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Abstract
Modern mobile networks are facing unprecedented growth in
demand due to a new class of traffic from Internet of Things
(IoT) devices such as smart wearables and autonomous cars.
Future networks must schedule delay-tolerant software up-
dates, data backup, and other transfers from IoT devices while
maintaining strict service guarantees for conventional real-
time applications such as voice-calling and video. This prob-
lem is extremely challenging because conventional traffic is
highly dynamic across space and time, so its performance is
significantly impacted if all IoT traffic is scheduled immedi-
ately when it originates. In this paper, we present a reinforce-
ment learning (RL) based scheduler that can dynamically
adapt to traffic variation, and to various reward functions set
by network operators, to optimally schedule IoT traffic. Us-
ing 4 weeks of real network data from downtown Melbourne,
Australia spanning diverse traffic patterns, we demonstrate
that our RL scheduler can enable mobile networks to carry
14.7% more data with minimal impact on existing traffic,
and outperforms heuristic schedulers by more than 2×. Our
work is a valuable step towards designing autonomous, “self-
driving” networks that learn to manage themselves from past
data.

Introduction
Can learning algorithms help with optimally scheduling
traffic in future computer networks? A central problem in
computer networks, ranging from internet data centers to
wireless cellular deployments, is how to best deliver traf-
fic with widely different data demands, sensitivities to de-
lay, and scheduling priorities. While today’s networks are
typically used for real-time, delay sensitive traffic such as
video-streaming or web-browsing, the advent of Internet of
Things (IoT ) devices such as smart homes will require data-
intensive sensor updates that are more tolerant to delay.

In this paper, we focus on a specific, practically-motivated
scheduling problem. We focus on mobile networks, which
are increasingly required to deliver a new class of appli-
cations, driven by IoT , that we call High Volume Flexible
Time (HVFT) applications. This new class of HVFT traffic
includes:
• Software and data updates to mobile IoT devices, e.g., up-

dating maps for self-driving cars (Gerla et al. 2014) or
delivery drones (Sundqvist and others 2015).

To appear, AAAI 2018

09:00 11:00 13:00 15:00 17:00 19:00 21:00

Local time

0

10

20

30

40

50

C
on

ge
st

io
n
C

Melbourne Central Business District, Rolling Average = 1 min

Shopping center

Office building

Southern cross station

Melbourne central station

Figure 1: Time-variant congestion patterns in Melbourne.

• Large transfer of IoT sensor data to the cloud, such as en-
ergy usage measurements from a smart grid (Parikh, Kan-
abar, and Sidhu 2010).

• Pre-fetched ultra-high quality and bitrate video (McDon-
agh et al. 2011).

A common property of HVFT applications is that the mo-
bile network operator must serve a large volume of traffic
during the day but has significant flexibility in scheduling
this traffic, i.e., these applications can tolerate delays on the
order of a few hours up-to a day. The mobile network oper-
ator ideally would like to take advantage of this delay tol-
erance to schedule HVFT traffic during periods where the
network is being lightly used by other delay sensitive traffic.

Intuitively, this scheduling problem can be thought of as a
control problem where the control variable is the time when
HVFT data is transferred and its share of network capac-
ity and the reward function trades off the total HVFT traffic
volume delivered with throughput degradation to other delay
sensitive traffic. A simple solution, which has precedence in
the networking community, is to have static priority classes
per traffic type, i.e, real-time traffic has higher importance
than delay-tolerant IoT traffic. Such an approach would un-
necessarily penalize delay-tolerant traffic when networks are
underloaded, and would not evolve to accommodate new



IoT traffic subclasses which have a spectrum of delay sen-
sitivity. Ideally, network operators would like to simply de-
clare high-level control objectives and incentivize new traf-
fic classes to send at opportune times and rates to gracefully
coexist with conventional data streams.

For the above reasons, a learning-based approach to net-
work scheduling provides the promise of an adaptive mech-
anism for operators to interleave new traffic classes and
thereby increase network utilization. Any viable scheduler
for HVFT traffic must:

1. Gracefully interact with other application classes: A
good HVFT scheduler should yield to conventional ap-
plications like live video streaming or web browsing
that have delay requirements of less than a second. The
HVFT scheduler’s reward function penalizes per-minute
throughput degradation to existing users of other applica-
tion classes. One way to minimize throughput loss is to
schedule more HVFT traffic during off-peak hours.

2. Maximize scheduled HVFT traffic: The reward func-
tion for an HVFT scheduler is the amount of HVFT traf-
fic served across all cells during a day. To maximize re-
ward, a scheduler should utilize off-peak times and op-
portunistically schedule traffic during transient utilization
dips which often occur during peak hours.

3. Generalize across cells: A single metropolitan area con-
tains hundreds of cell sites. These cells have differences
in their capabilities e.g., cells with higher bandwidth have
a larger data-rate, and cells with higher transmit power
serve a much larger geographic area than smaller cells.
Moreover, each cell has a unique spatiotemporal load pat-
tern. Hand picking or fine-tuning parameters for each cell
and day is clearly infeasible.

A key challenge is that networks exhibit non-stationary
dynamics, ranging from short-term, minute-scale variation
to daily commute patterns. Further, our data shows how
sports events and even holidays can cause drastic distribu-
tional shifts in network patterns. Figure 1 exemplifies non-
stationary dynamics in Melbourne’s Central Business Dis-
trict, illustrating spikes in congestion at train stations during
commute hours and sustained utilization in offices. To effi-
ciently use network resources, controllers must exploit spare
capacity during transient drops in congestion, but also adapt
to longer trends.

RL for network management
A central challenge facing HVFT control is modeling net-
work dynamics. Since cellular operators deploy proprietary
low-level packet schedulers built by external vendors to
share network resources, modeling dynamics governed by
trade-secret schedulers is infeasible. Instead, we seek a con-
trol policy that optimizes rewards directly through interac-
tion without prior knowledge of system dynamics.

The demonstrated ability of reinforcement learning (RL)
and multi-task networks to learn control tasks ranging from
humanoid robot walking (Benbrahim and Franklin 1997),
data-center management (Mao et al. 2016), and ATARI

game-playing (Mnih et al. 2013) make RL an attractive so-
lution choice. RL is especially fitting since network opera-
tors simply want to declare high-level control objectives or
reward functions, and have networks learn to manage them-
selves from the large amount of data they have already col-
lected. Rather than hand-tune control policies for cells of
diverse loads, manual configurations, and capacities, an RL
controller can flexibly generalize to different cells.

Key challenges of an RL approach include non-
Markovian time-variant dynamics, abundance of training
data needed for convergence, and safe exploration in opera-
tional networks. A recent survey by RL researchers (Amodei
et al. 2016) cites robustness to model drift, safe-learning, and
generalization of RL algorithms as central problems to the
field. The similarity between HVFT control and challenges
of RL make our case study for data-driven control especially
interesting.

Our Contributions
The principal contributions of our work are:

1. Identify inefficiencies in operational networks: We use
weeks of real network data to identify significant oppor-
tunities for improving network utilization due to transient
drops in congestion (Figure 1). To our knowledge, we are
the first to formulate the IoT traffic scheduling problem
using a learning algorithm that makes control decisions
from real-time cell network measurements.

2. Network Modeling: Our analysis shows network dy-
namics are time-variant and non-Markovian. We incorpo-
rate past measurements and historical commute patterns
into our state representation to re-cast the problem as a
Markov Decision Process (MDP) to leverage RL meth-
ods. Experiments on live networks validate our dynamics
model.

3. Adaptive RL controllers: We devise general reward
functions that allow network operators to maximize
HVFT traffic with minimal degradation to conventional
data streams, and allow operators to apply custom prior-
ities for each traffic class that may vary across cells and
time. Our trained RL policies are able to significantly in-
crease network utilization (Figure 3), a potential source of
substantial financial gain for operators.

4. Data-driven simulator: We build a realistic network sim-
ulator needed to train an RL agent, which allows us to val-
idate controllers before real deployment and avoid unsafe
exploration in functional networks.

Related work
Our work heavily applies recent developments in deep RL
(Mnih et al. 2013; Silver et al. 2014), which draw inspira-
tion from several other approximate RL methods (Konidaris,
Osentoski, and Thomas 2011; Kakade and Langford 2002).
Three types of classical RL methods are commonly used
to determine control policies that map states to actions: Q-
learning (Szepesvári 2010), policy gradient (Sutton et al.
1999), and actor-critic methods (Konda and Tsitsiklis 1999).
These methods typically assume a discrete action space



which, in particular, simplifies the search for control actions.
However, in HVFT control, it is more natural to consider a
continuous traffic rate as the control decision. For this case,
recently developed deterministic policy gradient methods al-
low one to directly learn and enact a deterministic instead of
a stochastic policy (Silver et al. 2014). We use the Deep De-
terministic Policy Gradient (DDPG) algorithm (Lillicrap et
al. 2015) to train deep neural networks for actor and critic
network estimation using experience replay (Lin 1992).

Prior studies have used RL or inverse RL for resource al-
location in other systems, such as electricity grid manage-
ment (Reddy and Veloso 2011), traffic signal control (Chu,
Qu, and Wang 2016), stock market bidding (Nevmyvaka,
Feng, and Kearns 2006), and task scheduling for cyberphys-
ical systems like robots (Glaubius et al. 2012; Gombolay et
al. 2016).

RL has also been applied to wireless networks, but mostly
classical problems such as power control (Vengerov, Bam-
bos, and Berenji 2005) or call admission control and rout-
ing (Bhorkar et al. 2012; Marbach, Mihatsch, and Tsitsiklis
1998). A recent application of RL to job scheduling in in-
ternet data centers is deepRM (Mao et al. 2016). The fun-
damental difference is that deepRM assumes jobs arrive in
an i.i.d.-manner to data centers, while we use weeks of real
network traces to model more stochastic, time-variant dy-
namics inherent to wireless networks.

Network Data
Network traces were collected in cooperation with a major
operator, spanning 4 weeks of data from 10 diverse cells
in Melbourne, Australia. Anonymized user data is used to
calculate user and cell level performance metrics. Network
metrics are calculated as aggregates over a control interval
∆t = 1 minute. The start of timeslot t is the control deci-
sion point for our scheduler. Though raw performance logs
contain over 200 variables, key features are:

• Average User Throughput (B): This is the mean
datarate observed by users in the cell in slot t. Many
applications have a minimum throughput requirement to
deliver an acceptable user experience. We use Average
User Throughput as a measure of cell performance. The
HVFT scheduler should not deteriorate cell performance
below a given throughput limit L. Cell throughput is in-
fluenced most by cell load and quality.

• Cell Congestion (C): Every cell has a maximum band-
width that is divided amongst users. As the number of
users rises, the bandwidth share of each user and hence
the user throughput decreases. The effective number of
users in the cell, denoted by C, is a measure of cell load.

• Average Cell Efficiency (E): The average cell quality
takes into account a number of factors that affect user
throughput like the total cell bandwidth, type of cellu-
lar technology deployed, distance of users from the cell
tower, and possible obstructions such as buildings and
trees that decrease wireless link strength.

• Number of connections (N ): Nt represents the total
number of connections at time t. Note that many of the

connected devices may not be actively downloading data
and hence may not contribute significantly to cell load.

• Traffic volume (V ): The control action that the
HVFT scheduler takes at each time t is the traffic rate at
for IoT data, i.e., the fraction of the time-slot in which
IoT data will be scheduled. Every time the HVFT con-
troller is active it schedules traffic to M IoT devices. For
simplicity, we assume a constant action multiplierM . Dy-
namically optimizing multiplier M is a second level of
optimization that may further improve performance. The
volume of IoT data transacted in time t is, hence, simply
atBtM∆t. Also, the total data downloaded by all users
in the cell at time t is denoted by Vt. We will look at the
fraction of IoT data scheduled, i.e.,

∑
atBtM∆t∑

Vt
over a day

as a key performance metric of the HVFT scheduler.

The following table summarizes our terminology.

Variable Description
Bt Throughput (Kilobits/sec)
Ct Congestion (Unitless)
Nt Num. Users (Unitless)
Et Spectral Efficiency (bits/sec)
Vt Traffic Volume (Kilobits)
at ∈ [0, 1] IoT traffic rate (Control Action)
L Throughput limit (Kilobits/sec)
M Action multiplier (Unitless)

The scheduling algorithm (RL agent) will reside at the
cell tower, where it can use a centralized view of conges-
tion C, number of users N , and other relevant cell metrics
to make informed control decisions. Practically, such an ar-
chitecture will allow the controller to leverage established
methods used today to distinguish conventional and IoT traf-
fic by monitoring HTTP request headers for source IP ad-
dresses and checking TCP packets to see if they are from
IoT sensors or conventional devices such as cell-phones.
Further, the controller can be robust to applications which
might want to misrepresent whether they are conventional
or IoT traffic, since applications cannot lie on the TCP level
as the destination has to be true otherwise the packet will not
reach the desired endpoint.

Data-driven Network Model
We now formalize the HVFT-RL problem. RL formulates
stochastic uncertainty within the framework of Markov deci-
sion processes (MDP) (Bellman 1957), and learns a control
policy based on past observations of transition data (Sutton
and Barto 1998). An MDP is a controlled stochastic process
defined by state space S, action space A, transition proba-
bility function P : S × A × S → [0, 1] and reward func-
tion R : S × A × S → R. We now represent HVFT-RL as
a discrete-time, continuous state and action space MDP, by
defining state s ∈ S , action a ∈ A, transition dynamics P,
and the reward function R.

Network state and action
We consider a single cell for daily HVFT control with a
planning horizon of T minutes for variable working hours.



Each time step lasts a duration ∆t = 1 minute. The hori-
zon T is a single day to allow for episodic learning in RL
and was chosen since IoT traffic (such as software updates
to drones) typically has a slack of several hours, not days, to
be sent. Thus, a finite horizon is natural to ‘reset’ the system
and not allow IoT jobs to be scheduled too far in the future.

At each time t, the current network state is measured as
St = [Ct, Nt, Et], where C is the congestion metric, N is
the number of sessions, and E is the cell efficiency. To al-
low the RL agent to leverage useful temporal features and
stochastic forecasts, we represent the full network state as

st = [St, φ(S0, . . . , St, t, T )], (1)

where St is the current state, and φ is a temporal fea-
ture mapping function for extracting relevant information
from past measurements, the current time index, and con-
trol horizon T . To simplify notation, we define φt :=
φ(S0, . . . , St, t, T ) as the extracted temporal features.

To provide the RL agent information about the time
it has left to schedule traffic, we add current time in-
dex t to φ and add a fractional “horizon left” signal
H = T−t

T to accommodate different problem horizons.
Temporal feature extractor φt is extremely general and
can be optimized independently of the RL agent to in-
corporate stochastic timeseries forecasts from a variety
of methods such as feed-forward neural networks, Long
Short Term Memory (LSTM) networks (Hochreiter and
Schmidhuber 1997), or traditional forecasters such as Au-
togressive Integrated Moving Average (ARIMA) techniques
(Hyndman and Athanasopoulos 2014). Henceforth, φt =

[St−m, . . . , St, Ŝt+1, . . . , Ŝt+k, t,H] indicates a feature ex-
tractor that uses a lookback of m past states, stochastic fore-
casts of k future states, current time t, and the horizon left.
In our evaluation, we analyze several forms of extractor φ.

Our general framework allows for end-to-end learning
with task-oriented features if we directly add historical net-
work state to the current network state. Then, the RL agent’s
neural network can automatically learn key features for im-
plicit forecasting in order to maximize its reward. However,
separately optimizing forecasts in φt offers several practical
benefits. Network operators can preserve privacy of users
and simply provide anonymized cell forecasts to an exter-
nal company building the controller. Then, an RL agent can
ingest these forecasts and optimize for the control objective
without ever accessing private data. Further, a separate fore-
caster is more general since it can be reused for other con-
trol applications that rely on future network state other than
IoT scheduling.

Each control at ∈ [0, 1] is a rate at which HVFT traf-
fic can be served on top of conventional traffic, representing
the fraction of control interval ∆T occupied by HVFT . An
action at = 0 indicates no HVFT traffic is served, which al-
lows the RL agent to yield to conventional traffic scheduling
during congestion.

Time-variant transition dynamics
In an MDP, system dynamics f are Markovian, i.e., st+1 =
f(st, at, εt) where εt is uncontrollable noise. We now for-
malize f for each component of current, controlled network

state St = [Ct, Nt, Et], which includes the effect of IoT traf-
fic. A controller must anticipate that HVFT traffic added in
time t with rate at is superimposed on top of natural time-
variant congestion trends from conventional traffic. To sep-
arate dynamics of conventional from IoT traffic, we denote
S̃t = [C̃t, Ñt, Ẽt] to be the uncontrolled, natural state of the
network at t, which we can forecast from historical time-
series. A standard technique, used in ARIMA forecasting, is
to stationarize time-variant dynamics by computing the dif-
ference between successive samples ∆S̃t = S̃t+1 − S̃t.

Congestion dynamics are piecewise: if IoT traffic is intro-
duced, it compounds to the controlled state and is affected
by trends in commute dynamics (term 1, at > 0):

Ct+1 =


Ct +Mat︸ ︷︷ ︸
controlled state

+ ∆C̃t︸︷︷︸
historical commute

+εt if at > 0

C̃t + ∆C̃t︸ ︷︷ ︸
C̃t+1

+εt if at = 0


(2)

where εt is zero-mean Gaussian noise with a standard devi-
ation appropriate for congestion patterns.

Yet, in order to allow dynamics to follow realistic com-
mute patterns observed in data, we cannot have the con-
trolled state compound indefinitely. Thus, if no IoT traffic is
added (term 2, at = 0), congestion dynamics yield to natural
patterns allowing the agent to let the network settle back to
historical congestion levels for time t. If we replace Ct and
C̃t with N for number of sessions, we recover the dynam-
ics for Nt. Cell efficiency Et is uncontrolled, depending on
whether mobile IoT devices move to lower channel quality
locations, and hence we simply track measured state for Et,
which completes the dynamics for all components of St. We
observed such piecewise dynamics for controlled variables
(Eq. 2) in live network experiments where we introduced
short file downloads to operational networks and such con-
trolled traffic increased congestion for the subsequent inter-
val, but the network settled to conventional traffic patterns
after download completion (as shown in Figure 2).
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Figure 2: Congestion during our live network experiments.



Network reward function
Our control objective depends heavily on mapping state st
to throughput Bt in order to quantify IoT traffic delivered.
As the agent schedules HVFT traffic, congestion on the cell
rises in subsequent states s′t, leading IoT traffic to com-
pete with conventional applications for fixed cell capacity,
thereby decreasing the throughput share for all traffic. We
use random forest (RF) regression to map state st to Bt us-
ing K fold cross-validation by holding out one test day and
training on K − 1 days to account for correlated through-
put between successive timepoints. In the Melbourne net-
work, our random forest regression model quite accurately
fits real-world data, achieving 11.4% median error and 890
Kbps RMSE. We denote predicted throughput from the ran-
dom forest model by B̂t.
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Figure 3: HVFT-RL can flexibly tradeoff IoT and regular
traffic for significant gains. Outliers (diamonds) are under-
loaded days, such as train station weekends.

During each transition, a reward signal R is assigned to
evaluate the control performance based on a weighted sum
of IoT traffic served (V IoT

t ), byte loss to conventional ap-
plications due to introduction of IoT traffic (V loss

t ), and the
amount of bytes served below a system-wide desired mini-
mum throughput of L Kbps (V below limit

t ):

R(st, at) = αV IoT
t − βV loss

t − κV below limit
t . (3)

Operators can select a suite of control objectives by tuning
α, β, κ to tradeoff relative importance between IoT traffic
and conventional applications.

HVFT traffic volume depends on predicted throughput
B̂′t, from the random forest model, after introduction of
IoT content with control at to M IoT devices:

V IoT
t = B̂′tMat∆t.

Traffic loss to a representative user sending at rate ãt com-
pares bytes served to that user at throughput B̂t without
IoT and at lower throughput B̂′t after IoT traffic:

V loss
t = B̂tãt∆t︸ ︷︷ ︸

without IoT

− B̂′tãt∆t︸ ︷︷ ︸
with IoT

.

Critically, the reward function in the above two equa-
tions uses predicted throughput B̂t since it needs to evaluate
throughput loss to existing users if no IoT traffic was sched-
uled, but in practice can only observe one cell throughput
which is the joint realization of both IoT and conventional
traffic. The random forest prediction model is necessary to
evaluate the throughput impact B̂′t of several possible con-
trol actions to compare to natural network throughput when
there is no IoT .

The final term penalizes bytes served only if post
IoT throughput dips below limit L and the agent added
IoT traffic, since natural variation in throughput during peak-
congested hours could fall below L despite judicious con-
trols:

V below limit
t = (L− B̂′t)+at∆t.

The reward is a complex function since predicted through-
puts B̂t depend on a random forest model, rendering closed-
form analytical solutions infeasible. We use RL to find a
stationary control policy µ : S → A that maximizes cu-
mulative discounted reward across a full day. We restrict
our search to stationary policies for tractability of RL train-
ing, which is justified since the state encodes temporal fea-
tures φt to capture time-variant trends. Our evaluation shows
that stationary policies with accurate forecasts in φt perform
quite well relative to an upper bound, non-stationary policy.

Evaluation
We now evaluate HVFT-RL on three major criteria:

1. robust performance on diverse cell-day pairs;
2. reward gap relative to an upper bound, “oracle” scheme

which has access to perfect congestion forecasts; and
3. ability to use a variety of temporal features and stochastic

forecasts to enhance scheduling quality.
Before describing HVFT-RL’s performance on several

cells, we first provide implementation details. We im-
plement a variant of the DDPG RL algorithm with
Google’s TensorFlow (Abadi et al. 2016) and build
a novel network simulator using openAI’s gym envi-
ronment (Brockman et al. 2016). The simulator code
is publicly available at https://bitbucket.org/
sandeep_chinchali/aaai18_deeprlcell. After
an extensive literature search, we concluded comparable net-
work simulators do not already exist, since the IoT prob-
lem is new and we worked with network operators over
months to collect the novel dataset. Existing simulators are
unsuitable since they focus on wireless channel models at
extremely fast timescales and not city-level congestion pat-
terns relevant to the problem addressed in this paper.

The simulator initializes an episode at the start of a day
for a single cell, updates the dynamics according to Equa-
tion 2 based on the RL agent’s selected IoT data rate at, and
provides the agent a reward Rt. At the end of the day, our
simulator resets to a new cell-day pair for a new training
episode.

We use standard parameters for DDPG. The neural net-
works have two hidden layers of sizes 400 and 300. The ac-
tor and critic networks have learning rates 0.0001 and 0.001,



and L2−norm regularization weights 0 and 0.001, respec-
tively. The architecture of networks was tuned using valida-
tion days and control performance did not improve past two
hidden layers. The discount factor is 0.99 and the minibatch
size is 32.

The experiments are conducted on 27 Melbourne cell-day
pairs (19 train, 8 test days). For each cell, we fit a separate
RF throughput model unknown to the agent and train DDPG
using a reward function where throughput limit L is set ap-
proximately as the median of B in training data. Each train-
ing episode is a simulation of a certain cell-day pair, and we
observe stable convergence within 200 episodes in all cases.

The TensorFlow RL agent only has access to state st and
reward Rt, and is unaware of the simulator dynamics, his-
torical commute patterns S̃t, throughput predictions B̂t or
desired throughput limit L. Nevertheless, we see extremely
stable convergence across cells of differing capacities, for
several realistic scheduling policies that balance the impor-
tance of HVFT and conventional traffic.

HVFT-RL generalizes to several cell-day pairs
Figure 3 illustrates HVFT-RL creates significant traffic vol-
ume gains compared to normal network patterns. Each point
in the boxplot represents performance for a certain cell-
day pair for an aggressive, IoT traffic favoring policy (α =
2, β = 1, κ = 1) or conservative policy equally weighing
IoT traffic and throughput cost terms (α = 1, β = 1, κ = 1).

Figure 3 indicates HVFT-RL flexibly responds to the op-
erator policy of favoring IoT traffic by creating statistically
larger volume gains (VIoT /V0) for α = 2 compared to
α = 1, where V0 is normal traffic carried during a day. The
Wilcoxon paired signed rank-test p value shows the distribu-
tion of α = 1 and α = 2 gains per cell-day pair are indeed
different at the .05 significance level (p < .002) (Wilcoxon
1945).

The median gain across all days for the α = 2 policy
was 14.7 %, which is extremely significant for operators.
Since the cells in our work use 10 MHz of radio spectrum,
costing roughly $4.5B (Reardon 2015), a utilization gain of
14.7% means the operator is saved about $661 million that
it would have otherwise spent on acquiring new spectrum to
support the additional traffic. Interestingly, the largest outlier
in Figure 3 represents a Melbourne railway cell Saturday,
which faces 66% less congestion compared to 8 weekdays
in our data. Thus, RL correctly learns to heavily schedule
IoT traffic during uncongested times.

Figure 3 illustrates the utilization gain VIoT /V0 is
marginally higher on the testing set than on the training set.
In accordance with established practices, we randomly se-
lected the test-train split and ensured they both have under-
loaded weekend days and are representative. However, the
test set had a slightly different fraction of uncongested time-
points, leading to higher gain, which was unavoidable since
we had a finite dataset. As we collect more data, this gap
should decrease.

Upper bound on performance
Having illustrated the performance of HVFT -RL on several
cell-day pairs, we now investigate its reward relative to an

“oracle” scheme with perfect, full-day congestion forecasts
using offline dynamic programming (DP). The reward ob-
tained by offline optimal DP serves as an upper bound, since
it has complete knowledge of the exact MDP dynamics,
congestion traces, reward function and throughput model.
However, such a scheme is naturally unrealizable due to in-
evitable uncertainty in congestion forecasts.

A principal challenge in computing an upper bound is that
our problem has both continuous state and action spaces.
Further, the reward function employs a nonlinear random
forest throughput model and dynamics are affected by time-
variant commute patterns learned from data. Hence, analyt-
ical solutions for the upper bound are infeasible.

Instead, we closely approximate the solution to our con-
tinuous state and action space MDP by uniformly discretiz-
ing both spaces until the reward changes negligibly. We de-
note the discretized state space by S̄ and action space by
Ā. After discretization, we compute a Q function Qt(s, a),
which represents the future expected reward for a controller
that takes action a in state s at time t, and acts optimally
thereafter until the end of the horizon T . Given a full day’s
trace of T steps, we start from the end of the day at t = T
and iteratively solve for prior Q functions Qt−1(s, a) from
Qt(s, a) using Bellman’s equations (Bellman 1957). Then,
executing an optimal policy amounts to measuring state st
at time t and taking the optimal action given by at =
arg maxa∈ĀQt(st, a). Since the state and action spaces are
finite, we can compute a set of Q tables for all timesteps of
size T × |S̄| × |Ā|.

The complexity of computing all Q tables scales with dis-
cretization granularity as well as horizon length T . To find
a suitably granular state and action space discretization be-
yond which the discretized MDP reward does not change
beyond a predefined tolerance (chosen at 0.5% for our prob-
lem), we measured the reward for increasingly fine, uni-
form discretizations on a representative validation day. Fig-
ure 5(a) shows the optimal cumulative reward, which is nor-
malized to 1.0 for the most dense state and action discretiza-
tions of |S̄| = 240 and |Ā| = 60. The cumulative reward is
larger for coarse discretizations since high continuous con-
gestion values are often binned to lower discrete congestion
boundaries where the RL agent is given a high reward for
the lower congestion discrete bin. As the state discretization
gets finer, the difference between the true continuous con-
gestion and discretized bin is minimal so we correctly see a
lower reward accounting for the true congestion state. Even
for coarse discretizations like |S̄| < 50, Figure 5(a) shows
that increasing action granularity correctly leads to higher
reward since the RL agent has finer control to maximize per-
formance. Notably, for |S̄| = 240, increasing from |Ā| = 40
to |Ā| = 60 only changes the reward by 0.226%, showing
the reward does not change beyond our predefined tolerance
of 0.5%.

Since our numerical experiments took several hours on
a modern multicore server, we used a uniform state space
discretization of |S̄| = 240 and |Ā| = 40, which provides a
close approximation to the continuous MDP solution.
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Figure 4: HVFT -RL smooths throughput variation and exploits transient dips in utilization in a Melbourne Cell.
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Figure 5: (Left, (a)) Optimal reward saturates for increasingly fine discretizations of our continuous MDP. (Right, (b)) HVFT -
RL outperforms stochastic Model Predictive Control (MPC) and a heuristic relative to an upper bound oracle solution.

LSTM congestion forecasts
Since implementable controllers cannot be clairvoyant like
the oracle solution, we build stochastic forecasts of conges-
tion using Long Short Term Memory (LSTM) neural net-
works (Hochreiter and Schmidhuber 1997). LSTMs are a
natural choice for our problem since their long term mem-
ory is well suited to time series forecasting with replicable
commute patterns.

We trained several LSTM models to use the past m = 9
samples of congestion patterns and current minute t to pre-
dict a vector of the next k = 2, 5, 7 congestion values, Ĉk.
We also trained LSTMs to predict the changes in commute
patterns ∆Ck, which are relevant to the time-variant conges-
tion dynamics in Equation 2, to allow controllers to antici-
pate uncontrolled, exogeneous variation in congestion.

Using grid search to tune hyperparameters by measur-
ing performance on a validation set, we experimented with
the lookback m (number of past samples), neural network
dropout to reduce overfitting, and various stacked LSTM ar-
chitectures. Empirically, we observed that predicting more
than a vector of 7 future congestion levels led to unaccept-
ably high errors. Our final LSTM model for k = 7 conges-
tion predictions had 14.8% median percentage error, RMSE
of 0.951 for C, no dropout, and had a stacked two-layer ar-

chitecture with 50 units per layer.

Comparing RL with Benchmark Controllers
We now couple LSTMs with two benchmark control
schemes. After a thorough literature search, we concluded
that there are no existing benchmarks for comparable prob-
lems and data, since we collected the data ourselves and
posed a new control problem. Hence, we turn to stochas-
tic Model Predictive Control (MPC) since it is a natural
competitor to RL and has been deployed with widespread
success in domains ranging from industrial process control
(Camacho and Alba 2013) to cellular networking (Yin et al.
2015). Unlike some simpler forms of MPC that do not ex-
ploit probabilistic forecasts, our stochastic MPC approach
uses an LSTM forecast of the next k congestion levels Ĉ
to compute a sequence of Q-tables using DP. To ensure a
fair comparison with RL, we used the same LSTM model
as the RL agent with the same horizon k = 7. MPC imple-
ments only the first optimal action given by DP, measures
the subsequent next state, and re-computes a new controller
using an updated LSTM forecast in a receding horizon man-
ner. Unlike fast evaluation of an RL agent’s neural network
policy, MPC is extremely computationally expensive for our
task since we must compute k× |S̄| × |Ā| finely discretized



Q-tables at each timestep t.
A simple heuristic policy consists of a scheduler that uses

LSTM congestion forecasts and the throughput model to
predict future throughputs B̂k and choose an action propor-
tional to the “headroom” (B̂k − L)+ or an action of zero if
natural throughput variation is already predicted to be below
the desired minimum limit of L. Though simple, discussions
with network operators indicate such approaches are com-
mon techniques used in the field.

Rich temporal information enhances scheduling

In this section, we combine offline DP, LSTM forecasts,
and our benchmark controllers to investigate how the qual-
ity of temporal information affects performance. Figure 5(b)
shows how various schemes perform on a representative
testing day relative to the offline DP solution. RL schemes
(in blue) use temporal feature extractors φ ranging from
extremely simple such as the past m states to more com-
plex schemes involving the past m states augmented with an
LSTM forecast of k future congestion values or commute
deltas. In the plot label, the variable Cm indicates the pastm
states, and ∆Ck or Ĉk indicate LSTM future forecasts for k
steps. In addition, we include temporal information such as
the current time t and the normalized horizon left H ∈ [0, 1]
for all RL agents.

Figure 5(b) shows the performance of the RL agent (in
blue) relative to an oracle solution steadily increases as
LSTM forecasts are included into the overall state vector,
reaching just below 80% of the upper bound for feature set
C1∆C7. This promising result suggests that, in practice, net-
work operators should choose a feature set using one past
state and a high-quality longer LSTM forecast of 7 steps
for best performance. Notably, Figure 5(b) indicates perfor-
mance marginally drops if we incorporate more past states
likeC3∆C7, since the RL agent has too large a state space to
efficiently learn. We experimented with a wide array of past
states m and horizons k, but those shown are most represen-
tative. In particular, configurations with more past states like
m = 5 or shorter LSTM horizons k = 2, 5 performed worse
than the pictured results and could not be displayed due to
space limits.

The heuristic benchmark (green) performs extremely
poorly since it does not directly optimize the complete
reward function and simply schedules proportionally to
throughput limit L. To ensure a fair comparison, stochastic
MPC (green) uses the same LSTM model as the RL agent for
forecasts of congestion C and performs fairly well at about
62% of the optimal solution. We believe the RL agent out-
performs MPC since MPC is extremely sensitive to through-
put forecasts, while RL can implicitly weight uncertainty
in forecasts with past state measurements in its neural net-
work control policy based on iteratively optimizing the re-
ward function in its training procedure. Overall, our results
show HVFT -RL can exploit rich temporal information from
LSTM forecasts to perform quite well in the context of an
offline DP oracle and realistic benchmarks.

HVFT -RL learns interpretable control policies
We now visualize HVFT -RL’s control policies on a me-
dian load Melbourne cell. We do not compare with the MPC
benchmark for this long day, since we wish to visualize the
continuous solution and it was too computationally expen-
sive to compute a finely discretized MPC policy. Figure 4(a)
illustrates HVFT -RL schedules 2.06× as much IoT traf-
fic than the heuristic, only backing off with at = 0 dur-
ing peak lunch congestion hours. As a result, Figure 4(b)
shows DDPG correctly smooths throughput variation com-
pared to original levels in order to effectively use excess cell
resources, especially before noon. We see DDPG is more ag-
gressive than the heuristic, exploiting natural drops in con-
gestion throughout the day (Figure 4(c)), illustrating why it
will do significantly better than simple schemes operators
might want to deploy such as only scheduling IoT traffic dur-
ing off-peak hours. Further, it sometimes causes throughput
to drop below limit L, because its reward function tolerates
throughput degradation to maximize IoT traffic due to sim-
ilar weights α, β, κ. It is infeasible to always strictly keep
throughput above L since even natural variation breaks this
threshold, seen especially during peak hours.

The principal benefits of RL above the heuristic are that
RL can implicitly capture temporal patterns to better fore-
cast transient utilization dips. Unlike the heuristic’s propor-
tional scheme, RL dynamically optimizes the relative impor-
tance of IoT traffic to directly maximize reward.

Conclusion
In this paper, we analyze weeks of historical network data
across heterogeneous cells to model time-variant dynam-
ics and build a faithful network simulator. We then show
that RL controllers allow operators to simply express high-
level reward functions and automatically generate adap-
tive controllers that create significant gains. Such an adap-
tive approach is necessary since modern networks are con-
stantly evolving due to shifts in city-scale commute patterns
from urban population growth, coupled with new IoT datas-
treams. Such trends will in turn lead to operators deploy-
ing more cells with expensive spectrum, making our RL ap-
proach especially appealing to generalize to new cells.

Future work centers around deploying an RL agent in an
operational network to validate gains. We also plan to differ-
entiate global from cell-specific features learned by our deep
neural networks.
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