
Prefetching

Advanced Topics in Computer Architecture

Timothy Jones



Caching

• We’re all familiar 
with caching
• Caches store data 

close to the core
• Caches take 

advantage of locality
• Spatial locality
• Temporal locality

Tag Index Offset

...

Tag Valid

Tag match 
and valid?

Data

...

Select 
byte(s)

Hit / miss



Cache performance

• Cache hit and miss rates give an indication of cache performance
• But they fail to capture the impact of the cache on the overall system

• We therefore prefer to incorporate timing into the cache 
performance
• For example, including the time take to access the cache
• And the time taken to service a miss

• This can give us a value for the average memory access time (AMAT)



Characterising cache performance

• From the CPU’s point of view, we want to reduce the average memory 
access time (AMAT)
• This is the average time it takes to load data
• Including a cache in the system should lead to reducing AMAT, otherwise it is 

doing more harm than good!

AMAT = Cache hit time + Cache miss rate * Cache miss penalty



Improving cache performance

AMAT = Cache hit time + Cache miss rate * Cache miss penalty

• Let’s consider the equation further to see how to reduce AMAT
• We can’t improve the cache hit time, this is fixed
• The cache miss penalty depends on where else the data is
• I.e. whether it is in other caches or main memory
• The AMAT of that cache dictates this!

• We have the most control over the cache miss rate
• We can classify cache misses into four categories



Classifying cache misses

Compulsory misses
• These occur when the data at 

the memory location being 
accessed has never existing in 
the cache
• The first access to any new block 

generates a compulsory miss

...

Cache Main memory



Classifying cache misses

Conflict misses
• When too many memory 

locations map to the same set, 
some blocks have to be evicted 
and reloaded; this generates 
conflict misses
• Conflict misses only occur in 

direct-mapped and set-
associative caches

...

Cache Main memory



Classifying cache misses

Capacity misses
• When there is not enough space 

in the cache to hold all the data 
required, some of it must be 
evicted and reloaded when next 
accessed
• In other words, the cache simply 

could not hold all of the data 
required at once

Cache Main memory

...



Classifying cache misses

Coherence misses
• If there is a cache coherence 

protocol running then when one 
core attempts to write to some 
data, the protocol invalidates 
that address in another cache
• Reloading that data in that other 

cache is a coherence miss – this 
wouldn’t occur without the 
coherence protocol

...

Cache 1

...

Cache 2

Invalidate



Reducing cache misses

• We can reduce the number of misses in some of these classes directly
• For example, conflict misses
• These can be reduced by increasing the size of each set

• Or capacity misses
• These could be reduced by increasing the size of the cache

• However, we’re going to focus here on schemes to improve all misses
• All schemes employ some notion of prefetching



Prefetching

• This is a technique to bring data into the cache before it is needed
• The idea is to make a prediction about what data the program will use 

in the near future
• Then load that data into the cache so that it arrives before required

• Prefetching can be performed in hardware or software
• Processors often provide special instructions to do this in software

• We’re going to look at a variety of hardware techniques



A simple prefetcher

• Next-line is a simple prefetcher
• Does what it says on the tin!

• Stride prefetchers are also 
relatively simple
• The prefetcher identifies simple 

patterns in the accesses made
• E.g. 0x1000, 0x1100, 0x1200

• It learns this stride and 
prefetches based on it

Main memory

Observe

Prefetch



More complex prefetching

• Stride prefetchers are effective for a lot of workloads
• Think array traversals

• But they can’t pick up more complex patterns
• In particular two types of access pattern are problematic
• Those based on pointer chasing
• Those that are dependent on the value of the data

• More complex prefetchers are required for this



Correlation prefetching

• Irregular access patterns are not picked up well by stride prefetchers
• Correlation prefetching means correlating misses to future addresses
• Or the whole past reference sequence (not just misses)

Data

Next

Link

Data

Next

Link

Data

Next

Link

Data

Next

Link



Helper-thread-based prefetching

• Instead of dedicated hardware, 
we could use spare execution 
resources
• A different SMT context
• Continuing execution when the 

main thread stalls (runahead)

• Using a helper thread we can 
explore the future control-flow 
graph

Main
thread

Helper
threads



Software prefetching

• Sometimes the programmer is 
better placed to help
• Should know what’s accessed next
• Often this isn’t the case!

• The architecture provides 
prefetching hint primitives
• When seen in code, the 

processor decides whether to 
prefetch or not

for (i=0; i<NUM; i++) {

A[B[i]]++;

}

for (i=0; i<NUM; i++) {

SWPF(B[i + offset*2]);

SWPF(A[B[i + offset]]);

A[B[i]]++;

}



Prefetching questions

• Whilst reading the papers for next week, here are some questions you 
might like to think about to judge each approach
• How do the prefetchers make their predictions?
• Does this have a bearing on the access patterns that can be prefetched?

• What are the hardware requirements of the schemes?
• I.e. what structures are needed to implement it and how costly are they?

• Where does the data get prefetched to?
• Most of the time you’d like it brought into your own L1 cache

• What is the impact on other parts of the system (core, caches, etc)?


