R265: Advanced Topics in Computer Architecture

Seminar 7: HW accelerators and accelerators for machine learning

Robert Mullins

This lecture

- Computer architecture trends
- Hardware accelerators
 - Design choices and trade-offs
- Hardware accelerators for machine learning
- Challenges

Trends in Computer Architecture

Time	Early computers	Gains from bit-level parallelism
	Pipelining and superscalar issue	+ Instruction-level parallelism
	Multicore / GPUs	+ Thread-level parallelism / data-level parallelism
ł	Greater integration (large SoCs), heterogeneity and specialisation	+ Accelerator-level parallelism

Note: Memory hierarchy developments have also been significant. The memory hierarchy typically consumes a large fraction of the transistor budget.

Power limited design

- Today we often need to look beyond general-purpose programmable processors to meet our design goals
- We trade flexibility for efficiency
- Optimise for a narrower workload
- These "accelerators" can be 10-1000x better than a general-purpose solution in terms of power and performance

Specialisation

What does specialisation allow us to do?

- Remove infrequently used parts of the processor
- Tune instruction set for common operations or replace with hardwired control
- Exploit forms of parallelism abundant in the application(s) we often see a specialised processing element and local memory reproduced many times.
 - Can we also accelerate irregular programs?
- Instantiate specialised memories and tune their widths and sizes
- Provide specialised interconnect between components
- Optimise data-use patterns
 - Memory hierarchies, tiling, exploit opportunities for multi-cast/broadcast

Specialisation

Floating Point Arithmetic				
FAdd				
16 bit	0.4pJ			
32 bit	0.9pJ			
FMult				
16 bit	1pJ			
32 bit	4pJ			

Memory		
Cache	(64 bit)	
8KB	10pJ	
32KB	20pJ	
1MB	100pJ	
DRAM	1.3 - 2.6nJ	

Instruction Energy Breakdown (Total 70pJ)

Data assumes a 45nm process @0.9V, source: "Computing's energy problem (and what we can do about it)", Mark Horowitz, ISSCC 2014

Apple A12 SoC

- 2019
- 40+ accelerators

Design-space continuum

Figure 1. Embedded SoC design-space continuum trades the performance and power savings of dedicated hardware for the flexibility of software-based solutions. Reproduced from *"configurable processors for embedded computing"*, Dutt and Choi, IEEE Computer, vol 36, issue 1, 2003, pp. 120-123

Configurable processors (Tensilica/Cadence)

Dynamically specialised execution resources (DYSER, IEEE Micro 2012)

Bespoke processors [ISCA 2017]

Quasi-Specific cores (QSCOREs) [Micro 2011]

QSCOREs generated using C-to-HW compiler

Compiler builds HW datapath and control state machine based on data and control flow graphs

Use of configurable ALUs too

Memory operations access same data cache as GPP

Hardware accelerators for machine learning

Hardware accelerators for machine learning

Data reuse patterns

- Memory access is likely bottleneck very large volumes of data
 - Weights, activations, (gradients if training)
- How can we avoid this?
 - Make best use of local memory (reuse data values)
 - Broadcast data values
 - Careful data tiling to maximise benefits of multi-level memories
- Need to select a particular "dataflow"

Example dataflow: output stationary

- Broadcast filter weights
- Reuse activations
- Let's explore dataflows in reading group

Hardware accelerators for machine learning

• IoT

- Interesting work to target very resource constrained devices
- Mobile
 - Arm, Huawei, Samsung, Apple, all have NPU designs
- Edge
 - Wave Computing (CGRA), NVIDIA
- Server (training)
 - Google TPU (3 generations)
 - Groq (ex-TPU team members), SambaNova CGRAs?
 - GraphCore (very large amount of on-chip SRAM)
 - Cerebras waferscale proposal (42,255mm^2, 400,000 cores!)
 - NVIDIA
- PIM proposals, SRAM based, analog neural networks, neuromorphic designs....

Challenges

- Designing NPUs is difficult
 - e.g. sparse vs. dense
 - e.g. convolutional layers vs. fully-connected layers
- Workload is still evolving
 - Often need to compromise support for some types of network to reduce overheads:
 - Not just CNNs! Many different network types now and network architectures
 - But compromise will lead to lower utilisation of resources
 - Can instantiate multiple accelerators focused at different workloads (will make design larger or reduce peak performance etc.)
 - Computer architecture is always trade-off!

Challenges

- Hard to fix precision (i.e. bit width of weights, activations and gradients, if training)
 - We can compose larger integer units from smaller ones
- Data type (arithmetic) is flexible too, e.g. binary, shift weights, fixed point, floating point (and variations)
- Often very high target TOP/s, but highly power constrained, constrained by memory BW too!
- Business issues
 - May have to work with whatever the customer provides, i.e. HW vendor may not be able to retrain network (no access to original training dataset)

Challenges

- NPU architectures?
 - How are PEs connected (i.e. local interconnect)
 - How much local buffering or SRAM?
 - Monolithic vs. tiled?
 - Can we partition resources? How local is control?
 - Do we place general-purpose compute close by or within the NPU?
 - Heterogeneous HW?
 - i.e. separate HW for different bitwidths or datatypes or network types? Within a tile or completely separate NPUs?
 - Or incorporate options within a single NPU? E.g. select from different bitwidths or datatypes?
 - Do we overprovision some types of resource by doing this?
 - Support multi-network workloads?
 - Dynamic behaviours?

Machine learning accelerators: peak perf. vs peak power

(Reuther et. al 2020)

Final points

- How do accelerators and GPPs communicate and share memory? Are they coherent?
- When we add accelerators to our system, how do we change the workload of our general-purpose cores?
- Specialisation isn't immune to the concept of diminishing returns¹

[1] "The Accelerator Wall: Limits of Chip Specialization", HPCA 2019

Other

Final thoughts

- Can we run other applications on our NPU?
 - Other highly-parallel kernels? Image processing applications?
 - Could we approximate general-purpose programs using neural networks¹

[1] "Neural acceleration for general-purpose approximate programs", MICRO 2012