
Quantum Computing (CST Part II)
Lecture 12: Quantum Complexity

By any objective standard, the theory of computational complexity
ranks as one of the greatest intellectual achievements of humankind.

Scott Aaronson

1 / 17

Recap: Church-Turing

The Church-Turing thesis states:

A function on the natural numbers can be calculated by an
effective method if and only if it is computable by a Turing
machine.

We know that quantum computing does not violate the Church-Turing
thesis, which concerns computability, however we have reason to suspect
that it may violate the Strong Church-Turing thesis:

Any algorithmic process can be simulated efficiently using
a probabilistic Turing machine,

which concerns complexity (here “efficiently” is taken to mean, with only
a polynomial time overhead).

2 / 17

Quantum complexity: the big picture

We have already seen that quantum mechanics enables information
processing tasks that cannot be achieved classically, for example
superdense coding, and quantum key distribution.

Furthermore, we have seen that quantum mechanics definitely allows
some computational tasks to be achieved more quickly than in the
classical case, for example Grover search...

...and in some cases, this speed-up is apparently exponential, for
example Shor’s algorithm.

Indeed, the nature of entangled spaces seems to be such that
quantum mechanical systems fundamentally have exponentially more
computational power than classical systems do.

All this begs the question of whether there is some fundamental
complexity class separation between tasks that can be achieved efficiently
(in polynomial time) quantumly and those that can be classically.

3 / 17

Finite automata

A finite automata consists of:

A set of ns states.

An input alphabet of size na.

A set of state transitions: usually represented in the form of a
ns × ns matrix for each of the na letters.

An initial “start” state.

An “accept” state (marked by a black circle).

The accepted language is the set of strings of letters from the alphabet,
such that the final state is the “accept” state.

Note that in general there could be multiple accept states (but in this
lecture we only deal with examples with a single accept state).

4 / 17

Deterministic finite automata
Deterministic automata have the property that for each state-letter pair,
there is only one outgoing arrow. The transition matrices are such that, if
|i〉 is the start state, and s1s2 · · · sn is input the string, then the final
state is |f〉 = MsnMsn−1

· · ·Ms1 |i〉 (where Msi is the transition matrix
for the ith symbol, si). It follows that the transition matrices of
deterministic finite automata have exactly one 1 in each column.

Example:

b

b

a

a

With the left-hand
state, |0〉, as the
starting state (and |1〉
is the accept state).
xxxx xxxx xxxx xxxx

The transition matrices are:

Ma =

[
1 0
0 1

]
; Mb =

[
0 0
1 1

]
It can be seen that the accepted
language is the set of all strings
containing at least one “b”, e.g., if the
string abb is read we get, MbMbMa

multiplied by the start state:[
0 0
1 1

] [
0 0
1 1

] [
1 0
0 1

] [
1
0

]
=

[
0
1

]
5 / 17

Nondeterministic finite automata

Nondeterministic finite automata can have any number of outgoing
arrows for each state-letter pair, so the transition matrices are general
binary matrices. A string is part of the accepted language if there is some
path finishing in the accepted state.

Example:

b

b

a

a

b

With the left-hand
state, |0〉, as the
starting state (and |1〉
is the accept state).

In this example, the transition matrices
are:

Ma =

[
1 0
0 1

]
and

Mb =

[
1 0
1 1

]
And it is the still the case that the
accepted language is the set of all
strings containing at least one “b”.

6 / 17

Probabilistic automata
Probabilistic automata are essentially Markov chains, with state
transitions being probabilistic, and thus the transition matrices contain
fractional values, such that each column sums to one. The accepted
language can be defined either as the set of all strings that end in the
final state with certainty, or with probability above some threshold.

Example:

b:

a:

1
1

0.1

0.1
0.9

0.9

With the left-hand state,
|0〉, as the starting state
(and |1〉 is the accept
state).

In this example, the transition matrices
are:

Ma =

[
0.9 0.1
0.1 0.9

]
and

Mb =

[
0 0
1 1

]
So all strings (with at least one symbol)
are accepted with some probability, and
all strings ending with a “b” are
accepted with certainty.

7 / 17

Quantum automata
In quantum automata, the transition matrices are unitary matrices
consisting of positive and negative complex numbers. A special case of
quantum automata are reversible automata, where the transition matrices
are binary permutation matrices (exactly one 1 in each column and row).

Example:

1

2

1

2

−1

2

1

2

With the left-hand
state, |0〉, as the
starting state (and |1〉
is the accept state).

This single-letter alphabet automata has
transition matrix:

Ma =
1√
2

[
1 1
−1 1

]
We can see that:

MaMa =

[
0 1
−1 0

]
So, if we start in state |0〉 there are two
paths of length 2 from |0〉 back to itself
(|0〉 → |0〉 → |0〉 and |0〉 → |1〉 → |0〉),
but these interfere is such a way that there
is actually zero chance of ending up in |0〉.

8 / 17

Turing machines

Turing machines are deterministic finite automata, equipped with an
infinitely long read-write tape, upon which the input string is initially
written. At any time a “head” is over one space on the tape, and can
read the symbol written there (initially the head is at the left-hand end of
the tape). The action of a Turing machine is thus:

At a given time, the DFA is in a certain state, and the head is over a
symbol which it reads. Given this state-symbol pair, a transition function
determines:

Which symbol to overwrite on the current space on the tape.

Whether to move the head left or right.

Which next state the DFA moves to.

A Turing machine accepts the input if it halts in an accept state.

The Turing machine is a sufficiently general model for computation to
capture entirely that which can reasonably be thought of as
mathematically computable. The class of problems that can be decided
in polynomial-time on a Turing machine is denoted P.

9 / 17

Nondeterministic Turing machines

If instead of a single action (overwritten symbol, move left or right and
state transition) we allow a set of possible actions, then we get the
nondeterministic Turing machine. This can be thought of as a tree,
where each branching process represents the variety of possible actions at
a given time. A string is accepted if there is some path through the tree
to an accept state.

If the height of the tree is bounded by a polynomial in the length of the
input string, then the language is in NP. Clearly P ⊆ NP, as each
decision point could just consist of one single branch.

10 / 17

Probabilistic Turing machines
Probabilistic Turing machines are similar in appearance to
nondeterministic Turing machines, but now the branches represent a
probability distribution over possible next actions:

0.25

0.25

0.5

1

0.25

0.75

0.05

0.95

The complexity class BPP is the set of languages, L, for which there is a
probabilistic Turing machine, M , running in polynomial time with:

P (M accepts w) =
{> 2

3 if w ∈ L
< 1

3 if w 6∈ L

Note 2
3 is arbitrary – all that is required is that we have a constant

fraction greater than 1
2 (and similarly one less than 1

2 for the 1
3 term).

Clearly each probability distribution in a probabilistic Turing machine
could consist of a single deterministic branch, so P ⊆ BPP.

11 / 17

Quantum Turing machines

Quantum Turing machines are like probabilistic Turing machines, but
now complex amplitudes are associated with each possible next move. It
is also necessary that the linear transformation defined by the machine is
unitary.

The complexity class BQP is the set of languages, L, for which there is a
quantum Turing machine, M , running in polynomial time with:

P (M accepts w) =
{> 2

3 if w ∈ L
< 1

3 if w 6∈ L

It has been shown that the quantum Turing machine generalises the
probabilistic Turing machine, so BPP ⊆ BQP.

12 / 17

Relationships between complexity classes

Many complexity class inclusions remain open problems in theoretical
computer science. We have already seen that P ⊆ NP and
P ⊆ BPP ⊆ BQP, but are these proper subsets?

P = NP? is the most famous open problem in theoretical computer
science, and the vast majority of theorists believe P 6= NP.

We do not know whether BPP is a subset of NP or vice versa, but it
is conjectured that P = BPP.

As factoring is widely believed to be super-polynomial classically
(even with a probabilistic Turing machine), the existence of Shor’s
algorithm is taken as evidence that BPP 6= BQP.

It is widely believed that NP-complete problems cannot be solved in
polynomial time on a quantum computer (unless P = NP), so
NP 6⊆ BQP.

...but it is also believed that there are problems outside of NP which
can be solved in polynomial time on a quantum computer, so
BQP 6⊆ NP.

13 / 17

Complexity class inclusions

A Venn diagram of complexity class inclusions as we conjecture them:

NP

BQP

P=BPP

e.g. factoring (conjectured)

14 / 17

How important is the question BPP
?
= BQP

The most spectacular results in quantum computing concern exponential
speed-ups over the best-known classical algorithms. Therefore we may
ask how significant it is that the exponentially superior power of quantum
computing is only conjectured, and not known for certain.

Without question, were it to be proved that BPP = BQP this would
send shock-waves not only through the quantum computing
community, but through theoretical computer science in general.
But not many theorists believe this is even remotely likely.

It is, however, worth noting that the exponential speed-up is not the
only reason for pursuing quantum computing: algorithms with
guaranteed polynomial speed-ups, such as Grover’s are increasingly
being seen as compelling use-cases for quantum computing.

More speculatively, we do know of an exponential separation
between quantum and classical computational power when query
complexity is the figure of merit.

Finally, using quantum computers to manipulate quantum states will
enable other advantageous applications of quantum information
processing such as QKD and superdense coding.

15 / 17

Sampling and quantum supremacy

In general, when we measure a quantum state the outcome is not
deterministic and hence we are sampling a random variable.

Therefore a different approach to demonstrating the superior power
of quantum computing is to show that the measurement statistics
from such a random process are hard to replicate classically.

Most notably, if we measure the quantum state prepared by a class
of circuits termed “IQP circuits”, we obtain samples from a
probability distribution that cannot be efficiently prepared classically
unless the polynomial hierarchy collapses to its third level (which is
considered to be extremely unlikely to happen).

Most quantum supremacy experiments (i.e., experiments aiming to
demonstrate the exponentially superior power of quantum
computing) are based on sampling as, with a bit of ingenuity, they
can be performed on relatively small and noisy quantum computers.
By contrast, aiming to demonstrate quantum supremacy by
performing some algorithm (say Shor’s) would require an enormous,
error-corrected quantum computer.

16 / 17

Summary

In this lecture we have covered:

The bigger picture of quantum computability and complexity.

Various finite automata, including quantum automata.

Turing machines and complexity classes.

The practical relevance of BPP
?
= BQP.

Sampling and quantum supremacy.

17 / 17

