Mobile and Sensor Systems

Lecture 6: Mobile Sensing Energy and
Systems Considerations

Prof Cecilia Mascolo

55 UNIVERSITY OF
4P CAMBRIDGE

In this Lecture

* We will study approaches to preserve energy in mobile
sensing systems

« We will look at aspects of local versus cloud computation

* We will look at how machine learning can be used on
mobile/wearable/powered devices

‘B UNIVERSITY OF

&% CAMBRIDGE

Devices have various proCcessors

« Locally ...and remotely (cloud)
« T[rading these off vs power is important

= DSP £

5 UNIVERSITY OF
P CAMBRIDGE :

MAUI

 MAUI is a mobile device framework which profiles code
components in terms of energy to decide if to run them
locally or remotely (considering latency requirements).

— Costs related to the transfer of code/data

— Programming framework

— Dynamic decisions based on network constraints
— CPU only

‘B UNIVERSITY OF

4% CAMBRIDGE [Cuervo et al 2010]

MAUI Offloading

35 - 60 - 150 -
B Smartphone only
30 4 & MAUI (Wi-Fi, 10ms RTT)
@ MAUI (Wi-Fi, 25ms RTT) 120 A
=25 - £2 MAUI (Wi-Fi, 50ms RTT) — —
9 = MAUI (Wi-Fi, 100ms RTT) 3 40 A B
320 - © MAUI* (3G, 220ms RTT) 3 3 01
815 1 B B g -
10 S 20 1 &
5 | 30 A

ONE RUN FACE RECOGNITION 400 FRAMES of VIDEO GAME 30 MOVE CHESS GAME

Figure 9: A comparison of MAUI’s energy consumption. We compare the energy consumption of running three applications standalone
on the smartphone versus using MAUI for remote execution to servers that are successively further away (the RTT is listed for each case).
The graph on the left shows one run of the face recognition application; the graph in the middle shows running the video game for
400 frames; the graph on the right shows running the chess game for 30 moves. MAUI" is a slight modification to MAUI to bypass the
optimizer and to always offload code. Without this modification, MAUI would have not performed code offload in the case of the video
game and chess because offload ends up hurting energy performance.

MAUI would not

UNIVERSITY OF perform offloading
CAMBRIDGE with 3G...

Continuous Audio Sensing Applications

DD waese TN

/ \-\/
Emotion recognition Speaker count Speaker identification
Gender estimation Ambient sound detection

B UNIVERSITY OF

4% CAMBRIDGE

Sensor apps

J

—0O Overview

g!) Sensor Job Buffer
Workload
Qg_) Monitor - EDjj
Q — Resource LPU
g Monitor Scheduler
UNIVERSITY OF

' CAMBRIDGE

158l
(@)
)
C

(ANNN

Tasks

[Georgiev et al 2010]

L ow overhead

* UuSses heuristics (fast runtime)
* runs on the LPU (low energy)

10 app ~100 ms <0.5% VS.
workload

scheduling in cloud
(next best alternative)

g_ UNIVERSITY OF
» CAMBRIDGE

Optimized GPU is

Optimized GPU is >6x faster than cloud

—fficient

_14F ' .
& 12 I | nGPU= naive GPU
O 10 I | usage
E 08 B -1 aGPU=optimized
.'E 06 use of GPU
s 0.4
X 0.2
0.0
@'5 UNIVERSITY OF Keyword Spotting application
P CAMBRIDGE

[Georgiev et al 2017]

Optimized GPU is

—fficient

Optimized GPU with batching outperforms cloud energy-wise

- % - 5Mbps
—&— 10Mbps

20Mbps

02 4 6 8 101214161820
Batch Size (seconds)

g 5 UNIVERSITY OF Keyword Spotting classification

CAMBRIDGE

Machine Learning for Mobiles

* We have seen in the previous lecture that sensor data can
be analysed offline with machine learning

* This allows rich applications and understanding of user
behaviour

8 UNIVERSITY OF

&% CAMBRIDGE

Could We Perform
INnference On Device?

« Machine Learning models are often built with little
consideration of system resources...
« AlphaGo: 1920 CPUs and 280 GPUs, $3000 in electricity

per game...mhhhh.

‘B UNIVERSITY OF

&% CAMBRIDGE

Resource Usage of Activity
Recognition Models

Vanilla AE - Raw Conv. AE - Raw Deep ConvLSTM Recurrent AE (LSTM) - Raw
50 Vanilla AE - ECDF ECDF features Statistical features Recurrent AE (GRU) - Raw

N w =
(=} < <

Memory footprint on disk (MB)

=
o

Opportunity PAMAP2 USC-HAD Daphnet FoG
Dataset

Figure 5: Amount of memory required to store models for
computing representations on different datasets.

Zeng, M., Yu, T., Wang, X., Nguyen, L. T., Mengshoel, O. J., & Lane, I. (2017, December).
UNIVERSITY OF Semi-supervised convolutional neural networks for human activity recognition. In 2017 |EEE

.- C AM BRIDGE International Conference on Big Data (Big Data) (pp. 522-529). IEEE. 13

Why Perform Inference On Device

« Performing Inference on device would allow for data not to
flow out of devices...(privacy)

« Limit how much bandwidth is used to send data out (at
the cost of processing usage for inference). ..

* Applications:
— Video applications on image sensors for traffic
characterization (comms costs reduced)

— Drone/robot navigation local processing for low latency
and security

Thinking of trade offs is essential.

‘B UNIVERSITY OF

P CAMBRIDGE

Resource requirements

Layer type Tunable Time
parameters | (%)
1 Convolution 34,944 37.20
2 Non-linear - 0.05
180 1.0 3 Normalization - 0.12
o 08 4 Pooling - 0.15
] T d ﬁ ' gm0 €, 5 Convolution 307,456 2.05
ra eo S - Z;?‘gg §os 6 Non-linear - 0.05
=% o 7 | Normalization - 0.21
2 8 Pooling - 1.11
- ACC u I’aCy pel’ E . TIEisumwB O RA WTTsassrssenew 9 | Convolution 885,120 30.89
(a) AlexNet (b) SVHN 10 Non-linear - 0.46
11 Convolution 663,936 13.56
— Memo ry / laten cy. : 12 | Non-linear : 0.08
' 50 o 13 | Convolution 442,624 7.45
9 oo 14 | Non-linear - 0.38
" " . 5., §o4 15 Pooling - 0.74
¢ C O n S I d e rat I O n S . 02 02 16 | Feed-forward 37,752,832 0.49
00 1 2 3 4 5 6 7 8 9 101 00 1 2 3 4 5 6 7 8 9 101 17 Non_linea'r - 0'15
Layers Layers 18 Dropout - 0.06
—_— M e m O ry (c) DeepEar (emotion only) (d) Deep KWS 19 | Feed-forward 16,781,312 0.19
) Figure 6: Memory requirements during inference on a per layer 20 Non-linear - 0.14
basis; only the layers of the model being operated upon are left in 21 Dropout - 0.07
_ E n e r memory to lower requirements. (Execution on Snapdragon CPU). 22 | Feed-forward 4,097,000 4.34
g y- 22 Softmax - 0.06

Table 5: Layer-by-layer runtime performance of AlexNet.

— Latency.

Tegra Snapdragon Edison

CPU GPU CPU DSP CPU

Deep KWS 0.8 1.1 7.1 7.0 63.1
DeepEar 6.7 3.2 71.2 | 379.2 109.0
AlexNet 600.2 | 49.1 | 159,383.1 - | 283,038.6
SVHN 15.1 2.8 1,616.5 - 3,562.3

Table 3: Execution Time (msec.)

Tegra Snapdragon | Edison
CPU GPU | CPU DSP CPU
Deep KWS | 14.34 9.16 5.00 | 134.41 27.78

DeepEar 21.74 | 22.02 | 16.93 | 342.47 30.99
AlexNet 3.49 | 10.36 | 3.80 - 13.88
SVHN 13.98 | 14.81 3.97 - 15.38

UNIVERSITY OF
CAMBRIDGE

[Lane et al 2015]

Table 4: Battery Life Estimate (hrs.)

How to iImprove
resource tradeoffs?

General methods

— Pruning — removing excess parameters.

— Quantization — decreasing parameter precision.
Fully connected layers

— Weight factorization — low rank approximation.
Architecture innovations

Other paths to resource efficiency.

5B UNIVERSITY OF [Sze et al]

% CAMBRIDGE

2runing

* Pruning removes, sets to zero, weights in NN base on
a pre-defined heuristic. Magnitude (abs. value) is the

most used criterion. It performs as well as a random
criterion.

before pruning after pruning
6400

6400

4800 . 4800
pruning __ _

synapses
3200 ynap

Count

3200

Count

1600 1600

pruning N

-0. neurons

0.05

05 0 -0. 0.05
Weight Value

05 0
Weight Value

« Re-training is necessary to regain performance ...

gﬁ UNIVERSITY OF
P CAMBRIDGE

2runing

* Pruning followed by re-training performs very well and
doing it iteratively is best...

-O-L2 regularization w/o retrain ~4-L1 regularization w/o retrain
L1 regularization w/ retrain -0~ L2 regularization w/ retrain
~®-2 regularization w/ iterative prune and retrain

0.5%
00% g ; — o<
05% | T L =

1.0% oL -
1.5% -
-2.0% 5
-2.5%
-3.0%
-3.5% .
-4.0% b

-4.5%
40% 50% 60% 70% 80% 90% 100%

Parametes Pruned Away

Accuracy Loss

g- UNIVERSITY OF [Han et al 2015]
P CAMBRIDGE

Quantization

Is a lower precision representation of trained parameters.
« Post-training quantization.

— Usually applied after pruning.

— Varied options:

Weight distribution after pruning

* K-means - o0
* Hashing T
 Huffman Coding ~= °

2000

ol l IIIIJ)H ‘Il

0.1 0.2 -0.2 A 0
Weight Value

500

« Weight Sharing
* TJraining quantized models.

— Networks are quantized at each step in the training process
at the forward pass (but leaving the back propagation
parameters in higher precision): this limits accuracy loss.

gﬂ UNIVERSITY OF
P CAMBRIDGE

|llll
1

0

-0.2 0.2

-0.1 0
Weight Value

Training quantized models

« At train time quantization is achieved by:
— Truncation

— (Stochastic) Rounding

« MNIST dataset

fully connected DNNs

UNIVERSITY OF
CAMBRIDGE

Training error

Training error

Rlound 'fo nealrest, WL = 1|6

0.01 |

0.001 |

0.0001 L
@0 5 10 15 20 25 30

Training epoch

Stcl)chastlic rourl1dinq,|WL =|1 6

Training epoch

Test error(%)

Test error(%)

Round to nearest, WL = 16
1 g I I I I

5 10 15 20 25 30
Training epoch

Sltochasltic rourl1dinq, YVL = 116

Training epoch

FL 14
FL10
FL 8
Float

FL 14
FL10
FL 8
Float

Binary Weight Networks (BVWNSs)

« Weights set to {-a, + a} set based on original layer

values.

« Activations and last layer are 32-bit.

Network Variations Operations

used in Saving

Real-Value Inputs
Standard Real-Value Weights

Convolution |9 11-0.21 -0.34"" 012 12 5 041"
-0.250.61 ... 0.52~ 24 0 .

+,—-,X 1x

Real-Value Inputs
Binary Weights

r- | o

Binary Weight | .11 -0.21 . -0.34"

-0.250.61 ... 0.52°"
Binary Inputs)
BinaryWeight ! Binary Weights XNOR
Binary Input 1104 . ’ ~32X
(XNOR-Net) 1.1 bitcount

5 UNIVERSITY OF
CAMBRIDGE

Memory | Computation ' Accuracy on
Saving
Convolution | (Inference) @ (Inference)

1x

~2X

~58x

ImageNet .
(AlexNet)

|]
%56.8 « B F
%44.2 L -

[Rastegari et al 2016]

How to Improve
resource tradeoffs?

General methods
— Pruning — removing excess parameters.
— Quantization — decreasing parameter precision.
DNN computation improvements
— Weight factorization — low rank approximation.
Architecture Innovations
Other paths to resource efficiency.

‘B UNIVERSITY OF

&% CAMBRIDGE

SVD weight approximation

h

L L L
T
%% -
H | -
| |
| H
3]
N []
X 1 m X k n x 1

%IXIIQI/I%{IS{IITSC(;)E [S. Bhattacharya et al 2016]

SVD weight approximation

Before

gﬁg UNIVERSITY OF
P CAMBRIDGE

SVD weight approximation

h

L L x
T
w 0
O V N
|]
. ﬁ .
| -~ ° o
- ~y .
B]
x 1 m X k n X
Total Operations:mxnx1 Total Operationsimxkx1+kxnx1
mXxn
Memory & compute savings if: k <
m+n

UNIVERSITY OF
¥ CAMBRIDGE

1

SVD weight approximation

Ambient scene analysis and speaker detection tasks.

o Oneiedon o S8R o OnamM0 o Gonex M
3 S s S s ST N
7 v LCC+CSR v LCC +CSR (f)
10 — T I R LA B B
10° 2-4% accuracy | : S N\
drop I I
105 1 1 <F I
1 1 1
= 10 | b O
N I '
> 103 ! I Cortex
1 1
g : : M3/MO
2 1 1 1
UCJ 10 1 1 1
1 1 1
10! . : |
0 ® : : :
10" F L | . : ! P
& I I I
10-1 . L ARM Cortex M3 ARM Cortex MO

10t 10° 10 10° 10° 10* 10° 10° 107 108
Latency (msec)

g_ UNIVERSITY OF
P CAMBRIDGE

How to Improve
resource tradeoffs?

General methods
— Pruning — removing excess parameters.
— Quantization — decreasing parameter precision.
Fully connected layers
— Weight factorization — low rank approximation.
Architecture Innovations
Other paths to resource efficiency.

‘B UNIVERSITY OF

&% CAMBRIDGE

MobileNets

« Aimed to build small and low latency models

* |t works on simplifying the way kernel multiplications work
and uses “depthwise separable convolutions”

g-ﬁ UNIVERSITY OF

P CAMBRIDGE

Traditional Convolutions

 Traditional image convolutions

8

) @ .
3 1

12 &
12 @
256
s 8
12

UNIVERSITYOF From https://towardsdatascience.com/a-basic-introduction-
& CAMBRIDGE to-separable-convolutions-b99ec3102728 29

Depthwise and Pointwise Separable
Convolutions

e
— 108

B UNIVERSITY OF From https://towardsdatascience.com/a-basic-introduction-
3 CAMBRIDGE to-separable-convolutions-b99ec3102728 30

What’s the saving?

* |n the example we had:

 For traditional convolutions; 256 5x5x3 kernels that move
8x8 times. That’s 256x3x5x5x8x8=1,228,800
multiplications.

* In depthwise convolution, we have 3 5x5x1 kernels that
move 8x8 times. That’s 3x5x5x8x8 = 4,800 multiplications.
In the pointwise convolution, we have 256 1x1x3 kernels
that move 8x8 times. That’s 256x1x1x3x8x8=49,152
multiplications. Adding them up together, that’s 563,952
multiplications.

‘B UNIVERSITY OF

P CAMBRIDGE

Other parts towards efficiency

« Commodity processors and accelerators
— The elephant in the room In this discussion.

of Publications over the Years

10 B Micro
8 B ISCA
6 —
4
2
O B
° System_|eve| So|utions 2010 2011 2012 2013 2014 2015 2016
— Including runtime.
« (Cross Models Optimization
‘Kr rewH Hexagon DSP‘
Kr: re 2 Adreno GPU
H |[emorv—coes| ooy
LEO / Kr: re 4 BT, FM, USB

SCHEDULER | S

g. UNIVERSITY OF
P CAMBRIDGE

Summary

* We have looked at on device computation vs offloading to
cloud/edge

* We have studied how local resources and cloud offloading
have an impact on energy efficiency and could be used to
Improve it.

* We have explored the trade offs of accuracy and energy

and the technigues which can improve machine learning
on device.

[thanks to Prof Nic Lane for some material]

‘B UNIVERSITY OF

&% CAMBRIDGE

References

. E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R. Chandra, P. Bahl. 2010. MAUI: making
smartphones last longer with code offload. In Proceedings of MobiSys '10.

. P. Georgiev, N. Lane, K. Rachuri, C. Mascolo. 2016. LEO: scheduling sensor inference algorithms across
heterogeneous mobile processors and network resources. In Proceedings of MobiCom ‘16.

. P.. Georgiev, N. Lane, C. Mascolo, D. Chu. Accelerating Mobile Audio Sensing Algorithms through On-Chip GPU
Offloading. In Proceedings of 15th ACM International Conference on Mobile Systems, Applications and Services
(Mobisys 2017). Niagara Falls, NY. USA. June 2017.

. N. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, F. Kawsar. 2015. An Early Resource Characterization of Deep
Learning on Wearables, Smartphones and Internet-of-Things Devices. In Workshop on Internet of Things towards
Applications 2015.

. S. Bhattacharya, N. Lane. 2016. Sparsification and Separation of Deep Learning Layers for Constrained Resource
Inference on Wearables. In Procs of the ACM SenSys ‘16.

. S Han, J Pooal, J Tran, W Dally. Learning both Weights and Connections for Efficient Neural Network. Advances in
Neural Information Processing Systems (NIPS), 1135-1143.

. S. Gupta, A. Agrawal, K. Gopalakrishnan, P. Narayanan. 2015. Deep learning with limited numerical precision. In
Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37
(ICML'15),.

. Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: Imagenet Classification Using
Binary Convolutional Neural Networks. ECCV 2016.

. V. Sze and Y/ Chen and T.Yang, J. Emer. Efficient Processing of Deep Neural Networks: A Tutorial and Survey.
https://arxiv.org/abs/1703.09039
. Andrew G. Howard Menglong Zhu Bo Chen Dmitry Kalenichenko Weijun Wang Tobias Weyand Marco Andreetto

Hartwig Adam MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.
https://arxiv.org/pdf/1704.04861.pdf

gug UNIVERSITY OF
P CAMBRIDGE 34

https://arxiv.org/abs/1703.09039
https://arxiv.org/pdf/1704.04861.pdf

