
Copyright © Simon W. Moore, 2020

Computer Science & Technology
Copyright © Simon W. Moore, 2020

Advanced Topics in
Computer Architecture

Secure Processors I: CHERI

Prof. Simon W. Moore

Copyright © Simon W. Moore, 2020
2

Motivation

§CHERI: secure processor design by Cambridge + SRI International
§ Timely:

§ Big UK funding push to commercialise the technology:
Industry Strategy Challenge Fund: Digital Security by Design
§ £70m UK government funding + £116m from industry

§ Started 26th September 2019
§ ARM committed to making the Morello test chip and board platform

§ Based on substantial research
§ 120+ engineer/research years of effort
§ >$24m of DARPA funding

Copyright © Simon W. Moore, 2020
3

Motivation – The Eternal War in Memory*

§Many security vulnerabilities exploit memory safety violations

* Title based on Oakland 2013 paper: SoK: Eternal War in Memory, László Szekeres, Mathias Payer, Tao Wei, Dawn Song

Copyright © Simon W. Moore, 2020
4

source: http://xkcd.com
/1354/

Copyright © Simon W. Moore, 2020
5

source: http://xkcd.com
/1354/

Copyright © Simon W. Moore, 2020
6

source: http://xkcd.com
/1354/

Copyright © Simon W. Moore, 2020
7

Went wrong? How do we do better?

§Classical answer:
§ The programmer forgot to check the bounds of the data structure being read
§ Fix the vulnerability in hindsight – one line fix:

if (1+2+payload+16 > s->s3->rrec.length) return 0;

§Our answer:
§ Preserve bounds information during compilation
§ Use hardware (CHERI processor) to dynamically check bounds with little

overhead and guarantee pointer integrity & provenance

Copyright © Simon W. Moore, 2020

CHERI HARDWARE ARCHITECTURE

8

Copyright © Simon W. Moore, 2020
9

A new type – the Capability

§CHERI Capability = bounds checked pointer with integrity
§Held in memory and in (new or extended) registers

address

permissions compressed bounds (top, bottom) s

64-bits

v

hidden validity/integrity tag

128-bits

Copyright © Simon W. Moore, 2020

A new type – the Capability

10

address

permissions compressed bounds (top, bottom) sv

virtual memory

Copyright © Simon W. Moore, 2020

critical property for security

monotonic decrease in rights guaranteed
by formally verified hardware

11

New Instructions

§Memory access
§ Loads and stores via a bounds checked capability
§ Exception if address is out of range

§Guarded manipulation of capabilities
§ Decrease bounds
§ Decrease permissions
§ Adjust the address
§ Extract/test fields

Copyright © Simon W. Moore, 2020

Sealed Capabilities for Compartmentalization

§ Sealed capabilities are none dereferencable capabilities
§Have to be unsealed (e.g. inside a compartment) before use

12

address

permissions compressed bounds s

64-bits

v

object type (24-
bits)

128-bits

object type

more compressed bounds
sealed:
S=1

Copyright © Simon W. Moore, 2020

Calling a Compartment

13

executable
object-type

sealed capability

non-executable
object-type

sealed capability

address

perms bounds 0

address

perms bounds 0

Sealed code capability

Sealed data capability

PC capability

Default data capability=

CCall

Copyright © Simon W. Moore, 2020

SOFTWARE MODELS

14

Copyright © Simon W. Moore, 2020
15

Background to CHERI Software Models

§Machine-level capabilities and instructions provide the building blocks
on which new abstract capability software models can be built

§Analogy:
§ Machine-level translation lookaside buffer (TLB) and page table walker

enables the OS to represent virtual memory
§ Virtual memory can then be used in different ways to impose new security

features, e.g. guard pages

Copyright © Simon W. Moore, 2020

Low-level CHERI software models

§ Source and binary compatibility: C-language idioms,
multiple ABIs
§ Unmodified code: Existing code runs without modification
§ Hybrid code: E.g., used in return addresses, for annotated data/code

pointers, for specific types, stack pointers, etc.
… But “hybrid” is a spectrum: many different choices for manual and automatic
selection of integers vs. capabilities, API and ABI impacts

§ Pure-capability code: Ubiquitous data- and data-pointer protection. Not
interoperable with legacy code due to changed pointer size.

§ CHERI Clang/LLVM compiler prototype generates code for
all three

16

More compatible Safer

Unmodified
All pointers are
integers

Hybrid
Annotated and automatically

selected pointers are capabilities

Pure-capability
All pointers are capabilities

Copyright © Simon W. Moore, 2020
17

Pure Capability Code ® Needs CheriABI

§CheriABI
§ Compatibility layer to the OS
§ Allows capabilities to be used in place of pointers
§ A bit like a 32-bit compatibility layer for a 64-bit OS

§ Result – we can now recompile large corpuses of C code into a pure
capability form with virtually no code changes

§Award winning paper at ASPLOS 2019:
CheriABI: Enforcing Valid Pointer Provenance and Minimizing Pointer
Privilege in the POSIX C Run-time Environment

Copyright © Simon W. Moore, 2020
18

Capabilities for Bounds Checking and Integrity

§ Pure capability code – all pointers become capabilities
§Compiler + malloc() derive bounds for objects
§ Strong pointer provenance and integrity properties (validity tag)

Data

Heap Stack

MonotonicityIntegrity and
provenance Bounds

• Mitigates buffer overflow/overread vulnerabilities with no code change!

Copyright © Simon W. Moore, 2020
19

Capabilities for Control-Flow Robustness

§Capabilities used for return addresses
§ Integrity bit mitigates code reuse attacks:

§ ROP – Return Oriented Programming
§ JOP – Jump Oriented Programming

§Much better than current statistical technique
ASLR (Address Space Layout Randomisation)

String
buffer

Malicious
data

$pc

$ra

$a1

$ra

$a0

Register file
Virtual

memory

$pc
Return
Address

Program
counter

Copyright © Simon W. Moore, 2020

Summary of Capability Protections

20

Valid userspace pointer set – pointers not generated using derivation rules
are not part of the valid provenance tree and will not be dereferenceable
Pointer privilege reduction – capabilities allow pointers to carry specific
privileges, which can be minimized with OS, compiler, and linker support
Foundation for higher-level models such as software compartmentalization

Data

Heap Stack

Code

Control flow

Monotonicity PermissionsIntegrity and
provenance Bounds

Copyright © Simon W. Moore, 2020
21

Compartmentalisation

§Compartment can be described using a sealed pair of capabilities:
(program counter, default data capability)

§CCall providing the domain transition
§Allows a number of abstract software models:

§ Library compartmentalisation, e.g. of risky or legacy (non-cap.) code
§ Process-based compartmentalisation within an application can be replaced by

much more efficient capability-based protection
§ Same virtual address space (more efficient TLB usage)
§ Very similar software model (easy to port code)

Copyright © Simon W. Moore, 2020

Compartmentalisation Illustrated

22

Copyright © Simon W. Moore, 2020

RESULTS

23

Copyright © Simon W. Moore, 2020

First we made it work – Demo tablet platform

24

Copyright © Simon W. Moore, 2020

Red Team Evaluation by MIT Lincoln Labs

25

CHERI mitigates
Heartbleed

exploit!

Copyright © Simon W. Moore, 2020
26

Memory-protection performance

L1 cache miss rate for CHERI 256, CHERI-128, and MIPS

Collection of low
pointer-density
benchmarks from
MiBench

High pointer-density
benchmarks

(M) MiBench

(O) Olden

(J) Octane JavaScript

Copyright © Simon W. Moore, 2020
27

CheriABI: A full pure-capability OS userspace

§ Complete memory- and pointer-safe FreeBSD C/C++ userspace
§ System libraries: crt/csu, libc, zlib, libxml, libssl, …
§ System tools and daemons: echo, sh, ls, openssl, ssh, sshd, …
§ Applications: PostgreSQL, nginx; bringing up WebKit (C++)

§ Valid provenance, minimized privilege for pointers, implied VAs
§ Userspace capabilities originate in kernel-provided roots
§ Compiler, allocators, run-time linker, etc., refine bounds and perms

§ Trading off privilege minimization, monotonicity, API conformance
§ Typically in memory management – realloc(), mmap() + mprotect()

Copyright © Simon W. Moore, 2020
28

Evaluating memory-protection compatibility

§ Prototyping approach:
§ “pure-capability” C compiler (Clang/LLVM)

§ full OS (FreeBSD) that use capabilities for all explicit or
implied userspace pointers

§Observations:
§Little or no software modification (BSD base system +

utilities)

§ Small changes to source files for 34 of 824 programs, 28 of 130
libraries

§Overall: modified ~200 of ~20,000 user-space C files/header

Copyright © Simon W. Moore, 2020

CHERI vs. Process-based Compartmentalization
(Early IPC ping-pong microbenchmark results)

29

1

10

100

1000

10000

100000

1000000

10000000

1 10 100 1000 10000 100000 1000000

C
yc

le
s

on
 F

PG
A

Payload in bytes

Co-process vs. pipe(2) ping-ping
Memory-copy semantics with multi-byte payload

Co-process pipe(2)

Low
er is better

99% 99%

68%

42%

21%

89%
98%

Reduction in cycles for
round trip

The fine print: Cycles include IPC setup, amortised over
10,000 iterations of the IPC loop. Both processes use the
pure-capability ABI using 256-bit capabilities. 272-entry
TLB, 32K L1 I-Cache, 32K L1 D-Cache, 256K L2 Cache.

Copyright © Simon W. Moore, 2020

CURRENT RESEARCH DIRECTIONS

30

Copyright © Simon W. Moore, 2020
31

Generalising CHERI support for many ISAs
§ 64-bit MIPS for pragmatic reason: needed a 64-bit RISC ISA in late 2010
§ Generic CHERI support doesn’t mean that all implementations need to be

identical
§ E.g. portable virtual-memory semantics and UNIX process model despite

(quite) different MMUs across architectures

§ Architectural abstraction: Lift CHERI properties above ISA
§ Architectural localization: E.g., ISA choices, opcode approaches,

exceptions, page tables, … → architecture-specific specifications

§ CHERI-ARM: Morello spec released by ARM October 2020:
https://developer.arm.com/architectures/cpu-architecture/a-profile/morello

§ CHERI-RISC-V: ISA specification released by us (Cambridge) in CHERI
architecture reference manual V8:
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-publications.html

Copyright © Simon W. Moore, 2020
32

Portability implications for software

§CHERI Clang/LLVM
§ Modest pointer/capability abstraction improvements in front-end and IR
§ Adapt target back-ends to teach them about capability code generation
§ Optimize for architecture-specific code generation
§ Optimize for available microarchitectures

§CheriBSD (CHERI support in FreeBSD)
§ More clear machine-independent / machine-independent split
§ Shift to hybrid capability C in the kernel to improve machine independence
§ Various MD kernel updates: boot code, exceptions, PMAP, …
§ Clean up APIs, header separation, architecture abstraction
§ Various userspace updates: rtld, libcheri, CRT/CSU, …

Copyright © Simon W. Moore, 2020

https://www.cl.cam.ac.uk/
research/security/ctsrd/

33

Conclusions

§CHERI Provides the hardware with more semantic knowledge of
what the programmer intended
§ Toward the principle of intentionality

§ Efficient pointer integrity and bounds checking
§ Eliminates buffer overflow/over-read attacks (finally!)

§ Provide scalable, efficient compartmentalisation
§ Allows the principle of least privilege to be exploited to

mitigate known and unknown attacks
§ Large performance improvement over process-based compartmentalisation

§Working with industry to bring the technology to market
§ Thanks to sponsors: DARPA, ARM, Google, EPSRC, HEIF, Isaac Newton Trust, Thales

E-Security, HP Labs, Huawei
Simon.Moore@cl.cam.ac.uk
Computer Science & Technology

Copyright © Simon W. Moore, 2020
34

Further reading
§ Background: An Introduction to CHERI, Technical Report UCAM-CL-TR-941, Computer

Laboratory, September 2019.
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf

§ Efficient Tagged Memory, ICCD 2017
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201711-iccd2017-efficient-tags.pdf

§ CHERIvoke: Characterising Pointer Revocation using CHERI Capabilities for Temporal Memory Safety,
MICRO 2019
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201910micro-cheri-temporal-safety.pdf

§ CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization, SSP
2015
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201505-ssp2015-cheri-
compartment.pdf

§ Further optional reading:
§ CHERI Concentrate: Practical Compressed Capabilities, IEEE Transactions on Computers 2019

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2019tc-cheri-concentrate.pdf
§ Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Version 8),

Technical Report UCAM-CL-TR-927
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.html

§ CHERI publications list:
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-publications.html

