Advanced Topics in
Computer Architecture

Testing Processors

Prof. Simon W. Moore

UNIVERSITY OF
CAMBRIDGE

Computer Science & Technology
Copyright © Simon W. Moore, 2020

Introduction

= Motivation: Functional correctness testing is typically >50% of the
cost of designing a processor

= Focus of this unit:

= Exploring research in this space
®= Including published commercial practise
= Comparing against practises in the RISC-V open source community

Types of testing

* Manufacturing test
= Check that the design has been manufactured without defects
= Important, but not the focus here

* Functional correctness testing
= Does the processor design comply with the Instruction Set Architecture (ISA)?

= The ISA is the hardware/software interface
= Violations break software

* What is “verification™?
= Often used to mean “thorough testing”

= When “formal verification” people use “verification” they mean rigorous (often

machine-checked) mathematical proof, or model checking ,

Copyright © Simon W. Moore, 2020

Architecture Reference

4
Copyright © Simon W. Moore, 2020

What is an architecture reference?

= The architecture reference is the contract/interface between
hardware and software
= Includes the ISA
= Also exception mechanisms (including interrupts), page table definition, etc.
= May also include a programmable interrupt controller
= Examples:
= RISC-V: https://riscv.org/specifications/
= 236 pages unprivileged spec, 91 pages privileged spec, 94 pages external debug spec
= ARM: https://developer.arm.com/docs/ddi0487/latest/arm-architecture-
reference-manual-armv8-for-armv8-a-architecture-profile
= 7900 pages
= Often the architecture reference is often written in English
= Can lack rigour; can be ambiguous
= May include code specifying the instruction

5
Copyright © Simon W. Moore, 2020

Example from the ARM arch. ref. manual

C6.2.44 CBNZ

Compare and Branch on Nonzero compares the value in a register with zero, and conditionally branches to a label
at a PC-relative offset if the comparison is not equal. It provides a hint that this is not a subroutine call or return.
This instruction does not affect the condition flags.

[31 30 29 28|27 26 25 24/23 | | | 5 4| 0|
[sflo 1 1 0 1 of1] imm19 | Rt |
op

32-bit variant

Applies when sf == 0.

(BNZ <Wt>, <label>

64-bit variant

Applies when sf == 1.

(BNZ <Xt>, <label>

Decode for all variants of this encoding
integer t = UInt(Rt);
integer datasize = if sf == '1' then 64 else 32;

bits(64) offset = SignExtend(imm19:'00", 64); 6
Copyright © Simon W. Moore, 2020

Example from the ARM arch. ref. manual

Decode for all variants of this encoding
integer t = UInt(Rt);

integer datasize = if sf == '1' then 64 else 32;
bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be tested, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be tested, encoded in the "Rt" field.
<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction,

in the range +/-1MB, is encoded as "imm19" times 4.

Operation
bits(datasize) operandl = X[t];

if IsZero(operandl) == FALSE then Snlppet Of formal SpeC.

BranchTo(PC[] + offset, BranchType_DIR);

shared function

ARM DDI 0487E.a Copyright © 2013-2019 Arm Limited or its affiliates. All rights reserved. C6-831
ID070919 Non-Confidential

7
Copyright © Simon W. Moore, 2020

ARM arch. ref.: shared subfunction example

shared/functions/registers/BranchTo

// BranchTo()

// Set program counter to a new address, with a branch type
// In AArch64 state the address might include a tag in the top eight bits.

BranchTo(bits(N) target, BranchType branch_type)
Hint_Branch(branch_type);
if N == 32 then
assert UsingAArch32();
_PC = ZeroExtend(target);
else
assert N == 64 & !UsingAArch32();
_PC = AArch64.BranchAddr(target<63:0>);
return;

8
Copyright © Simon W. Moore, 2020

Specifying the RISC-V ISA

= RISC-V architecture reference manual is just in English
= Spike simulator often used as a “golden reference”
* Recent work in Prof Sewell’s group in Cambridge:

= Formal RISC-V specification in Sail

= Now ratified by the RISC-V foundation
= https://github.com/rems-project/sail-riscv

9
Copyright © Simon W. Moore, 2020

Example: RISC-V - B-type branch instructions

= if(condition) pc = pc + imm

= Note: imm is signed and imm bit zero=0
= BEQ: condition = rf[rs|] == rf[rs2]

= BNE: condition = rf[rs|] != rf[rs2]

funct3 specifies no rd so use bits

* BLT: condition = rf[rs|] < rf[rs2] conditional for immediate
= BGE: condition = rf[rs1] >= rf[rs2]
| imm[I2[10:5]] rs2 ‘ rsl | funct3 [imm[4:1[11] [opcode | B-type

imm|12|10:5 rs2 rsl 000 imm|4:1]11 1100011 BEQ
imm|12|10:5 rs2 rsl 001 imm[4:1]|11 1100011 BNE
imm|12|10:5 rs2 rsl 100 imm(4:1|11 1100011 BLT
imm|12|10:5 rs2 rsl 101 imm[4:1]11 1100011 BGE
imm|12|10:5 rs2 rsl 110 imm|4:1]|11 1100011 BLTU
imm|12|10:5 rs2 rsl 111 imm|4:1|11 1100011 BGEU o

Copyright © Simon W. Moore, 2020

Sail RISC-V example: branches (1 of 2)

mapping encdec_bop : bop <-> bits(3) = {
RISCV_BEQ <-> @booe,

RISCV_BNE <-> 6b0o1,
RISCV BLT <-> @b1eo, | function mapping branch operand (bop)

RISCV_BGE <-> @bi1e1, to an enumeration
RISCV_BLTU <-> @b11@,
RISCV_BGEU <-> @b111

} J

matching BTYPE machine code

mapping clause encdec = BTYPE(imm7_6 @ imm5_0 @ imm7_5_0 @ imm5_4_1 @ @bo, rs2, rsl, op)

<-> imm7_6 : bits(1) @ imm7_5_0 : bits(6) @ rs2 @ rs1 @ encdec_bop(op) @ imm5_4_1 :
bits(4) @ imm5_0 : bits(1) @ @bl100011

1
Copyright © Simon W. Moore, 2020

Sail RISC-V example: branches (2 of 2)

function clause execute (BTYPE(imm, rs2, rsl, op)) = { if taken then {
let rsl_val = X(rsl); /* Extensions get the first checks on the prospective
let rs2_val = X(rs2); target address. */
let taken : bool = match op { match ext_control_check_pc(t) {
RISCV_BEQ => rsl_val == rs2_val, Ext_ControlAddr_Error(e) => {
RISCV_BNE => rsl_val != rs2_val, ext_handle_control_check_error(e);
RISCV_BLT => rsl_val <_s rs2_val, RETIRE_FAIL
RISCV_BGE => rsi_val >=_s rs2_val, b
RISCV_BLTU => rsl_val <_u rs2_val, Ext_ControlAddr_OK(target) => {
RISCV_BGEU => rsl_val >=_u rs2_val if bit_to_bool(target[1]) & (~ (haveRVC())) then {

}; handle_mem_exception(target, E_Fetch_Addr_Align());
let t : xlenbits = PC + EXTS(imm); RETIRE_FAIL
} else {

set_next_pc(target);
RETIRE_SUCCESS
}
}
¥
}
else RETIRE_SUCCESS

}
12

Copyright © Simon W. Moore, 2020

Functional Testing Processors

13
Copyright © Simon W. Moore, 2020

Challenge and approaches

= Challenge

= Processors have lots of internal state

= Some programmer visible...
= ...some less so

= e.g.register colouring maps programmable visible register names onto a larger register

file

= allows data hazards due to false sharing to be avoided
= helps with exception handling (preserve old register state in case for roll-back)

= Tests often in the form of instruction sequences

= Handwritten

= Templated/generated/constrained-random

14
Copyright © Simon W. Moore, 2020

Examp|e RISC-V test (from https:/github.com/riscv/riscv-tests)

#include "riscv_test.h"

RVTEST_RV64U # Define TVM used by program.
Test code region.
RVTEST_CODE_BEGIN # Start of test code.
1w x2, testdata
addi x2, 1
sw x2, result

Should be 42 into $2

Store result into..
.memory overwriting 1s

1i X3, 42 # Desired result

bne x2, x3, fail # Fail out if doesn’t..
..match
RVTEST_PASS # Signal success.
fail:
RVTEST_FAIL

RVTEST_CODE_END # End of test code.

Input data section.
This section is optional,
and this data is NOT saved in the output.
.data
.align 3
testdata:
.dword 41

Output data section.

RVTEST_DATA_BEGIN # Start of test output..
..data region

.align 3
result:
.dword -1

RVTEST_DATA_END # End of test output..

..data region.

15
Copyright © Simon W. Moore, 2020

Problems with handwritten tests

= Test coverage is often very low
= Combinatorics is not on our side
= For 32-bit instructions: 232 possibilities, though not all are valid instructions
= Need sequences of instructions to probe internal pipeline state and
forwarding paths
* The current RISC-V test suite is woeful

= e.g. imitates are formed from various bits of the instruction and many
implementation errors are not found

™ RISC'V compliance group ‘ 31 30 20 19 12 11 10 5 4 1 0

— inst[31] — [inst[30:25] [inst[24:21] | inst[20] | I-immediate
is looking to improve
I inst[31] [inst[30:25] [inst[11:8] [inst[7] | S-immediate
matters
I — inst[31] — [inst[7] [inst[30:25] | inst[11:8] | 0 | B-immediate
[instBI]] inst[30:20] [inst[19:12] | —0— | U-immediate
I — inst[31] — [inst[19:12] Tinst[20] [inst[30:25] [inst24:21]] 0 | J-immediate

Copyright © Simon W. Moore, 2020

Semi-automatic instruction test generation

= Aim to create large test sets with better coverage
= Templating
= Generate sequences of instruction classes with knowledge of possible
pipeline bugs
* Directed random generation

= Constrained random instruction testing (e.g. constrain to class of instruction
or even simply valid instructions)
= Random distribution, e.g. on registers used
= May want to work on a small number of registers to reduce combinatorics
= but throw in a smaller proportion of other registers
= Example: RISC-V torture tests: https://github.com/ucb-bar/riscv-torture

= Sometimes SAT solvers are used

17
Copyright © Simon W. Moore, 2020

Tandem verification

= Compare the processor design under test (DUT)
with a model by checking committed instructions

= Execute test or real code (e.g. OS boot and application launch)

= For RISC-V there is a standard instruction trace interface
® riscv-formal interface (RVFI)

= Advantages: .
= Great for debugging issues with large Design Under
code bases Test (DUT)
= Disadvantages: RVH! streams
= Test coverage is only as good as code run

= e.g. OS boot writes (initialises) many data
structures but reads and checks little; also .
uses a subset of instructions, e.g. little or pass/fail
no floating-point

18
Copyright © Simon W. Moore, 2020

Formal verification

= Gold standard

= Machine checked proof of all properties
= e.g. mathematically proving equivalence between an implementation and a
model

= Very expensive
= Only as good as the golden model

* More practical uses:
= Check a few key properties that are hard to test
= e.g. floating-point arithmetic
= Still very challenging

* Verilog model checking tools
= |ISA model and processor implementation can both be written in Verilog

= Verilog model checking tools can then be used to check equivalence, e.g. for

short sequences of instructions

19
Copyright © Simon W. Moore, 2020

Undefined behaviour

* How should we handle undefined/unimplemented instructions?
= NOP?
= Undefined behaviour? (e.g. for old 6502 used by the NES)
= Raise “undefined instruction exception”? — preferred option these days

* Design choice

= Integer division by zero
= Raises an exception on x86 and ARM; is silently ignored on MIPS and PowerPC
® |s defined to be “undefined behaviour” for C

= Signed integer overflow
= Wraps on x86; raises an exception on MIPS

= n-bit left shift on n-bit values
= x86: no shift, PowerPC: result is zero

= Ref:“Undefined behavior:What happened to my code?”
https://dl.acm.org/citation.cfm?id=2349905

Copyright © Simon W. Moore, 2020

Constrained unpredictable behaviour

= Unused/reserved bits on control/status/configuration registers
= Leave “undefined”, so ignored by processor implementations that don’t use
the bits?

= Or define to be “zero” for this ISA version and checked by current
processors that the bits are zero?

= ARM v8 — unaligned loads/stores (from ARM Arch Ref Manual)

K1.1.6 Loads and Stores to unaligned locations

Some unaligned loads and stores in the Armv7 architecture are described as UNPREDICTABLE. These are defined in
the Armv8-A architecture to do one of the following:

Take an alignment fault.

Perform the specified load or store to the unaligned memory location.

= ARM v8 — unaligned branches — see next slide...

21
Copyright © Simon W. Moore, 2020

K1.1.5 Branching to an unaligned PC

In A32 state, when branching to an address that is not word aligned and is defined to be CONSTRAINED
UNPREDICTABLE, one of the following behaviors must occur:

. The unaligned location is forced to be aligned.

. The unaligned address generates an exception on the first instruction using the unaligned PC value.
If that instruction is executed at ELO and either of the following applies, the exception is taken to EL2:
— EL2is using AArch32 and the value of HCR.TGE is 1.
— EL2is using AArch64 and the value of HCR_EL2.TGE is 1.
If the instruction is executed at ELO when the applicable TGE bit is 0 the exception is taken to ELI1.

If the instruction is executed at an Exception level that is higher than ELO the exception is taken to the
Exception level at which the instruction was executed.

In all cases, the exception is generated only if the first instruction using the unaligned PC value is
architecturally executed.

If the exception that results from a branch to an unaligned PC value:

. Is taken to an Exception level that is using AArch64, it is reported as a PC alignment fault exception, see /SS
encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault on page D13-2935.

. Is taken to an Exception level that is using AArch32, it is reported as a Prefetch Abort exception, see Prefetch
Abort exception reporting a PC alignment fault exception on page G1-5544.

Note

Because bit[0] is used for interworking, it is impossible to specify a branch to A32 state when the bottom bit of the

target address is 1. Therefore the bottom bit of IFAR, HIFAR, or FAR_ELx is 0 for all these cases. 22
Copyright © Simon W. Moore, 2020

Further reading

|ENUEJy 9DURURJ9Y 24NIDAUYIIY §A WYY Y3 Wwoly

= |SA specification & verification:

= Mandatory: “Who Guards the Guards? Formal validation of the Arm v8-m
architecture specification”, OOPSLA 2017
https://dl.acm.org/citation.cfm?id=3152284.3133912

= “ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS”, POPL 2019
https://www.cl.cam.ac.uk/~pes20/sail/sail-popl2019.pdf
= Sail RISC-V docs: https://github.com/rems-project/sail-riscv/tree/master/doc

® |nstruction test generation:
= Mandatory: “Genesys-Pro: Innovations in Test Program Generation for Functional
Processor Verification”, IBM Research, IEEE Design and Test 2004
http://dx.doi.org/10.1109/MDT.2004.1277900
= “Randomised testing of a microprocessor model using SMT-solver state
generation”, 2015. http://dx.doi.org/10.1016/j.scico.2015.10.012
= RISC-V torture tests: https:/github.com/ucb-bar/riscv-torture

= Additional material:

= RISC-V tests: https://github.com/riscv/riscv-tests
= RISC-V formal framework: https:/github.com/SymbioticEDA/riscv-formal
http://www.clifford.at/papers/20 | 7/riscv-formal/slides.pdf

23
Copyright © Simon W. Moore, 2020

