]

A note on freshness
Each version of Perl comes with the documentation that was current at the time of release. This poses a
problem for content such as book lists. There are probably very nice books published after this list was
included in your Perl release, and you can check the latest released version at
<http://perldoc.perl.org/perlbook.html> .

Some of the books we’ve listed appear almost ancient in internet scale, but we’ve included those books
because they still describe the current way of doing things. Not everything in Perl changes every day. Many
of the beginner-level books, too, go over basic features and techniques that are still valid today. In general
though, we try to limit this list to books published in the past five years.

Get your book listed
If your Perl book isn’t listed and you think it should be, let us know. <mailto:perl5−porters@perl.org>

286 2018-11-19 perl v5.26.1

