Mobile and Sensor Systems

Lecture 7: Mobile Privacy
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Mobile and Sensor Privacy

* |n this lecture we will discuss some issues and
solutions related to mobile systems and loT and
sensor data privacy.
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Mobile Phone Data

 Mobile phones generate user data which can reveal a lot
about the user

* Where does this data go?

 Initially collected by a few “trusted” companies

 More and more smaller companies have built their
business model around data
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App Data Gathering

* More often than not apps collect sensing data beyond its
technical needs (for advertising purposes)
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Where does the data go”

* The app collects location. Does it then go to:
— Location services
— Advertisers
— Developers

— The OS does not offer support to know this...
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Permissions: Android
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Permissions: i0OS

* Apple doing the vetting
* Now notifying users about location data usage
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Privacy Data Breach Detection

« Monitor behavior of apps to determine when privacy sensitive
iInformation leaves the phone.

« Data Flow Analysis (DFA): looks for routes between data
sources and sinks

— Any of these routes without user consent is classified as leak

o (Capability Leak:
— Explicit: malicious app manages to hijack permissions
granted to other trusted apps

— eg apps could at some point have sharedUserID: apps by
same developer have same ID so permissions for that ID
were shared
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Sources and Sinks

Sources

Location Data: GPS, last base station location, WLAN

Unique,Identifiers: IMEI, IMSI

Authentication,Data: Cashed password data

Contact and Calendar, Contacts, address and schedule

Call State, Start and end of incoming call, number of incoming call

Sinks

SMS, Communication: data can be transferred by SMS

File Output: Applications can write data to files that are globally readable

Network: Applications can access network by sockets or HTTP

Intents, objects: applications can send data objects to other apps

Content, Resolver Apps can use API to edit shared memory of device
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Static Analysis

« Static Analysis covers all the paths from sources to sinks
— Takes much longer than dynamic analysis (next slide)
— No time or efficiency overhead (done offline)
— Example (LeakMiner):
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Dynamic Analysis: TaintDroid

e Challenges ...
o Smartphones are resource constrained

o Third-party applications are entrusted with several
types of privacy sensitive information

o Context-based privacy information is dynamic
o Applications can share information

o TaintDroid is a modification to the Android OS which
allows for dynamic tracking of sensitive data movements

from an app to other apps and sinks
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TaintDrold

« TaintDroid automatically labels data from privacy-sensitive
sources and transitively applies labels as sensitive data

propagates through program variables, files, and
interprocess messages.

* When tainted data are transmitted over the network, or
otherwise leave the system, TaintDroid logs the data
labels, the application responsible for transmitting the
data, and the data destination.
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Cellular Network Leaks

« Various parts of a cellular network are prone to leaks and
attacks...

S ISC
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Cellular Network Leaks

« Mobile devices roam around and register with BTSs: they
can be identified from these records and pre-existing
location profiles. One paper identifies 80% of users.

* the network interface itself could in the past allow listening
attacks/leaks (GSM).
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Performance

Table 5: Performance: all four identification periods
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Dec 2004 | Jan 2005
one hour 40.91% 48.98%
one day 65.15% 65.31%
one week 74.24% 75.51%
one month || 77.27% 87.76%

Yoni De Mulder, George Danezis, Lejla Batina, and Bart
Preneel. 2008. Identification via location-profiling in GSM
networks. In Proceedings of the 7th ACM workshop on
Privacy in the electronic society (WPES '08). ACM, New
York, NY, USA, 23-32.
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ocation Data Leaks

« [ocation aware apps collect data which is (sometimes)
provided to third parties

— Advertisement?

« |Location data can be used to infer more personal
information (or user identity from anonymous datasets)

» Profile of users can be built from solely location tracks
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—xamples

o GPS of 172 users find their home location with median
error of 60m.

— Features (last destination of day, long stay, time..)

« Similar features have been used to detect “significant
places” for a user (work, gym etc)

« Speed of travelling/transport modality

 Data can be cross correlated with social network data for
more deanonymization
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And more

* |f the approximate locations of a user's home and workplace
can be deduced from a location trace, then the median size of
the individual’s anonymity set in the U.S. working population is
1, 21 and 34,980, for locations known at the granularity of a
census block, census tract and county respectively.
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WIiFI based Leaks

 WLAN fingerprints can be used to infer social relation
between the users. Applications could determine
configured network lists on devices. Moreover, by
comparing these lists, social relationship between
iIndividuals can also be inferred, such as professional,
family, interest groups and the like.

 Mobile devices broadcast their Wi-Fi information that
contain device ID or MAC address, it is possible for
adversaries to track locations of devices.

« Users’ names can also be detected by analyzing
applications, websites and ad content in traffic data
through WiFi hot-spots
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WiFI based Leaks (2)

« By having WiFi connection info, applications can get the
MAC address of devices, which is a unique ID. Since this
ID is permanent, it allows third parties to track users.

« Applications can also learn about the last scanned list of
WiFi hot spots. This includes MAC address, name, signal
strength, operating channels and so on. This information
can later be used to geo-locate user positions.
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Mobile Sensing Leaks

« Sensors are powerful (eg mood automatic recognition)

» Accelerometer is different on all devices (so it can be used
as a “device signature”).

« Or it can be used to identify different users of same device

« Touch sensor usage behaviour, keying behaviour can give
away user identity
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Mobile Sensing De-anonymization

« Evenin large anonymized datasets there is a risk that a
user can be identified.

— Example of the Netflix challenge
— Mobile sensing datasets exhibit data “sparsity”

« With some user information it is possible to single out the
user in a dataset that just contains activity profiles of users.
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De-anonimyzation

+ Netflix type datasets contains narrow range of behaviour
(preferences of movies)

« Sensing data contain a wider range:

« (Correlation of activities can be a “key”
— Eg you go to the gym at a certain time after a train ride
— This increases data sparsity

— Broad range of auxiliary information which can be used
by an adversary
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—xample

« Auxiliary information of the adversary is a collection of

activities by a user.

« Aim: ldentify which of the anonymized activity streams
belongs to the target user.

* Auxiliary information may be collected by observing the

user or from available public sources.
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loT Devices...

loT devices in our homes sense our behaviour constantly.
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loT network addresses
can be revealing...

Avg # Packet/H
(log10)

AMazon domain23

“Our findings indicate that millions of
loT devices are detectable and
identifiable within hours, both at a
major ISP as well as an IXP, using
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Solutions”?

* Recognizing the problem is a good start...
 TJraffic patterns obfuscation should help

 Technical solution to this is not hard
— Flighting the business model: governance?
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Mobillity Prediction

« (iven user patterns are highly regular, a user can not only
be identified in a dataset but his previous patterns can be
used to predict her future movements

* |n addition her friends patterns if known can considerably
ald this prediction

8 UNIVERSITY OF

&% CAMBRIDGE 30



Different Types of Prediction

« Location can be:
— Logical location (workplace, home)
— Geographic location
 Discrete areas (e.g., square in a grid)
« GPS locations
* Not only where but also when
— Spatio-temporal prediction is hard
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Various Prediction
Technigues

* Techniques forecast

— the next location of
a user

— his/her arrival and
residence time, i.e.,
the interval of time
spent at that
location.
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Prediction through
correlated movement

« Analysis of the correlation of mobility patterns of the users
« Movement correlation is measured through mutual

iInformation
* The resulting network can be considered as a network of
“movements”
8 UNIVERSITY OF [De Domenico et al 2011]
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Video...
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Summary

* \We have described various privacy issues related to
mobile devices and shown how they could be addressed.

« Challenges we discussed were
— Systems related
— Sensing related
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