
R265: Advanced Topics in Computer Architecture

Seminar 7: HW accelerators and accelerators 
for machine learning

Robert Mullins



This lecture

• Computer architecture trends

• Hardware accelerators
• Design choices and trade-offs

• Hardware accelerators for machine learning

• Challenges 



Trends in Computer Architecture 

Early computers Gains from bit-level parallelism

Pipelining and superscalar issue + Instruction-level parallelism 

Multicore / GPUs 
+ Thread-level parallelism / data-level 
parallelism

Greater integration (large SoCs), 
heterogeneity and specialisation

+ Accelerator-level parallelism

Note: Memory hierarchy developments have also been significant. The 
memory hierarchy typically consumes a large fraction of the transistor 
budget.

Time



Power limited design

• Today we often need to look beyond general-purpose programmable 
processors to meet our design goals

• We trade flexibility for efficiency 

• Optimise for a narrower workload

• These “accelerators” can be 10-1000x better than a general-purpose 
solution in terms of power and performance



Specialisation

What does specialisation allow us to do? 

• Remove infrequently used parts of the processor

• Tune instruction set for common operations or replace with hardwired control 

• Exploit forms of parallelism abundant in the application(s) – we often see a 
specialised processing element and local memory reproduced many times.

• Can we also accelerate irregular programs?

• Instantiate specialised memories and tune their widths and sizes

• Provide specialised interconnect between components

• Optimise data-use patterns
• Memory hierarchies, tiling, exploit opportunities for multi-cast/broadcast



Specialisation

Data assumes a 45nm process @0.9V, source: “Computing’s energy problem (and 
what we can do about it)”, Mark Horowitz, ISSCC 2014



Apple A12 SoC

• 2019

• 40+ accelerators



Design-space continuum

Reproduced from “configurable 
processors for embedded 
computing”, Dutt and Choi, IEEE 
Computer, vol 36, issue 1, 2003, 
pp. 120-123



Configurable processors (Tensilica/Cadence)



Dynamically specialised execution resources 
(DYSER, IEEE Micro 2012)



Bespoke processors [ISCA 2017]



Quasi-Specific cores (QSCOREs) [Micro 2011]

• QS Cores (Quasi-specific cores) QSCOREs generated 
using C-to-HW compiler

Compiler builds HW 
datapath and control 
state machine based on  
data and control flow 
graphs

Use of configurable 
ALUs too

Memory operations 
access same data cache 
as GPP



Hardware accelerators for machine learning



Hardware accelerators for machine learning



Data reuse patterns

• Memory access is likely bottleneck – very large volumes of data 
• Weights, activations, (gradients if training)

• How can we avoid this?
• Make best use of local memory (reuse data values)

• Broadcast data values

• Careful data tiling to maximise benefits of multi-level memories

• Need to select a particular “dataflow”



Example dataflow: output stationary

• Broadcast filter weights

• Reuse activations

• Let’s explore dataflows in reading group



Hardware accelerators for machine learning

• IoT
• Interesting work to target very resource constrained devices

• Mobile
• Arm, Huawei, Samsung, Apple, …. all have NPU designs

• Edge
• Wave Computing (CGRA), NVIDIA

• Server (training)
• Google TPU (3 generations)
• Groq (ex-TPU team members), SambaNova - CGRAs?
• GraphCore (very large amount of on-chip SRAM)
• Cerebras - waferscale proposal (42,255mm^2, 400,000 cores!)
• NVIDIA

• PIM proposals, SRAM based, analog neural networks, neuromorphic designs....



Challenges

• Designing NPUs is difficult
• e.g. sparse vs. dense
• e.g. convolutional layers vs. fully-connected layers

• Workload is still evolving 
• Often need to compromise support for some types of network to reduce 

overheads:
• Not just CNNs! Many different network types now and network architectures
• But compromise will lead to lower utilisation of resources
• Can instantiate multiple accelerators focused at different workloads (will 

make design larger or reduce peak performance etc.)
• Computer architecture is always trade-off!



Challenges

• Hard to fix precision (i.e. bit width of weights, activations and 
gradients, if training)
• We can compose larger integer units from smaller ones 

• Data type (arithmetic) is flexible too, e.g. binary, shift weights, fixed 
point, floating point (and variations)

• Often very high target TOP/s, but highly power constrained, 
constrained by memory BW too! 

• Business issues
• May have to work with whatever the customer provides, i.e. HW vendor may 

not be able to retrain network (no access to original training dataset)



Challenges

• NPU architectures?
• How are PEs connected (i.e. local interconnect)
• How much local buffering or SRAM?
• Monolithic vs. tiled?

• Can we partition resources? How local is control?
• Do we place general-purpose compute close by or within the NPU?

• Heterogeneous HW? 
• i.e. separate HW for different bitwidths or datatypes or network types? Within a tile or 

completely separate NPUs?
• Or incorporate options within a single NPU? E.g. select from different bitwidths or datatypes? 

• Do we overprovision some types of resource by doing this?

• Support multi-network workloads? 
• Dynamic behaviours?



Machine 
learning 
accelerators:
peak perf. vs
peak power 

(Reuther et. al 2020)



Final points

• How do accelerators and GPPs communicate and share memory? Are 
they coherent?

• When we add accelerators to our system, how do we change the 
workload of our general-purpose cores?

• Specialisation isn’t immune to the concept of diminishing returns1

[1] “The Accelerator Wall: Limits of Chip Specialization”, HPCA 2019



Other



Final thoughts

• Can we run other applications on our NPU?
• Other highly-parallel kernels? Image processing applications?

• Could we approximate general-purpose programs using neural networks1

[1] “Neural acceleration for general-purpose approximate programs”, MICRO 2012


