
Quantum Computing (CST Part II)
Lecture 2: Linear Algebra

Quantum phenomena do not occur in a Hilbert space,
they occur in a laboratory.

Asher Peres
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The need for linear algebra and Hilbert space

Quantum phenomena are described using linear algebra, which is the
study of vector spaces and linear operations thereon. That is, states of a
quantum system form a vector space and their transformations are
described by linear operators.

A finite-dimension vector space with a defined inner product is also
known as a Hilbert space, which is the most usual term used in the
literature.
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Recap: complex numbers and complex vectors

In general, we require complex numbers to describe quantum phenomena.
Any z ∈ C is of the form z = a+ ib for some a, b ∈ R and i =

√
−1.

Cn is the vector space of n-tuples of complex numbers


z1
z2
...
zn

.

With addition:


z1
z2
...
zn

+


w1

w2

...
wn

 =


z1 + w1

z2 + w2

...
zn + wn

,

and scalar multiplication: W


z1
z2
...
zn

 =


Wz1
Wz2

...
Wzn

.
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More useful properties of complex numbers

Again letting z = a+ ib be a general complex number:

Each complex number has a conjugate, z∗ = a− ib
The modulus of a complex number is given by
|z| =

√
a2 + b2 =

√
zz∗

It can also be shown that for two complex numbers, z1 and z2,
|z1z2| = |z1||z2|.
Unit complex numbers lie on the unit circle of the Argand diagram,
and can be written in the form eiθ. θ is periodic with period 2π in
the sense that ei(θ+2nπ) = eiθ for any n ∈ Z.

Real

Imag

e𝑖π/2=𝑖

e𝑖π=-1

e𝑖0= e𝑖2π= 1

e𝑖3π/2=𝑖
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Matrices

A matrix is an array of (in general) complex numbers:

A =

a11 . . . a1m

...
. . .

an1 anm


With addition:a11 . . . a1m

...
. . .

an1 anm

+

b11 . . . b1m
...

. . .

bn1 bnm

 =

a11 + b11 . . . a1m + b1m
...

. . .

an1 + bn1 anm + bnm


and scalar multiplication:

B

a11 . . . a1m

...
. . .

an1 anm

 =

Ba11 . . . Ba1m

...
. . .

Ban1 Banm
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Matrix multiplication

If A is a n×m matrix and B is a m× l matrix then C = A×B is the
n× l matrix with entries given by

Cik =

m∑
j=1

AijBjk

for all i = 1, . . . , n and k = 1, . . . , l.

Matrix multiplication is

Associative: (A×B)× C = A× (B × C) = ABC

Distributive: A(B + C) = AB +AC; (A+B)C = AC +BC

Not commutative: in general AB 6= BA. Note that BA won’t even
be mathematically meaningful unless n = l.
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Tensor multiplication

As well as scalar multiplication and matrix multiplication, to describe
quantum computation we must consider a third form of multiplication on
matrices, tensor multiplication. Let A and B be matrices of any
dimension:

A⊗B =

a11B . . . a1mB
...

. . .

an1B anmB


where ⊗ denotes the tensor product. For example:[

1 0
0 2

]
⊗
[
1 2 3

]
=

[
1 2 3 0 0 0
0 0 0 2 4 6

]

In general if A is n×m and B is n′ ×m′ then A⊗B is nn′ ×mm′.

The tensor product is associative, so A⊗ (B ⊗ C) = (A⊗B)⊗ C.
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Combining matrix and tensor multiplication

As a (column) vector is just a n× 1 matrix, we can equally well apply
tensor products to vectors. This reveals an important property of tensor
products when combined with matrix products. Let A and B be n×m
and n′ ×m′ matrices respectively, and x and y be m and m′ dimension
column vectors respectively:

(A⊗B)(x⊗ y) = (Ax)⊗ (By)

The second exercise sheet asks you to prove this for the case of 2× 2
matrices (note this separation also applies to matrices multiplying other
matrices, i.e., if x and y were replaced by matrices of appropriate
dimension).
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Transpose and conjugate transpose (adjoint)
Let A be the n×m matrix:

A =

a11 . . . a1m

...
. . .

an1 anm


A can be “transposed” by swapping its rows and columns. That is, the
transpose of A is defined as the m× n matrix:

AT =

a11 . . . an1

...
. . .

a1m amn


Slide 4 defined the conjugate of a complex number, z = a+ bi, as
z∗ = a− bi. Combining this with the transpose, we get the conjugate
transpose or adjoint of a matrix:

A† = (A∗)T =

a∗11 . . . a∗n1

...
. . .

a∗1m a∗mn


It can be shown that (AB)T = BTAT and (AB)† = B†A†.

9 / 21



Dirac notation

Virtually all teaching and research on the subject of quantum information
and computation expresses the linear algebra using Dirac notation (also
known as “Bra-Ket” notation), and we will also adopt this convention.

By doing so, the expressions are compact, thus helping us to focus on the
actual quantum states that are being represented.
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“Bras” and “Kets”

A “Ket” is a column vector:

|ψ〉 =


a1
a2
...
an


Each “Ket” has a corresponding “Bra”, which is its conjugate transpose,
the row vector:

〈ψ| =
[
a∗1 a∗2 . . . a∗n

]
We continue to denote matrix operations with a capital letter, i.e., the
matrix A operating on the state |u〉 would be written A |u〉.

When tensor multiplying vectors expressed as kets, the following are all
equivalent: |ψ〉 ⊗ |φ〉, |ψ〉 |φ〉, |ψφ〉 (and similarly for bras).

Also, as noted on Slide 7, tensor multiplication is associative, so
(|ψ〉 ⊗ |φ〉)⊗ |ω〉 = |ψ〉 ⊗ (|φ〉 ⊗ |ω〉) = |ψφω〉 (again similarly for bras).
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Inner products, orthogonality and norms

Let |u〉 =

a1...
an

, and |v〉 =

b1...
bn

, we define the inner product:

〈u|v〉 = 〈u| × |v〉 =
[
a∗1 . . . a∗n

] b1...
bn

 =

n∑
i=1

a∗i bi

If each of |u〉 and |v〉 have at least one non-zero element:

〈u|v〉 = (〈v|u〉)∗

If 〈u|v〉 = 0 then |u〉 and |v〉 are orthogonal.

〈u|u〉 =
∑n
i=1 |ai|2, which is a positive real number.

|| |u〉 || =
√
〈u|u〉 is defined as the norm of |u〉, unit vectors have

norm = 1.
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Outer products and projectors
As well as inner products, vectors can be multiplied by outer-products,
for which they need no longer have the same dimension. Let

|u〉 =
[
a1 . . . an

]T
and |v〉 =

[
b1 . . . bm

]T
, the outer product is

defined as the n×m complex matrix: |u〉 〈v|. That is:

|u〉 〈v| =

a1...
an

 [b∗1 . . . b∗m
]
=

a1b
∗
1 . . . a1b

∗
m

...
. . .

anb
∗
1 anb

∗
m


If |u〉 is a unit vector, then |u〉 〈u| is known as a projector , as |u〉 〈u| is an
operator that “projects” an arbitrary vector (of appropriate dimension)
|v〉 onto the subspace |u〉. That is:

(|u〉 〈u|) |v〉 = |u〉 (〈u| |v〉) = (〈u|v〉) |u〉
which can be seen to be the projection of |v〉 onto |u〉:

𝑣

𝑢𝜃

𝑢𝑢 𝑣
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Basis

A basis of Cn is a minimal collection of vectors |v1〉 , |v2〉 , . . . , |vn〉 such
that every vector |v〉 ∈ Cn can be expressed as a linear combination of
these:

|v〉 = α1 |v1〉+ α2 |v2〉+ · · ·+ αn |vn〉

where the coefficients αi ∈ C.

That the basis is a minimal collection of vectors means that
|v1〉 , |v2〉 , . . . , |vn〉 are linearly independent, no |vi〉 can be expressed as
a linear combination of the rest. The size of the basis is n, termed its
dimension.

Of particular interest are orthonormal bases, in which each basis vector is
a unit vector, and the basis vectors are pairwise orthogonal, that is:

〈vi|vj〉 =
{
1 if i = j
0 otherwise
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Standard ‘computational’ basis

Here are some bases for C3:12
1

 ,
 10
2 + i
0

 ,
10
0

  0

1/
√
2

1/
√
2

 ,
 0

1/
√
2

−1/
√
2

 ,
10
0

 10
0

 ,
01
0

 ,
00
1


The latter two of these are orthonormal, of which the final one is known
as the standard or computational basis. In general, the computational
basis for Cn is

|1〉 =


1
0
...
0

 , |2〉 =

0
1
...
0

 , . . . , |n〉 =

0
0
...
1


Sometimes, especially in the case of two-level systems (i.e., for C2), we’ll
number these |0〉 . . . |n− 1〉 (this will also apply to compositions of
two-level systems).
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Computational basis for compositions of two-level systems
Consider the computational basis for the composition of two two-level
systems (we shall see that this corresponds to a two-qubit system). In
this case, the basis is for C4, and has basis vectors:

|0〉 = |00〉 = |0〉 ⊗ |0〉 =
[
1 0

]T ⊗ [1 0
]T

=
[
1 0 0 0

]T
|1〉 = |01〉 = |0〉 ⊗ |1〉 =

[
1 0

]T ⊗ [0 1
]T

=
[
0 1 0 0

]T
|2〉 = |10〉 = |1〉 ⊗ |0〉 =

[
0 1

]T ⊗ [1 0
]T

=
[
0 0 1 0

]T
|3〉 = |11〉 = |1〉 ⊗ |1〉 =

[
0 1

]T ⊗ [0 1
]T

=
[
0 0 0 1

]T
In general, if we have the composition of n two-level systems, then the
computational basis is such that:

When expressed as a ket, the number inside the ket is a n-bit binary
number. Let this number be i.

When expanded as a vector, we get a 2n element vector, where each
element is equal to zero, except for a single element equal to one, at
the ith element (where the elements are indexed from 0 to 2n − 1).

It is really useful to remember this.
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Expanding vectors and matrices in the standard basis

Any vector |u〉 =
[
a1 a2 . . . an

]T
can be expressed as a weighted

sum of standard basis vectors:

|u〉 = a1 |1〉+ a2 |2〉+ · · ·+ an |n〉

Similarly, any matrix can be expressed as a double sum over the
outer-products of standard basis vectors:a11 . . . a1m

...
. . .

an1 anm

 =

n∑
i=1

m∑
j=1

aij |i〉 〈j|
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Eigenvectors and eigenvalues

If a n× n matrix, A, has the effect of scaling a given (non-zero) vector,
|v〉 by a constant, λ, then that vector is known as an eigenvector, with
corresponding eigenvalue λ:

A |v〉 = λ |v〉

The eigenvalues of a matrix are the roots of the characteristic polynomial:

det(A− λI) = 0

where det denotes the determinant, and I is the n× n identity. Each
square matrix has at least one eigenvalue.

The determinant of a matrix is the product of its eigenvalues.

The trace of a square matrix is the sum of its leading diagonal
elements. It is also the sum of its eigenvalues.
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Diagonal representation of matrices
Recall from Slide 17 that any matrix can be expressed as a double sum,
however some matrices can be expressed as a single sum. If a n× n
complex matrix A can be expressed in the form:

A =

n∑
i=1

λi |vi〉 〈vi|

where λi is the ith eigenvalue of A, corresponding to the ith eigenvector,
|vi〉, then it is said to be diagonalisable. This is called the
eigendecomposition, or spectral decomposition of A.

If A is diagonalisable as above, then its (normalised) eigenvectors form
an orthonormal set, and A can be written as the diagonal matrix

λ1

λ2

. . .

λn


in the basis of its eigenvectors |v1〉, |v2〉, . . . , |vn〉. By this we mean
that if an arbitrary vector, |ψ〉 is expressed as a weighted sum of the
eigenvectors of A, i.e., |ψ〉 = a1 |v1〉+ a2 |v2〉 . . . an |vn〉, then we would
write |ψ〉 =

[
a1 a2 . . . an

]
“in the basis of its eigenvectors”.
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Normal, Hermitian and unitary matrices
A matrix is normal if A†A = AA†

A matrix is normal if and only if it is diagonalisable1.
If A = A† a matrix is Hermitian.

A matrix is unitary if A†A = AA† = I (the identity).
Unitary matrices play an important role in quantum computing.
Clearly all unitary matrices are normal therefore diagonalisable.
All eigenvalues of unitary matrices have absolute value one.
Unitary operators preserve inner products: if U is unitary and
|u′〉 = U |u〉 and |v′〉 = U |v〉 then:

〈u′|v′〉 = (U |u〉)†(U |v〉)

= (〈u|U†)(U |v〉)

= 〈u| (U†U) |v〉
= 〈u| I |v〉
= 〈u|v〉

1Note that the definition of “diagonalisable” that we have used in this lecture is
the standard definition used in quantum mechanics, but elsewhere sometimes the
slightly more general requirement that the eigenvectors form some (not necessarily
orthonormal) basis is used.
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Summary

We have covered a lot of ground in this lecture:

Re-cap of the properties of complex vectors and matrices

Tensor products

Braket notation

Inner products, orthogonality and norms

Outer products and projectors

Bases, the computational (standard) basis

Eigenvectors, eigenvalues and diagonalisation

Normal, Hermitian and unitary matrices
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