
Copyright © Simon W. Moore, 2020

Computer Science & Technology
Copyright © Simon W. Moore, 2020

Advanced Topics in
Computer Architecture

Testing Processors

Prof. Simon W. Moore

Copyright © Simon W. Moore, 2020
2

Introduction

§Motivation: Functional correctness testing is typically >50% of the
cost of designing a processor

§ Focus of this unit:
§ Exploring research in this space

§ Including published commercial practise

§ Comparing against practises in the RISC-V open source community

Copyright © Simon W. Moore, 2020
3

Types of testing

§Manufacturing test
§ Check that the design has been manufactured without defects
§ Important, but not the focus here

§ Functional correctness testing
§ Does the processor design comply with the Instruction Set Architecture (ISA)?
§ The ISA is the hardware/software interface

§ Violations break software

§What is “verification”?
§ Often used to mean “thorough testing”
§ When “formal verification” people use “verification” they mean rigorous (often

machine-checked) mathematical proof, or model checking

Copyright © Simon W. Moore, 2020

Architecture Reference

4

Copyright © Simon W. Moore, 2020
5

What is an architecture reference?
§ The architecture reference is the contract/interface between

hardware and software
§ Includes the ISA
§ Also exception mechanisms (including interrupts), page table definition, etc.
§ May also include a programmable interrupt controller

§ Examples:
§ RISC-V: https://riscv.org/specifications/

§ 236 pages unprivileged spec, 91 pages privileged spec, 94 pages external debug spec
§ ARM: https://developer.arm.com/docs/ddi0487/latest/arm-architecture-

reference-manual-armv8-for-armv8-a-architecture-profile
§ 7900 pages

§Often the architecture reference is often written in English
§ Can lack rigour; can be ambiguous
§ May include code specifying the instruction

Copyright © Simon W. Moore, 2020
6

Example from the ARM arch. ref. manualA64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487E.a Copyright © 2013-2019 Arm Limited or its affiliates. All rights reserved. C6-831
ID070919 Non-Confidential

C6.2.44 CBNZ

Compare and Branch on Nonzero compares the value in a register with zero, and conditionally branches to a label
at a PC-relative offset if the comparison is not equal. It provides a hint that this is not a subroutine call or return.
This instruction does not affect the condition flags.

32-bit variant

Applies when sf == 0.

CBNZ <Wt>, <label>

64-bit variant

Applies when sf == 1.

CBNZ <Xt>, <label>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer datasize = if sf == '1' then 64 else 32;
 bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction,
in the range +/-1MB, is encoded as "imm19" times 4.

Operation

 bits(datasize) operand1 = X[t];

 if IsZero(operand1) == FALSE then
 BranchTo(PC[] + offset, BranchType_DIR);

sf 0 1 1 0 1 0 1 imm19 Rt
31 30 29 28 27 26 25 24 23 5 4 0

op

Copyright © Simon W. Moore, 2020
7

Example from the ARM arch. ref. manual

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487E.a Copyright © 2013-2019 Arm Limited or its affiliates. All rights reserved. C6-831
ID070919 Non-Confidential

C6.2.44 CBNZ

Compare and Branch on Nonzero compares the value in a register with zero, and conditionally branches to a label
at a PC-relative offset if the comparison is not equal. It provides a hint that this is not a subroutine call or return.
This instruction does not affect the condition flags.

32-bit variant

Applies when sf == 0.

CBNZ <Wt>, <label>

64-bit variant

Applies when sf == 1.

CBNZ <Xt>, <label>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer datasize = if sf == '1' then 64 else 32;
 bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction,
in the range +/-1MB, is encoded as "imm19" times 4.

Operation

 bits(datasize) operand1 = X[t];

 if IsZero(operand1) == FALSE then
 BranchTo(PC[] + offset, BranchType_DIR);

sf 0 1 1 0 1 0 1 imm19 Rt
31 30 29 28 27 26 25 24 23 5 4 0

op

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487E.a Copyright © 2013-2019 Arm Limited or its affiliates. All rights reserved. C6-831
ID070919 Non-Confidential

C6.2.44 CBNZ

Compare and Branch on Nonzero compares the value in a register with zero, and conditionally branches to a label
at a PC-relative offset if the comparison is not equal. It provides a hint that this is not a subroutine call or return.
This instruction does not affect the condition flags.

32-bit variant

Applies when sf == 0.

CBNZ <Wt>, <label>

64-bit variant

Applies when sf == 1.

CBNZ <Xt>, <label>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer datasize = if sf == '1' then 64 else 32;
 bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction,
in the range +/-1MB, is encoded as "imm19" times 4.

Operation

 bits(datasize) operand1 = X[t];

 if IsZero(operand1) == FALSE then
 BranchTo(PC[] + offset, BranchType_DIR);

sf 0 1 1 0 1 0 1 imm19 Rt
31 30 29 28 27 26 25 24 23 5 4 0

op

snippet of formal spec.

shared function

Copyright © Simon W. Moore, 2020
8

ARM arch. ref.: shared subfunction example

Armv8 Pseudocode
J1.3 Shared pseudocode

J1-7576 Copyright © 2013-2019 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487E.a
Non-Confidential ID070919

 otherwise vpmw = Zeros(64);
 // vpme_lsb selects LSB of field within register
 integer vpme_lsb = (vpartid REM 4) * 16;
 return vpmw<vpme_lsb +: 16>;

shared/functions/registers/BranchTo

 // BranchTo()
 // ==========

 // Set program counter to a new address, with a branch type
 // In AArch64 state the address might include a tag in the top eight bits.

 BranchTo(bits(N) target, BranchType branch_type)
 Hint_Branch(branch_type);
 if N == 32 then
 assert UsingAArch32();
 _PC = ZeroExtend(target);
 else
 assert N == 64 && !UsingAArch32();
 _PC = AArch64.BranchAddr(target<63:0>);
 return;

shared/functions/registers/BranchToAddr

 // BranchToAddr()
 // ==============

 // Set program counter to a new address, with a branch type
 // In AArch64 state the address does not include a tag in the top eight bits.

 BranchToAddr(bits(N) target, BranchType branch_type)
 Hint_Branch(branch_type);
 if N == 32 then
 assert UsingAArch32();
 _PC = ZeroExtend(target);
 else
 assert N == 64 && !UsingAArch32();
 _PC = target<63:0>;
 return;

shared/functions/registers/BranchType

 enumeration BranchType {
 BranchType_DIRCALL, // Direct Branch with link
 BranchType_INDCALL, // Indirect Branch with link
 BranchType_ERET, // Exception return (indirect)
 BranchType_DBGEXIT, // Exit from Debug state
 BranchType_RET, // Indirect branch with function return hint
 BranchType_DIR, // Direct branch
 BranchType_INDIR, // Indirect branch
 BranchType_EXCEPTION, // Exception entry
 BranchType_RESET, // Reset
 BranchType_UNKNOWN}; // Other

shared/functions/registers/Hint_Branch

 // Report the hint passed to BranchTo() and BranchToAddr(), for consideration when processing
 // the next instruction.
 Hint_Branch(BranchType hint);

Copyright © Simon W. Moore, 2020
9

Specifying the RISC-V ISA

§ RISC-V architecture reference manual is just in English
§ Spike simulator often used as a “golden reference”
§ Recent work in Prof Sewell’s group in Cambridge:

§ Formal RISC-V specification in Sail
§ Now ratified by the RISC-V foundation
§ https://github.com/rems-project/sail-riscv

Copyright © Simon W. Moore, 2020

Example: RISC-V - B-type branch instructions

§ if(condition) pc = pc + imm
§Note: imm is signed and imm bit zero=0
§ BEQ: condition = rf[rs1] == rf[rs2]
§ BNE: condition = rf[rs1] != rf[rs2]
§ BLT: condition = rf[rs1] < rf[rs2]
§ BGE: condition = rf[rs1] >= rf[rs2]

130 Volume I: RISC-V Unprivileged ISA V20190608-Base-Ratified

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type
imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type
imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type

imm[31:12] rd opcode U-type
imm[20|10:1|11|19:12] rd opcode J-type

RV32I Base Instruction Set
imm[31:12] rd 0110111 LUI
imm[31:12] rd 0010111 AUIPC

imm[20|10:1|11|19:12] rd 1101111 JAL
imm[11:0] rs1 000 rd 1100111 JALR

imm[12|10:5] rs2 rs1 000 imm[4:1|11] 1100011 BEQ
imm[12|10:5] rs2 rs1 001 imm[4:1|11] 1100011 BNE
imm[12|10:5] rs2 rs1 100 imm[4:1|11] 1100011 BLT
imm[12|10:5] rs2 rs1 101 imm[4:1|11] 1100011 BGE
imm[12|10:5] rs2 rs1 110 imm[4:1|11] 1100011 BLTU
imm[12|10:5] rs2 rs1 111 imm[4:1|11] 1100011 BGEU

imm[11:0] rs1 000 rd 0000011 LB
imm[11:0] rs1 001 rd 0000011 LH
imm[11:0] rs1 010 rd 0000011 LW
imm[11:0] rs1 100 rd 0000011 LBU
imm[11:0] rs1 101 rd 0000011 LHU

imm[11:5] rs2 rs1 000 imm[4:0] 0100011 SB
imm[11:5] rs2 rs1 001 imm[4:0] 0100011 SH
imm[11:5] rs2 rs1 010 imm[4:0] 0100011 SW

imm[11:0] rs1 000 rd 0010011 ADDI
imm[11:0] rs1 010 rd 0010011 SLTI
imm[11:0] rs1 011 rd 0010011 SLTIU
imm[11:0] rs1 100 rd 0010011 XORI
imm[11:0] rs1 110 rd 0010011 ORI
imm[11:0] rs1 111 rd 0010011 ANDI

0000000 shamt rs1 001 rd 0010011 SLLI
0000000 shamt rs1 101 rd 0010011 SRLI
0100000 shamt rs1 101 rd 0010011 SRAI
0000000 rs2 rs1 000 rd 0110011 ADD
0100000 rs2 rs1 000 rd 0110011 SUB
0000000 rs2 rs1 001 rd 0110011 SLL
0000000 rs2 rs1 010 rd 0110011 SLT
0000000 rs2 rs1 011 rd 0110011 SLTU
0000000 rs2 rs1 100 rd 0110011 XOR
0000000 rs2 rs1 101 rd 0110011 SRL
0100000 rs2 rs1 101 rd 0110011 SRA
0000000 rs2 rs1 110 rd 0110011 OR
0000000 rs2 rs1 111 rd 0110011 AND

fm pred succ rs1 000 rd 0001111 FENCE
000000000000 00000 000 00000 1110011 ECALL
000000000001 00000 000 00000 1110011 EBREAK

130 Volume I: RISC-V Unprivileged ISA V20190608-Base-Ratified

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type
imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type
imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type

imm[31:12] rd opcode U-type
imm[20|10:1|11|19:12] rd opcode J-type

RV32I Base Instruction Set
imm[31:12] rd 0110111 LUI
imm[31:12] rd 0010111 AUIPC

imm[20|10:1|11|19:12] rd 1101111 JAL
imm[11:0] rs1 000 rd 1100111 JALR

imm[12|10:5] rs2 rs1 000 imm[4:1|11] 1100011 BEQ
imm[12|10:5] rs2 rs1 001 imm[4:1|11] 1100011 BNE
imm[12|10:5] rs2 rs1 100 imm[4:1|11] 1100011 BLT
imm[12|10:5] rs2 rs1 101 imm[4:1|11] 1100011 BGE
imm[12|10:5] rs2 rs1 110 imm[4:1|11] 1100011 BLTU
imm[12|10:5] rs2 rs1 111 imm[4:1|11] 1100011 BGEU

imm[11:0] rs1 000 rd 0000011 LB
imm[11:0] rs1 001 rd 0000011 LH
imm[11:0] rs1 010 rd 0000011 LW
imm[11:0] rs1 100 rd 0000011 LBU
imm[11:0] rs1 101 rd 0000011 LHU

imm[11:5] rs2 rs1 000 imm[4:0] 0100011 SB
imm[11:5] rs2 rs1 001 imm[4:0] 0100011 SH
imm[11:5] rs2 rs1 010 imm[4:0] 0100011 SW

imm[11:0] rs1 000 rd 0010011 ADDI
imm[11:0] rs1 010 rd 0010011 SLTI
imm[11:0] rs1 011 rd 0010011 SLTIU
imm[11:0] rs1 100 rd 0010011 XORI
imm[11:0] rs1 110 rd 0010011 ORI
imm[11:0] rs1 111 rd 0010011 ANDI

0000000 shamt rs1 001 rd 0010011 SLLI
0000000 shamt rs1 101 rd 0010011 SRLI
0100000 shamt rs1 101 rd 0010011 SRAI
0000000 rs2 rs1 000 rd 0110011 ADD
0100000 rs2 rs1 000 rd 0110011 SUB
0000000 rs2 rs1 001 rd 0110011 SLL
0000000 rs2 rs1 010 rd 0110011 SLT
0000000 rs2 rs1 011 rd 0110011 SLTU
0000000 rs2 rs1 100 rd 0110011 XOR
0000000 rs2 rs1 101 rd 0110011 SRL
0100000 rs2 rs1 101 rd 0110011 SRA
0000000 rs2 rs1 110 rd 0110011 OR
0000000 rs2 rs1 111 rd 0110011 AND

fm pred succ rs1 000 rd 0001111 FENCE
000000000000 00000 000 00000 1110011 ECALL
000000000001 00000 000 00000 1110011 EBREAK

10

no rd so use bits
for immediate

funct3 specifies
conditional

Copyright © Simon W. Moore, 2020
11

Sail RISC-V example: branches (1 of 2)
mapping encdec_bop : bop <-> bits(3) = {

RISCV_BEQ <-> 0b000,

RISCV_BNE <-> 0b001,

RISCV_BLT <-> 0b100,

RISCV_BGE <-> 0b101,

RISCV_BLTU <-> 0b110,

RISCV_BGEU <-> 0b111

}

mapping clause encdec = BTYPE(imm7_6 @ imm5_0 @ imm7_5_0 @ imm5_4_1 @ 0b0, rs2, rs1, op)

<-> imm7_6 : bits(1) @ imm7_5_0 : bits(6) @ rs2 @ rs1 @ encdec_bop(op) @ imm5_4_1 :
bits(4) @ imm5_0 : bits(1) @ 0b1100011

function mapping branch operand (bop)
to an enumeration

matching BTYPE machine code

Copyright © Simon W. Moore, 2020

Sail RISC-V example: branches (2 of 2)
function clause execute (BTYPE(imm, rs2, rs1, op)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);
let taken : bool = match op {

RISCV_BEQ => rs1_val == rs2_val,
RISCV_BNE => rs1_val != rs2_val,
RISCV_BLT => rs1_val <_s rs2_val,
RISCV_BGE => rs1_val >=_s rs2_val,
RISCV_BLTU => rs1_val <_u rs2_val,
RISCV_BGEU => rs1_val >=_u rs2_val

};
let t : xlenbits = PC + EXTS(imm);

if taken then {
/* Extensions get the first checks on the prospective

target address. */
match ext_control_check_pc(t) {

Ext_ControlAddr_Error(e) => {
ext_handle_control_check_error(e);
RETIRE_FAIL

},
Ext_ControlAddr_OK(target) => {

if bit_to_bool(target[1]) & (~ (haveRVC())) then {
handle_mem_exception(target, E_Fetch_Addr_Align());
RETIRE_FAIL;

} else {
set_next_pc(target);
RETIRE_SUCCESS

}
}

}
}
else RETIRE_SUCCESS

}
12

Copyright © Simon W. Moore, 2020

Functional Testing Processors

13

Copyright © Simon W. Moore, 2020
14

Challenge and approaches

§Challenge
§ Processors have lots of internal state
§ Some programmer visible…
§ …some less so

§ e.g. register colouring maps programmable visible register names onto a larger register
file

§ allows data hazards due to false sharing to be avoided
§ helps with exception handling (preserve old register state in case for roll-back)

§ Tests often in the form of instruction sequences
§ Handwritten
§ Templated/generated/constrained-random

Copyright © Simon W. Moore, 2020

Example RISC-V test (from https://github.com/riscv/riscv-tests)

#include "riscv_test.h"

RVTEST_RV64U # Define TVM used by program.

Test code region.
RVTEST_CODE_BEGIN # Start of test code.

lw x2, testdata
addi x2, 1 # Should be 42 into $2
sw x2, result # Store result into…

…memory overwriting 1s
li x3, 42 # Desired result
bne x2, x3, fail # Fail out if doesn’t…

…match
RVTEST_PASS # Signal success.

fail:
RVTEST_FAIL

RVTEST_CODE_END # End of test code.

Input data section.
This section is optional,
and this data is NOT saved in the output.
.data

.align 3
testdata:

.dword 41

Output data section.
RVTEST_DATA_BEGIN # Start of test output…

…data region
.align 3

result:
.dword -1

RVTEST_DATA_END # End of test output…
…data region.

etc…

15

Copyright © Simon W. Moore, 2020
16

Problems with handwritten tests

§ Test coverage is often very low
§ Combinatorics is not on our side
§ For 32-bit instructions: 232 possibilities, though not all are valid instructions
§ Need sequences of instructions to probe internal pipeline state and

forwarding paths

§ The current RISC-V test suite is woeful
§ e.g. imitates are formed from various bits of the instruction and many

implementation errors are not found
§ RISC-V compliance group

is looking to improve
matters

18 Volume I: RISC-V Unprivileged ISA V20190608-Base-Ratified

31 30 20 19 12 11 10 5 4 1 0

— inst[31] — inst[30:25] inst[24:21] inst[20] I-immediate

— inst[31] — inst[30:25] inst[11:8] inst[7] S-immediate

— inst[31] — inst[7] inst[30:25] inst[11:8] 0 B-immediate

inst[31] inst[30:20] inst[19:12] — 0 — U-immediate

— inst[31] — inst[19:12] inst[20] inst[30:25] inst[24:21] 0 J-immediate

Figure 2.4: Types of immediate produced by RISC-V instructions. The fields are labeled with the
instruction bits used to construct their value. Sign extension always uses inst[31].

2.4 Integer Computational Instructions

Most integer computational instructions operate on XLEN bits of values held in the integer register
file. Integer computational instructions are either encoded as register-immediate operations using
the I-type format or as register-register operations using the R-type format. The destination is
register rd for both register-immediate and register-register instructions. No integer computational
instructions cause arithmetic exceptions.

We did not include special instruction-set support for overflow checks on integer arithmetic
operations in the base instruction set, as many overflow checks can be cheaply implemented using
RISC-V branches. Overflow checking for unsigned addition requires only a single additional
branch instruction after the addition: add t0, t1, t2; bltu t0, t1, overflow.

For signed addition, if one operand’s sign is known, overflow checking requires only a single
branch after the addition: addi t0, t1, +imm; blt t0, t1, overflow. This covers the
common case of addition with an immediate operand.

For general signed addition, three additional instructions after the addition are required,
leveraging the observation that the sum should be less than one of the operands if and only if the
other operand is negative.

add t0, t1, t2

slti t3, t2, 0

slt t4, t0, t1

bne t3, t4, overflow

In RV64I, checks of 32-bit signed additions can be optimized further by comparing the results of
ADD and ADDW on the operands.

Integer Register-Immediate Instructions

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7
I-immediate[11:0] src ADDI/SLTI[U] dest OP-IMM
I-immediate[11:0] src ANDI/ORI/XORI dest OP-IMM

Copyright © Simon W. Moore, 2020
17

Semi-automatic instruction test generation

§Aim to create large test sets with better coverage
§ Templating

§ Generate sequences of instruction classes with knowledge of possible
pipeline bugs

§Directed random generation
§ Constrained random instruction testing (e.g. constrain to class of instruction

or even simply valid instructions)
§ Random distribution, e.g. on registers used

§ May want to work on a small number of registers to reduce combinatorics
§ but throw in a smaller proportion of other registers

§ Example: RISC-V torture tests: https://github.com/ucb-bar/riscv-torture

§ Sometimes SAT solvers are used

Copyright © Simon W. Moore, 2020
18

Tandem verification
§Compare the processor design under test (DUT)

with a model by checking committed instructions
§ Execute test or real code (e.g. OS boot and application launch)
§ For RISC-V there is a standard instruction trace interface

§ riscv-formal interface (RVFI)
§Advantages:

§ Great for debugging issues with large
code bases

§Disadvantages:
§ Test coverage is only as good as code run
§ e.g. OS boot writes (initialises) many data

structures but reads and checks little; also
uses a subset of instructions, e.g. little or
no floating-point

Golden
model

Design Under
Test (DUT)

=

pass/fail

compare
RVFI streams

Copyright © Simon W. Moore, 2020
19

Formal verification
§Gold standard

§ Machine checked proof of all properties
§ e.g. mathematically proving equivalence between an implementation and a

model
§ Very expensive
§ Only as good as the golden model

§More practical uses:
§ Check a few key properties that are hard to test
§ e.g. floating-point arithmetic
§ Still very challenging

§ Verilog model checking tools
§ ISA model and processor implementation can both be written in Verilog
§ Verilog model checking tools can then be used to check equivalence, e.g. for

short sequences of instructions

Copyright © Simon W. Moore, 2020
20

Undefined behaviour
§How should we handle undefined/unimplemented instructions?

§ NOP?
§ Undefined behaviour? (e.g. for old 6502 used by the NES)
§ Raise “undefined instruction exception”? – preferred option these days

§Design choice
§ Integer division by zero

§ Raises an exception on x86 and ARM; is silently ignored on MIPS and PowerPC
§ Is defined to be “undefined behaviour” for C

§ Signed integer overflow
§ Wraps on x86; raises an exception on MIPS

§ n-bit left shift on n-bit values
§ x86: no shift, PowerPC: result is zero

§ Ref: “Undefined behavior: What happened to my code?”
https://dl.acm.org/citation.cfm?id=2349905

Copyright © Simon W. Moore, 2020
21

Constrained unpredictable behaviour

§Unused/reserved bits on control/status/configuration registers
§ Leave “undefined”, so ignored by processor implementations that don’t use

the bits?
§ Or define to be “zero” for this ISA version and checked by current

processors that the bits are zero?

§ARM v8 – unaligned loads/stores (from ARM Arch Ref Manual)

§ARM v8 – unaligned branches – see next slide…

Architectural Constraints on UNPREDICTABLE behaviors

K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors

K1-7608 Copyright © 2013-2019 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487E.a
Non-Confidential ID070919

K1.1.4 Branching into an IT block

Branching into an IT block leads to CONSTRAINED UNPREDICTABLE behavior. Execution starts from the address
determined by the branch, but each instruction in the IT block is:

• Executed as if it were not in an IT block. This means that it is executed unconditionally.

• Executed as if it had passed its Condition code check within an IT block.

• Executed as a NOP. That is, it behaves as if it had failed the Condition code check.

K1.1.5 Branching to an unaligned PC

In A32 state, when branching to an address that is not word aligned and is defined to be CONSTRAINED
UNPREDICTABLE, one of the following behaviors must occur:

• The unaligned location is forced to be aligned.

• The unaligned address generates an exception on the first instruction using the unaligned PC value.

If that instruction is executed at EL0 and either of the following applies, the exception is taken to EL2:

— EL2 is using AArch32 and the value of HCR.TGE is 1.

— EL2 is using AArch64 and the value of HCR_EL2.TGE is 1.

If the instruction is executed at EL0 when the applicable TGE bit is 0 the exception is taken to EL1.

If the instruction is executed at an Exception level that is higher than EL0 the exception is taken to the
Exception level at which the instruction was executed.

In all cases, the exception is generated only if the first instruction using the unaligned PC value is
architecturally executed.

If the exception that results from a branch to an unaligned PC value:

• Is taken to an Exception level that is using AArch64, it is reported as a PC alignment fault exception, see ISS
encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault on page D13-2935.

• Is taken to an Exception level that is using AArch32, it is reported as a Prefetch Abort exception, see Prefetch
Abort exception reporting a PC alignment fault exception on page G1-5544.

Note
 Because bit[0] is used for interworking, it is impossible to specify a branch to A32 state when the bottom bit of the
target address is 1. Therefore the bottom bit of IFAR, HIFAR, or FAR_ELx is 0 for all these cases.

K1.1.6 Loads and Stores to unaligned locations

Some unaligned loads and stores in the Armv7 architecture are described as UNPREDICTABLE. These are defined in
the Armv8-A architecture to do one of the following:

• Take an alignment fault.

• Perform the specified load or store to the unaligned memory location.

K1.1.7 CONSTRAINED UNPREDICTABLE behavior associated with IT instructions and PSTATE.IT

A number of instructions in the architecture are described as being CONSTRAINED UNPREDICTABLE either:

• Anywhere within an IT block.

• As an instruction within an IT block, other than the last instruction within an IT block.

Unless otherwise stated in this manual, when these instructions are committed for execution, one of the following
occurs:

• An UNDEFINED exception results.

• The instructions are executed as if they had passed the Condition code check.

• The instructions execute as NOPs. This means that they behave as if they had failed the Condition code check.

Copyright © Simon W. Moore, 2020

Architectural Constraints on UNPREDICTABLE behaviors

K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors

K1-7608 Copyright © 2013-2019 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487E.a
Non-Confidential ID070919

K1.1.4 Branching into an IT block

Branching into an IT block leads to CONSTRAINED UNPREDICTABLE behavior. Execution starts from the address
determined by the branch, but each instruction in the IT block is:

• Executed as if it were not in an IT block. This means that it is executed unconditionally.

• Executed as if it had passed its Condition code check within an IT block.

• Executed as a NOP. That is, it behaves as if it had failed the Condition code check.

K1.1.5 Branching to an unaligned PC

In A32 state, when branching to an address that is not word aligned and is defined to be CONSTRAINED
UNPREDICTABLE, one of the following behaviors must occur:

• The unaligned location is forced to be aligned.

• The unaligned address generates an exception on the first instruction using the unaligned PC value.

If that instruction is executed at EL0 and either of the following applies, the exception is taken to EL2:

— EL2 is using AArch32 and the value of HCR.TGE is 1.

— EL2 is using AArch64 and the value of HCR_EL2.TGE is 1.

If the instruction is executed at EL0 when the applicable TGE bit is 0 the exception is taken to EL1.

If the instruction is executed at an Exception level that is higher than EL0 the exception is taken to the
Exception level at which the instruction was executed.

In all cases, the exception is generated only if the first instruction using the unaligned PC value is
architecturally executed.

If the exception that results from a branch to an unaligned PC value:

• Is taken to an Exception level that is using AArch64, it is reported as a PC alignment fault exception, see ISS
encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault on page D13-2935.

• Is taken to an Exception level that is using AArch32, it is reported as a Prefetch Abort exception, see Prefetch
Abort exception reporting a PC alignment fault exception on page G1-5544.

Note
 Because bit[0] is used for interworking, it is impossible to specify a branch to A32 state when the bottom bit of the
target address is 1. Therefore the bottom bit of IFAR, HIFAR, or FAR_ELx is 0 for all these cases.

K1.1.6 Loads and Stores to unaligned locations

Some unaligned loads and stores in the Armv7 architecture are described as UNPREDICTABLE. These are defined in
the Armv8-A architecture to do one of the following:

• Take an alignment fault.

• Perform the specified load or store to the unaligned memory location.

K1.1.7 CONSTRAINED UNPREDICTABLE behavior associated with IT instructions and PSTATE.IT

A number of instructions in the architecture are described as being CONSTRAINED UNPREDICTABLE either:

• Anywhere within an IT block.

• As an instruction within an IT block, other than the last instruction within an IT block.

Unless otherwise stated in this manual, when these instructions are committed for execution, one of the following
occurs:

• An UNDEFINED exception results.

• The instructions are executed as if they had passed the Condition code check.

• The instructions execute as NOPs. This means that they behave as if they had failed the Condition code check.

22

From
 the A

R
M

 v8 A
rchitecture R

eference M
anual

Copyright © Simon W. Moore, 2020
23

Further reading
§ ISA specification & verification:

§ Mandatory: “Who Guards the Guards? Formal validation of the Arm v8-m
architecture specification”, OOPSLA 2017
https://dl.acm.org/citation.cfm?id=3152284.3133912

§ “ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS”, POPL 2019
https://www.cl.cam.ac.uk/~pes20/sail/sail-popl2019.pdf

§ Sail RISC-V docs: https://github.com/rems-project/sail-riscv/tree/master/doc
§ Instruction test generation:

§ Mandatory: “Genesys-Pro: Innovations in Test Program Generation for Functional
Processor Verification”, IBM Research, IEEE Design and Test 2004
http://dx.doi.org/10.1109/MDT.2004.1277900

§ “Randomised testing of a microprocessor model using SMT-solver state
generation”, 2015. http://dx.doi.org/10.1016/j.scico.2015.10.012

§ RISC-V torture tests: https://github.com/ucb-bar/riscv-torture
§ Additional material:

§ RISC-V tests: https://github.com/riscv/riscv-tests
§ RISC-V formal framework: https://github.com/SymbioticEDA/riscv-formal

http://www.clifford.at/papers/2017/riscv-formal/slides.pdf

