Quantum Computing: Exercise Sheet 1

Steven Herbert and Anuj Dawar

1. Which of the following are possible states of a qubit?
(a) $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$
(b) $\frac{\sqrt{3}}{2}|1\rangle-\frac{1}{2}|0\rangle$
(c) $0.7|0\rangle+0.3|1\rangle$
(d) $0.8|0\rangle+0.6|1\rangle$
(e) $\cos \theta|0\rangle+i \sin \theta|1\rangle$
(f) $\cos ^{2} \theta|0\rangle-\sin ^{2} \theta|1\rangle$
(g) $\left(\frac{1}{2}+\frac{i}{2}\right)|0\rangle+\left(\frac{1}{2}-\frac{i}{2}\right)|1\rangle$

For each valid state among the above, give the probabilities of observing $|0\rangle$ and $|1\rangle$ when the system is measured in the standard computational basis.
What are the probabilities of the two outcomes when the state is measured in the basis $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle), \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) ?$
2. A two-qubit system is in the following state

$$
\frac{1}{\sqrt{30}}(|00\rangle+2 i|01\rangle-3|10\rangle-4 i|11\rangle)
$$

The first qubit is measured and observed to be 1 . What is the state of the system after the measurement? What is the probability that a subsequent measurement of the second qubit will observe a 1 ?
3. Find the eigenvalues and associated eigenvectors of $\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ and $\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]$.
4. Uniqueness of dimension: Suppose that $\left|v_{1}\right\rangle, \ldots,\left|v_{n}\right\rangle$ is a basis for V. Let $\left|u_{1}\right\rangle, \ldots,\left|u_{n+1}\right\rangle$ be any collection of $n+1$ vectors. Show that they cannot all be linearly independent, i.e. one of them must be expressible as a linear combination of the others.
5. Express each of the two linear operators $\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ and $\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]$ as a linear combination of outer products of computational basis vectors.
6. Show that the Hadamard matrix and the three Pauli matrices are unitary.
7. If I is the 2-dimensional identity matrix and H is the Hadamard operator, give matrix representations of the operators $I \otimes H$ and $H \otimes I$.
8. Let $|\psi\rangle=\alpha 0+\beta|1\rangle$, if $|\psi\rangle$ is measured using measurement operators $M_{0}=|0\rangle\langle 0|$ and $M_{1}=|1\rangle\langle 1|$ verify that $p\left(M_{0}\right)=|\alpha|^{2}$ and $p\left(M_{1}\right)=|\beta|^{2}$.
9. Show that unitary operations are norm preserving. That is, if U is unitary, then the norm of $U|\psi\rangle$ equals the norm of $|\psi\rangle$, for all $|\psi\rangle$.
10. For the Pauli matrices X, Y and Z, show that $X Y=i Z$.
11. Suppose a two-qubit system is in the state $0.8|00\rangle+0.6|11\rangle$. A Pauli X gate (i.e. a NOT gate) is applied to the second qubit and a measurement performed (on each qubit) in the computational basis. What are the probabilities of the possible measurement outcomes?
12. Show that the entangled state $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ cannot be expressed as a tensor product of two single qubit states.
Hint: start with a general expression of a tensor product of two single qubit states, $(\alpha|0\rangle+$ $\beta|1\rangle)(\gamma|0\rangle+\delta|1\rangle)$ and multiply out.
13. We wish to distinguish two quantum states:

- In the first case, the state is either $|0\rangle$ or $\frac{\sqrt{3}}{2}|0\rangle+\frac{1}{2}|1\rangle$.
- In the second case, the state is either $|0\rangle$ or $\frac{1}{2}|0\rangle+\frac{\sqrt{3}}{2}|1\rangle$

Which of these cases do you expect to be able to distinguish with higher probability. Verify your answer using the Helstrom-Holevo bound.
14. Describe (qualitatively) how, if cloning were possible, then the no-signalling principle could be violated.

