
Quantum Computing (CST Part II)
Lecture 3: The Postulates of Quantum Mechanics

The most incomprehensible thing about the
world is that it is comprehensible.

Albert Einstein
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What is quantum mechanics?

When we speak of classical mechanics we think of Newton’s laws, but
quantum mechanics is quite different – it is not a physical theory, but
rather a framework for the development of physical theories.

There are four postulates of quantum mechanics that any (quantum)
physical theory must satisfy.

Quantum electrodynamics (Feynman) is an example of a successful
quantum physical theory, whilst a quantum theory of gravity remains
elusive, and is one of the most important open problems in theoretical
physics.
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The four postulates of quantum mechanics

1. State space: how to describe a quantum state.

2. Evolution: how a quantum state is allowed to change with time.

3. Measurement: the effect on a quantum state of interaction with a
classical system that yields classical information.

4. Composition: How to compose multiple quantum systems.
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State space

Postulate 1

Associated to any isolated physical system is a complex vector space with
an inner product (that is, a Hilbert space) known as the state space of
the system. The system is completely described by its state vector, which
is a unit vector in the system’s state space.

In this course, we consider only qubits, quantum states with space C2,
and compositions thereof (i.e., according to postulate 4), although higher
dimensional “qudit” states are sometimes considered in quantum
computing literature, and indeed physically there may be infinite
dimensional systems.

Examples of physical realisations of qubits:

The spin of an electron.

The polarisation of a photon.

The current in a superconducting circuit.
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Evolution

Postulate 2

The time evolution of the state of a closed quantum system is described
by the Schrödinger equation:

i~
d |ψ〉

dt
= H |ψ〉

where ~ is the physical constant, Planck’s constant and H is a fixed
Hermitian operator known as the Hamiltonian of the closed system.
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Evolution – simplified

In computer science, we are typically interested not in continuous time
evolution, but the state at discretised time intervals. It follows that
postulate 2 can thus be simplified

Postulate 2’

The change in the state of a closed quantum system from t0 to t1 is
described by the unitary transformation:

|ψt1〉 = U |ψt0〉

This expression follows directly from the Schrödinger equation.

The unitary operator U depends only on the underlying Hamiltonian
and the times t0 and t1.

In quantum computing we generally treat postulate 2’ as the
fundamental expression of state evolution.

6 / 20



The significance of unitarity

The solution to the Schrödinger equation is:

|ψt1〉 = exp

(
−iH(t1 − t0)

~

)
|ψt0〉

From which we define the unitary, U :

U(t0, t1) = exp

(
−iH(t1 − t0)

~

)
The unitary nature of the discrete time evolution follows directly from the
Hermitian nature of the continuous time evolution, and furthermore
unitary operators are the unique linear maps that preserve the norm:

|| |ψt1〉 || = ||U |ψt0〉 || = || |ψt0〉 || = 1

This is important, as it means that a unitary operation maps a n-qubit
state to another n-qubit state.
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The Pauli matrices
The Pauli matrices X,Y and Z are important one-qubit unitary matrices:

X =

[
0 1
1 0

]
Which has the following effect on the computational basis states,

X |0〉 =

[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= |1〉; X |1〉 =

[
0 1
1 0

] [
0
1

]
=

[
1
0

]
= |0〉;

Y = i

[
0 −1
1 0

]
Which has the following effect on the computational basis states,
Y |0〉 = i |1〉; Y |1〉 = −i |0〉;

Z =

[
1 0
0 −1

]
Which has the following effect on the computational basis states,
Z |0〉 = |0〉; Z |1〉 = − |1〉.
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The Hadamard matrix

Another important one-qubit unitary is the Hadamard matrix:

H =
1√
2

[
1 1
1 −1

]
Which has the following effect on the computational basis states:

H |0〉 =
1√
2

(|0〉+ |1〉) ≡ |+〉

H |1〉 =
1√
2

(|0〉 − |1〉) ≡ |−〉

i.e., it puts the computational basis states in superposition. H is
self-inverse, therefore:

H |+〉 = |0〉 H |−〉 = |1〉

i.e., it interferes the superposition to recover the original computational
basis states.
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Unitaries applied to superpositions of basis states
As we move onto quantum computing proper, it will become increasingly
natural (and important) to think of the action of unitary matrices in
terms of their effect on the computational basis states.

Consider that a general one-qubit state, |ψ〉, can be expressed as a
superposition (weighted sum) of the computational basis states:

|ψ〉 = a |0〉+ b |1〉

where a and b are complex in general. If we now want to express the
state after some unitary, U , has been applied to |ψ〉 we get:

U |ψ〉 = U(a |0〉+ b |1〉) = aU |0〉+ bU |1〉 ,

i.e., because of the distributivity of matrix multiplication. For example, if
U is a Pauli-X operation, then:

X |ψ〉 = X(a |0〉+ b |1〉) = aX |0〉+ bX |1〉 = a |1〉+ b |0〉

The same principle applies to two-qubit unitaries as well (and indeed to
n-qubit unitaries for any n ≥ 1, although our primary focus will be on
one- and two-qubit unitaries in this course).
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Measurement
We met measurement in an informal way in the first lecture, now we give
the general measurement postulate.

Postulate 3

Quantum measurements are described by a collection {Mm} of
measurement operators. These are operators acting on the state space of
the system being measured. The index m refers to the measurement
outcomes that may occur in the experiment.

If the state of the quantum system is |ψ〉 directly before the
measurement, the probability of the mth outcome is given by:

p(m) = 〈ψ|M†mMm |ψ〉

and the state of the system after the measurement is

Mm |ψ〉√
〈ψ|M†mMm |ψ〉
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Measurement (continued)
It is necessary that the probabilities of all possible outcomes sum to one,
that is ∑

m

p(m) =
∑
m

〈ψ|M†
mMm |ψ〉 = 1

as |ψ〉 is arbitrary and not dependent on the index m, we can see that
this is satisfied by the completeness equation,∑

m

M†
mMm = I

That is, because: ∑
m

p(m) =
∑
m

〈ψ|M†
mMm |ψ〉

= 〈ψ|

(∑
m

M†
mMm

)
|ψ〉

= 〈ψ| I |ψ〉
= 〈ψ|ψ〉
= 1

This proves that the completeness equation is sufficient, and we can
readily see that

∑
mM

†
mMm = I is the only condition that achieves this

for general |ψ〉, so therefore it is necessary too. 12 / 20



Measurement in the computational basis
In computer science, we often implicitly assume that by measurement we
mean single qubit measurement in the computational basis. In this case,
our measurement operators are

M0 = |0〉 〈0| =
[
1 0
0 0

]
and M1 = |1〉 〈1| =

[
0 0
0 1

]
which we can verify satisfies the completeness equation:[

1 0
0 0

]† [
1 0
0 0

]
+

[
0 0
0 1

]† [
0 0
0 1

]
=

[
1 0
0 0

]
+

[
0 0
0 1

]
=

[
1 0
0 1

]
= I

Note that the measurement operators, M0 and M1 are projectors onto
|0〉 and |1〉, respectively, and for this reason it is known as a projective
measurement.

Now let |ψ〉 = α |0〉+ β |1〉, we have that (abusing the notation to use
M0 and M1 to also denote the measurement outcomes associated with
the respective measurement operators):

p(M0) = |α|2 p(M1) = |β|2

which is the Born rule (you are asked to verify this in the exercise sheet).
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Measurement in the |+〉 , |−〉 basis
Consider the state |+〉 = (1/

√
2)(|0〉+ |1〉). If we measure this in the

computational basis, we get either outcome M0 or M1 each with
probability 1/2. However, if we measure in the |+〉 , |−〉 basis (recall
|−〉 = (1/

√
2)(|0〉 − |1〉)), which has measurement operators

M+ = |+〉 〈+| = 1

2

[
1 1
1 1

]
and M− = |−〉 〈−| = 1

2

[
1 −1
−1 1

]
then we get state M+ with probability 1:

p(M+) =
[

1√
2

1√
2

] [ 1
2

1
2

1
2

1
2

] [
1
2

1
2

1
2

1
2

] [ 1√
2
1√
2

]

=
[

1√
2

1√
2

] [ 1
2

1
2

1
2

1
2

] [ 1√
2
1√
2

]

=
[

1√
2

1√
2

] [ 1√
2
1√
2

]
=1
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Measurement in the |+〉 , |−〉 basis (continued)
We could get the same result more quickly using Dirac notation:

p(M+) = 〈+| (|+〉 〈+|)†(|+〉 〈+|) |+〉 = (〈+|+〉)3 = 1

Similarly, if instead |ψ〉 = |−〉 then we get outcome M− with probability
1:

p(M−) = 〈−| (|−〉 〈−|)†(|−〉 〈−|) |−〉 = (〈−|−〉)3 = 1

Whereas if we measure in the computational basis, we still get each
outcome with probability 1/2. This is an example of the significance of
relative phase.

Note that measurement in the |+〉 , |−〉 basis is another example of a
projective measurement, and in the above analysis we have implicitly
used the fact that projectors are self-adjoint, i.e.,

(|ψ〉 〈ψ|)† = 〈ψ|† |ψ〉† = |ψ〉 〈ψ|
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Global and relative phase
We can write any one-qubit state as:

|ψ〉 = eiθ(α |0〉+ βeiφ |1〉) ≡ eiθ |ψ′〉

where α and β are positive real numbers. θ is known as the global phase,
and has no observable consequences because:

U |ψ〉 = Ueiθ(α |0〉+ βeiφ |1〉) = eiθU(α |0〉+ βeiφ |1〉) = eiθU |ψ′〉

and for any measurement operator Pm,

〈ψ|P †mPm |ψ〉 = 〈ψ′| e−iθP †mPmeiθ |ψ′〉 = 〈ψ′|P †mPm |ψ′〉

where we use the fact that (eiθ |ψ′〉)† = 〈ψ′| e−iθ (which can easily be
verified).

Thus we typically neglect global phase. The same cannot, however be
said for the relative phase, φ. For example, in the previous slide |+〉 and
|−〉 both have α = β = 1/

√
2, but in the former φ = 0, whereas in the

latter φ = π, and we saw that measurement in the |+〉 , |−〉 basis could
distinguish these two 100% of the time.
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Composition

Postulate 4

The state space of a composite physical system is the tensor product of
the state spaces of the component physical systems. Moreover, if we
have systems numbered 1 through n, and system number i is prepared in
the state |ψi〉, then the joint state of the total system is
|ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉.

We can now see the significance of the fact that:

(U1 ⊗ U2)(|ψ1〉 ⊗ |ψ2〉) = (U1 |ψ1〉)⊗ (U2 |ψ2〉)

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 is what is known as a separable state. Let
|ψ′〉 = (U1 ⊗ U2)(|ψ1〉 ⊗ |ψ2〉), |ψ′1〉 = U1 |ψ1〉 and |ψ′2〉 = U2 |ψ2〉, we
have that:

|ψ′〉 = |ψ′1〉 ⊗ |ψ′2〉

i.e., single qubit unitary matrices applied to a separable state leads to a
separable state.
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Entangled states
As we shall see, quantum computing draws its advantage from the fact
that not all quantum states are separable. Consider the two qubit unitary

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


applied to the state

|+〉 ⊗ |0〉 = (1/
√

2)
[
1 1

]T ⊗ [1 0
]T

=
[
1/
√

2 0 1/
√

2 0
]T

:

CNOT(|+〉 ⊗ |0〉) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1/
√

2
0

1/
√

2
0

 =


1/
√

2
0
0

1/
√

2


=

1√
2

(|00〉+ |11〉)

This is an an entangled state which cannot be separated as tensor
product. We call CNOT an entangling operation (or “gate” in the
quantum circuit model), and even though it operates on two qubits,
Postulate 2 still applies – so it is still necessarily unitary.
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More on entangled states and the Bell states

In quantum computing, we take non-separability as the definition of an
entangled state, and so there are infinitely many entangled states. Four
important two-qubit entangled states are the Bell states:

|Φ+〉 = (1/
√

2)(|00〉+ |11〉) = (1/
√

2)
[
1 0 0 1

]
|Φ−〉 = (1/

√
2)(|00〉 − |11〉) = (1/

√
2)
[
1 0 0 −1

]
|Ψ+〉 = (1/

√
2)(|01〉+ |10〉) = (1/

√
2)
[
0 1 1 0

]
|Ψ−〉 = (1/

√
2)(|01〉 − |10〉) = (1/

√
2)
[
0 1 −1 0

]

Which form an orthonormal basis for C4 (exercise: verify this).

19 / 20



What to remember

Quantum mechanics specifies four postulates to which a physical theory
must adhere. You should be familiar with these, and we have also
introduced the following important concepts in this lecture.

The Pauli matrices

The Hadamard matrix

The significance of global and relative phase

The existence of entangled states

20 / 20


