[11] CASE STUDY: UNIX

OUTLINE

e Introduction
e Design Principles

= Structural, Files, Directory Hierarchy
e Filesystem

= Files, Directories, Links, On-Disk Structures

= Mounting Filesystems, In-Memory Tables, Consistency
e Summary

INTRODUCTION

e Introduction

e Design Principles
e Filesystem

e Summary

HISTORY (1)

First developed in 1969 at Bell Labs (Thompson & Ritchie) as reaction to bloated
Multics. Originally written in PDP-7 asm, but then (1973) rewritten in the "new”
high-level language C so it was easy to port, alter, read, etc. Unusual due to need for
performance

6th edition ("V6") was widely available (1976), including source meaning people
could write new tools and nice features of other OSes promptly rolled in

V6 was mainly used by universities who could afford a minicomputer, but not
necessarily all the software required. The first really portable OS as same source
could be built for three different machines (with minor asm changes)

Bell Labs continued with V8, V9 and V10 (1989), but never really widely available
because V7 pushed to Unix Support Group (USG) within AT&T

AT&T did System Il first (1982), and in 1983 (after US government split Bells),
System V. There was no System [V

HISTORY (ll)

By 1978, V7 available (for both the 16-bit PDP-11 and the new 32-bit VAX-11).
Subsequently, two main families: AT&T "System V', currently SVR4, and Berkeley:
"BSD’, currently 4.4BSD

Later standardisation efforts (e.g. POSIX, X/OPEN) to homogenise

USDL did SVR2 in 1984; SVR3 released in 1987; SVR4 in 1989 which supported the
POSIX.1 standard

In parallel with AT&T story, people at University of California at Berkeley (UCB)
added virtual memory support to "32V" [32-bit V7 for VAX] and created 3BSD

HISTORY (lll)

4BSD development supported by DARPA who wanted (among other things) OS
support for TCP/IP

By 1983, 4.2BSD released at end of original DARPA project

1986 saw 4.3BSD released — very similar to 4.2BSD, but lots of minor tweaks. 1988
had 4.3BSD Tahoe (sometimes 4.3.1) which included improved TCP/IP congestion
control. 19xx saw 4.3BSD Reno (sometimes 4.3.2) with further improved congestion
control. Large rewrite gave 4.4BSD in 1993; very different structure, includes LFS,
Mach VM stuff, stackable FS, NFS, etc.

Best known Unix today is probably Linux, but also get FreeBSD, NetBSD, and
(commercially) Solaris, OSF/1, IRIX, and Tru64

SIMPLIFIED UNIX FAMILY TREE (NON-EXAMINABLE)

1969

1971 t0 1973

1974 t0 1975

1978

1979

1980

1981

1982

1983

1984

1985
1986
1987
1988
1989
1990
1991

1992

1993
1994
1995
1998
1997

1938

1999
2000

2001 to 2004
2005

2006 to 2007

2008

2008

2010

2011

2012to 2013

Unix
Version 8

@amed PDP-7 operating sys@

BSD
1.0t 2.0

BSD
3.0to4.1

Unix
9 and 10
(last versions

rom
Bell Labs)

Mac OS X
0.0 to 10.9.x
(Darwin)

https://commons.wikimedia.org/wiki/File:Unix_history-simple.svg

Unix
Version 1to

PWEB/Unix

Unix
Version 7

Unix/32V

- Qpen Source

I:l Mixed/Shared Source

- Closed Source

1969

197110 1873

1974 1o 1875

1978

1979

1980

1981

1982

1983

1984

1985
1986
1987
1988
1989
1990
1991

1992

1993
1994

1995
1996
1997

1998

1999
2000
2001 to 2004

2005
2006 to 2007
2008
2009
2010
2011

201210 2013

https://commons.wikimedia.org/wiki/File:Unix_history-simple.svg

DESIGN PRINCIPLES

e Introduction
e Design Principles
= Structural, Files, Directory Hierarchy
e Filesystem
e Summary

DESIGN FEATURES

Ritchie & Thompson (CACM, July 74), identified the (new) features of Unix:

A hierarchical file system incorporating demountable volumes

e Compatible file, device and inter-process 10 (naming schemes, access control)
 Ability to initiate asynchronous processes (i.e., address-spaces = heavyweight)
e System command language selectable on a per-user basis

Completely novel at the time: prior to this, everything was "“inside” the OS. In Unix
separation between essential things (kernel) and everything else

Among other things: allows user wider choice without increasing size of core OS;
allows easy replacement of functionality — resulted in over 100 subsystems
including a dozen languages

Highly portable due to use of high-level language

Features which were not included: real time, multiprocessor support

STRUCTURAL OVERVIEW

Application Application
(Process) (Process)

User

System Call Interface

[M:::Ea;’:gena [File S ysfem)

~ N

Block 110 Char /0

— 1 !

Device Driver Device Driver Device Driver Device Driver

[[]

Process
Management

Kernel

Hardware

Y

Clear separation between user and kernel
portions was the big difference between
Unix and contemporary systems — only
the essential features inside OS, not the
editors, command interpreters, compilers,
etc.

Processes are unit of scheduling and
protection: the command interpreter
("shell”) just a process

No concurrency within kernel

All IO looks like operations on files: in
Unix, everything is a file

FILESYSTEM

e |ntroduction
e Design Principles
e Filesystem
= Files, Directories, Links, On-Disk Structures
= Mounting Filesystems, In-Memory Tables, Consistency
e Summary

FILE ABSTRACTION

File as an unstructured sequence of bytes which was relatively unusual at the time:
most systems lent towards files being composed of records

e Cons:don't get nice type information; programmer must worry about format of
things inside file

e Pros: less stuff to worry about in the kernel; and programmer has flexibility to
choose format within file!

Represented in user-space by a file descriptor (£d), simply an opaque identifier — a
good technique for ensuring protection between user and kernel

FILE OPERATIONS

Operations on files are:

e fd = open(pathname, mode)

e fd = creat(pathname, mode)

e bytes = read(fd, buffer, nbytes)
e count = write(fd, buffer, nbytes)
e reply = seek(fd, offset, whence)
e reply = close(£fd)

The kernel keeps track of the current position within the file
Devices are represented by special files:

e Support above operations, although perhaps with bizarre semantics
e Also have ioct1l for access to device-specific functionality

DIRECTORY HIERARCHY

Directories map names to files (and

directories) starting from distinguished root /
directory called / // ‘ \\
bin/ dev/ etc/ home / usr/
Fully qualified pathnames mean performing _,.f /|\ ' / \ \,
traversal from root hda hdb tty .
steve/ jean/
: . \
Every directory has . and . . entries: refer to / \
self and parent respectively. Also have unix.ps index.html

shortcut of current working directory (cwd)

which allows relative path names; and the

shell provides access to home directory as ~username (e.g. ~moxrt/). Note that
kernel knows about former but not latter

Structure is a tree in general though this is slightly relaxed

ASIDE: PASSWORD FILE

e /etc/passwd holds list of password entries of the form user-
name:encrypted-passwd:home-directory:shell

e Also contains user-id, group-id (default), and friendly name.

e Use one-way function to encrypt passwords i.e. a function which is easy to
compute in one direction, but has a hard to compute inverse. To login:

= Get user name

Get password

Encrypt password

Check against version in /etc/password

If ok, instantiate login shell

Otherwise delay and retry, with upper bound on retries

e Publicly readable since lots of useful info there but permits offline attack

 Solution: shadow passwords (/etc/shadow)

FILE SYSTEM IMPLEMENTATION

type mode ‘
userid groupid
size nblocks _
nlinks flags —- .
timestamps (x3) :
- - il
: direct :
direct blocks (x12) : blocks :
° (512) b
| —{ldaaT] :
L]
L
L
L
L

single indirect
to block with 512
single indirect entries

» o block with 512
double indirect entries

Inside the kernel, a file is represented by a data structure called an index-node or i-
node which hold file meta-data: owner, permissions, reference count, etc. and
location on disk of actual data (file contents)

I-NODES

Why don't we have all blocks in a simple table?

Why have first few in inode at all?

How many references to access blocks at different places in the file?

If block can hold 512 block-addresses (e.g. blocks are 4kB, block addresses are 8
bytes), what is max size of file (in blocks)?

Where is the filename kept?

DIRECTORIES AND LINKS

Directory is (just) a file which

maps filenames to i-nodes — __ff"’""‘"’“e "”‘Iﬂ:
that is, it has its own i-node nello.txt | 107
pointing to its contents Filename [ode / | \ — -
An instance of a filein a 1] ml hﬂmef bin/ doc/
directory is a (hard) link hence == \

hello.txt

stevef ;eanf

the reference count in the i-

node. Directories can have at / [\

most 1 (real) link. Why? v _
misc/ index.html unix.ps

Also get soft- or symbolic-
links: a 'normal’ file which contains a filename

ON-DISK STRUCTURES

— Hard Disk —

Inode Data
Table Blocks

Inode Data
Table Blocks

Super-Block

=i
o
k-
e
2
3
)]
1

A disk consists of a boot block followed by one or more partitions. Very old disks
would have just a single partition. Nowadays have a boot block containing a
partition table allowing OS to determine where the filesystems are

Figure shows two completely independent filesystems; this is not replication for
redundancy. Also note |inode table| > |superblock]; |data blocks| > |inode table|

ON-DISK STRUCTURES

A partition is just a contiguous range of N fixed-size blocks of size k for some N and
k, and a Unix filesystem resides within a partition

Common block sizes: 512B, 1kB, 2kB, 4kB, 8kB

Superblock contains info such as:

e Number of blocks and free blocks in filesystem
o Start of the free-block and free-inode list
 Various bookkeeping information

Free blocks and inodes intermingle with allocated ones

On-disk have a chain of tables (with head in superblock) for each of these.
Unfortunately this leaves superblock and inode-table vulnerable to head crashes so
we must replicate in practice. In fact, now a wide range of Unix filesystems that are

completely different; e.qg., log-structure

MOUNTING FILESYSTEMS

Entire filesystems can be

must mount a root filesystem

et i _Root File-System , _________ Mount
mounted on an existing dlrectory: / : Poins
in an already mounted : /// '
filesystem , bin/ dev/ etc/ usr/ File-System
: "/ \ | \, on /dev/hda2
At very start, only / exists so A ' /

hdal hda2 hdbl E
Subsequently can mount other
filesystems, e.q.

mount (" /dev/hda2 n ,

"/home", options)

/ \

Provides a unified name-space: e.g. access /home/mort/ directly (contrast with
Windows9x or NT)

Cannot have hard links across mount points: why? What about soft links?

IN-MEMORY TABLES

Recall process sees files as file

process-specific

deSCFIptOrS Process A file tables
o[11 ‘/ \
. . . 1 3
In implementation these are just 223 Process B
indices into process-specific open file 1 H -2
2 62
table 5[s
4 17
N 6
Entries point to system-wide open file —
table. Why7 N[32
These in turn point to (in memory) ' acitve inode table
inode table ‘\\
17 78
) [1node 78
system-wide /' =
open file table

ACCESS CONTROL

Owner | Group | World Owner | Group | World
R WE|R WE]JR WE R WEI|R WEI|R WE

= 0640 = 0755

Access control information held in each inode

e Three bits for each of owner, group and world: read, write and execute
 What do these mean for directories? Read entry, write entry, traverse directory

In addition have setuid and setgid bits:

e Normally processes inherit permissions of invoking user

e Setuid/setgid allow user to "become” someone else when running a given
program

e E.g. prof owns both executable test (0711 and setuid), and score file (0600)

CONSISTENCY ISSUES

To delete a file, use the unlink system call — from the shell, this is rm
<filename>

Procedure is:

o Check if user has sufficient permissions on the file (must have write access)
Check if user has sufficient permissions on the directory (must have write access)
If ok, remove entry from directory

Decrement reference count on inode

If now zero: free data blocks and free inode

If crash: must check entire filesystem for any block unreferenced and any block
double referenced

Crash detected as OS knows if crashed because root fs not unmounted cleanly

UNIX FILESYSTEM: SUMMARY

e Files are unstructured byte streams

e Everything is a file: "normal” files, directories, symbolic links, special files
 Hierarchy built from root (/)

e Unified name-space (multiple filesystems may be mounted on any leaf directory)
e Low-level implementation based around inodes

 Disk contains list of inodes (along with, of course, actual data blocks)

e Processes see file descriptors: small integers which map to system file table

e Permissions for owner, group and everyone else

e Setuid/setgid allow for more flexible control

e (Care needed to ensure consistency

SUMMARY

Introduction
Design Principles

= Structural, Files, Directory Hierarchy
Filesystem

= Files, Directories, Links, On-Disk Structures

= Mounting Filesystems, In-Memory Tables, Consistency
e Summary

