
Mobile and Sensor Systems

Lecture 6: Mobile Sensing Energy and
Systems Considerations

Prof Cecilia Mascolo

In this Lecture

• We will study approaches to preserve energy in mobile
sensing systems

• We will look at aspects of local versus cloud computation
• We will look at how machine learning can be used on

mobile/wearable/powered devices

2

Devices have various processors
• Locally …and remotely (cloud)
• Trading these off vs power is important

3

MAUI
• MAUI is a mobile device framework which profiles code

components in terms of energy to decide if to run them
locally or remotely (considering latency requirements).
– Costs related to the transfer of code/data
– Programming framework
– Dynamic decisions based on network constraints
– CPU only

4[Cuervo et al 2010]

MAUI Offloading

5

MAUI would not
perform offloading
with 3G…

Continuous Audio Sensing Applications

Emotion recognition Speaker count Speaker identification

Gender estimation Ambient sound detection

LEO Overview
Sensor apps

Workload
Monitor

Sensor Job Buffer

LPU
Scheduler

Resource
Monitor

Tasks

[Georgiev et al 2016]

Low overhead

• uses heuristics (fast runtime)
• runs on the LPU (low energy)

10 app
workload

~100 ms <0.5% vs. ~3.5%

scheduling in cloud
(next best alternative)

Optimized GPU is Efficient
Optimized GPU is >6x faster than cloud

Keyword Spotting application

nGPU= naïve GPU
usage
aGPU=optimized
use of GPU

[Georgiev et al 2017]

Optimized GPU is Efficient

Keyword Spotting classification

Optimized GPU with batching outperforms cloud energy-wise

Machine Learning for Mobiles

• We have seen in the previous lecture that sensor data can
be analysed offline with machine learning

• This allows rich applications and understanding of user
behaviour

Could We Perform
Inference On Device?

• Machine Learning models are often built with little
consideration of system resources…

• AlphaGo: 1920 CPUs and 280 GPUs, $3000 in electricity
per game…mhhhh.

Resource Usage of Activity
Recognition Models

13

Zeng, M., Yu, T., Wang, X., Nguyen, L. T., Mengshoel, O. J., & Lane, I. (2017, December).
Semi-supervised convolutional neural networks for human activity recognition. In 2017 IEEE
International Conference on Big Data (Big Data) (pp. 522-529). IEEE.

Why Perform Inference On Device

• Performing Inference on device would allow for data not to
flow out of devices…(privacy)

• Limit how much bandwidth is used to send data out (at
the cost of processing usage for inference)…

• Applications:
– Video applications on image sensors for traffic

characterization (comms costs reduced)
– Drone/robot navigation local processing for low latency

and security
• Thinking of trade offs is essential.

Resource requirements

• Tradeoffs:
– Accuracy per £.
– Memory / latency.

• Considerations:
– Memory.
– Energy.
– Latency.

[Lane et al 2015]

• General methods
– Pruning – removing excess parameters.
– Quantization – decreasing parameter precision.

• Fully connected layers
– Weight factorization – low rank approximation.

• Architecture innovations
• Other paths to resource efficiency.

How to improve
resource tradeoffs?

[Sze et al]

Pruning

• Pruning removes, sets to zero, weights in NN base on
a pre-defined heuristic. Magnitude (abs. value) is the
most used criterion. It performs as well as a random
criterion.

• Re-training is necessary to regain performance …

Pruning
• Pruning followed by re-training performs very well and

doing it iteratively is best…

[Han et al 2015]

Quantization
Is a lower precision representation of trained parameters.
• Post-training quantization.

– Usually applied after pruning.
– Varied options:

• K-means
• Hashing
• Huffman Coding
• Weight Sharing

• Training quantized models.
– Networks are quantized at each step in the training process

at the forward pass (but leaving the back propagation
parameters in higher precision): this limits accuracy loss.

Training quantized models
• At train time quantization is achieved by:

– Truncation
– (Stochastic) Rounding

• MNIST dataset
fully connected DNNs

Binary Weight Networks (BWNs)
• Weights set to {-𝛂, + 𝛂} set based on original layer

values.
• Activations and last layer are 32-bit.

[Rastegari et al 2016]

• General methods
– Pruning – removing excess parameters.
– Quantization – decreasing parameter precision.

• DNN computation improvements
– Weight factorization – low rank approximation.

• Architecture Innovations
• Other paths to resource efficiency.

How to improve
resource tradeoffs?

SVD weight approximation

⇡

U

V

xL

· ·
m⇥ k

k ⇥ n

n⇥ 1

WL xL

·
m⇥ n n⇥ 1

[S. Bhattacharya et al 2016]

SVD weight approximation

WL

xL

xL+1

Before

U

V

xL+1

xL

New
Inserted

Layer

After

SVD weight approximation

⇡

Total Operations: m x k x 1 + k x n x 1

U

V

xL

· ·
m⇥ k

k ⇥ n

n⇥ 1

Total Operations: m x n x 1

WL xL

·
m⇥ n n⇥ 1

Memory & compute savings if:𝑘 < !×#
!$#

SVD weight approximation

ARM Cortex M3 ARM Cortex M0

32 KB 16 KB

2-4% accuracy
drop

Ambient scene analysis and speaker detection tasks.

Cortex
M3/M0

• General methods
– Pruning – removing excess parameters.
– Quantization – decreasing parameter precision.

• Fully connected layers
– Weight factorization – low rank approximation.

• Architecture Innovations
• Other paths to resource efficiency.

How to improve
resource tradeoffs?

MobileNets
• Aimed to build small and low latency models

• It works on simplifying the way kernel multiplications work
and uses “depthwise separable convolutions”

28

Traditional Convolutions
• Traditional image convolutions

29

From https://towardsdatascience.com/a-basic-introduction-
to-separable-convolutions-b99ec3102728

Depthwise and Pointwise Separable
Convolutions

30
From https://towardsdatascience.com/a-basic-introduction-
to-separable-convolutions-b99ec3102728

What’s the saving?
• In the example we had:
• For traditional convolutions: 256 5x5x3 kernels that move

8x8 times. That’s 256x3x5x5x8x8=1,228,800
multiplications.

• In depthwise convolution, we have 3 5x5x1 kernels that
move 8x8 times. That’s 3x5x5x8x8 = 4,800 multiplications.
In the pointwise convolution, we have 256 1x1x3 kernels
that move 8x8 times. That’s 256x1x1x3x8x8=49,152
multiplications. Adding them up together, that’s 53,952
multiplications.

31

Other parts towards efficiency
• Commodity processors and accelerators

– The elephant in the room in this discussion.

• System-level Solutions
– Including runtime.

• Cross Models Optimization
Krait CPU — Core 1 Hexagon DSP

Krait CPU — Core 2

Krait CPU — Core 3

Krait CPU — Core 4

Adreno GPU

Connectivity
4G LTE, WiFi
BT, FM, USBLEO

SCHEDULER

Summary
• We have looked at on device computation vs offloading to

cloud/edge
• We have studied how local resources and cloud offloading

have an impact on energy efficiency and could be used to
improve it.

• We have explored the trade offs of accuracy and energy
and the techniques which can improve machine learning
on device.

[thanks to Prof Nic Lane for some material]

33

References
• E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R. Chandra, P. Bahl. 2010. MAUI: making

smartphones last longer with code offload. In Proceedings of MobiSys '10.
• P. Georgiev, N. Lane, K. Rachuri, C. Mascolo. 2016. LEO: scheduling sensor inference algorithms across

heterogeneous mobile processors and network resources. In Proceedings of MobiCom ‘16.
• P.. Georgiev, N. Lane, C. Mascolo, D. Chu. Accelerating Mobile Audio Sensing Algorithms through On-Chip GPU

Offloading. In Proceedings of 15th ACM International Conference on Mobile Systems, Applications and Services
(Mobisys 2017). Niagara Falls, NY. USA. June 2017.

• N. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, F. Kawsar. 2015. An Early Resource Characterization of Deep
Learning on Wearables, Smartphones and Internet-of-Things Devices. In Workshop on Internet of Things towards
Applications 2015.

• S. Bhattacharya, N. Lane. 2016. Sparsification and Separation of Deep Learning Layers for Constrained Resource
Inference on Wearables. In Procs of the ACM SenSys ‘16.

• S Han, J Pool, J Tran, W Dally. Learning both Weights and Connections for Efficient Neural Network. Advances in
Neural Information Processing Systems (NIPS), 1135-1143.

• S. Gupta, A. Agrawal, K. Gopalakrishnan, P. Narayanan. 2015. Deep learning with limited numerical precision. In
Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37
(ICML'15),.

• Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: Imagenet Classification Using
Binary Convolutional Neural Networks. ECCV 2016.

• V. Sze and Y/ Chen and T.Yang, J. Emer. Efficient Processing of Deep Neural Networks: A Tutorial and Survey.
https://arxiv.org/abs/1703.09039

• Andrew G. Howard Menglong Zhu Bo Chen Dmitry Kalenichenko Weijun Wang Tobias Weyand Marco Andreetto
Hartwig Adam MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.
https://arxiv.org/pdf/1704.04861.pdf

34

https://arxiv.org/abs/1703.09039
https://arxiv.org/pdf/1704.04861.pdf

