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In this Lecture

• We will study approaches to preserve energy in mobile 
sensing systems

• We will look at aspects of local versus cloud computation
• We will look at how machine learning can be used on 

mobile/wearable/powered devices
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Devices have various processors
• Locally …and remotely (cloud)
• Trading these off vs power is important

3



MAUI
• MAUI is a mobile device framework which profiles code 

components in terms of energy to decide if to run them 
locally or remotely (considering latency requirements).
– Costs related to the transfer of code/data
– Programming framework
– Dynamic decisions based on network constraints
– CPU only

4[Cuervo et al 2010]



MAUI Offloading

5

MAUI would not 
perform offloading 
with 3G…



Continuous Audio Sensing Applications

Emotion recognition Speaker count Speaker identification

Gender estimation Ambient sound detection



LEO Overview
Sensor apps

Workload
Monitor

Sensor Job Buffer

LPU 
Scheduler

Resource
Monitor

Tasks

[Georgiev et al 2016]



Low overhead

• uses heuristics (fast runtime)
• runs on the LPU (low energy)

10 app
workload

~100 ms <0.5% vs. ~3.5%

scheduling in cloud
(next best alternative)



Optimized GPU is Efficient
Optimized GPU is >6x faster than cloud

Keyword Spotting application

nGPU= naïve GPU 
usage
aGPU=optimized 
use of GPU

[Georgiev et al 2017]



Optimized GPU is Efficient

Keyword Spotting classification

Optimized GPU with batching outperforms cloud energy-wise



Machine Learning for Mobiles

• We have seen in the previous lecture that sensor data can 
be analysed offline with machine learning

• This allows rich applications and understanding of user 
behaviour



Could We Perform 
Inference On Device?

• Machine Learning models are often built with little 
consideration of  system resources…

• AlphaGo: 1920 CPUs and 280 GPUs, $3000 in electricity 
per game…mhhhh.



Resource Usage of Activity 
Recognition Models
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Zeng, M., Yu, T., Wang, X., Nguyen, L. T., Mengshoel, O. J., & Lane, I. (2017, December). 
Semi-supervised convolutional neural networks for human activity recognition. In 2017 IEEE 
International Conference on Big Data (Big Data) (pp. 522-529). IEEE.



Why Perform Inference On Device

• Performing Inference on device would allow for data not to 
flow out of devices…(privacy)

• Limit how much bandwidth is used to send data out (at 
the cost of processing usage for inference)…

• Applications: 
– Video applications on image sensors for traffic 

characterization (comms costs reduced)
– Drone/robot navigation local processing for low latency 

and security
• Thinking of trade offs is essential. 



Resource requirements

• Tradeoffs:
– Accuracy per £.
– Memory / latency.

• Considerations:
– Memory.
– Energy.
– Latency.

[Lane et al 2015]



• General methods
– Pruning – removing excess parameters.
– Quantization – decreasing parameter precision.

• Fully connected layers
– Weight factorization – low rank approximation.

• Architecture innovations
• Other paths to resource efficiency.

How to improve 
resource tradeoffs?

[Sze et al]



Pruning

• Pruning removes, sets to zero, weights in NN base on 
a pre-defined heuristic. Magnitude (abs. value) is the 
most used criterion. It performs as well as a random 
criterion.

• Re-training is necessary to regain performance … 



Pruning
• Pruning followed by re-training performs very well and 

doing it iteratively is best… 

[Han et al 2015]



Quantization
Is a lower precision representation of trained parameters.
• Post-training quantization.

– Usually applied after pruning.
– Varied options:

• K-means
• Hashing
• Huffman Coding
• Weight Sharing

• Training quantized models.
– Networks are quantized at each step in the training process

at the forward pass (but leaving the back propagation
parameters in higher precision): this limits accuracy loss.



Training quantized models
• At train time quantization is achieved by:

– Truncation
– (Stochastic) Rounding

• MNIST dataset
fully connected DNNs



Binary Weight Networks (BWNs)
• Weights set to {-𝛂, + 𝛂} set based on original layer 

values.
• Activations and last layer are 32-bit.

[Rastegari et al 2016]



• General methods
– Pruning – removing excess parameters.
– Quantization – decreasing parameter precision.

• DNN computation improvements
– Weight factorization – low rank approximation.

• Architecture Innovations
• Other paths to resource efficiency.

How to improve 
resource tradeoffs?



SVD weight approximation
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SVD weight approximation
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SVD weight approximation

⇡

Total Operations: m x k x 1 + k x n x 1

U

V

xL

· ·
m⇥ k

k ⇥ n

n⇥ 1

Total Operations: m x n x 1

WL xL

·
m⇥ n n⇥ 1

Memory & compute savings if:𝑘 < !×#
!$#



SVD weight approximation

ARM Cortex M3 ARM Cortex M0

32 KB 16 KB

2-4% accuracy 
drop

Ambient scene analysis and speaker detection tasks. 

Cortex 
M3/M0



• General methods
– Pruning – removing excess parameters.
– Quantization – decreasing parameter precision.

• Fully connected layers
– Weight factorization – low rank approximation.

• Architecture Innovations
• Other paths to resource efficiency.

How to improve 
resource tradeoffs?



MobileNets
• Aimed to build small and low latency models

• It works on simplifying the way kernel multiplications work 
and uses “depthwise separable convolutions”
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Traditional Convolutions
• Traditional image convolutions
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From https://towardsdatascience.com/a-basic-introduction-
to-separable-convolutions-b99ec3102728



Depthwise and Pointwise Separable 
Convolutions
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From https://towardsdatascience.com/a-basic-introduction-
to-separable-convolutions-b99ec3102728



What’s the saving?
• In the example we had:
• For traditional convolutions: 256 5x5x3 kernels that move 

8x8 times. That’s 256x3x5x5x8x8=1,228,800 
multiplications.

• In depthwise convolution, we have 3 5x5x1 kernels that 
move 8x8 times. That’s 3x5x5x8x8 = 4,800 multiplications. 
In the pointwise convolution, we have 256 1x1x3 kernels 
that move 8x8 times. That’s 256x1x1x3x8x8=49,152 
multiplications. Adding them up together, that’s 53,952 
multiplications.
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Other parts towards efficiency
• Commodity processors and accelerators 

– The elephant in the room in this discussion.

• System-level Solutions 
– Including runtime.

• Cross Models Optimization
Krait CPU — Core 1 Hexagon DSP

Krait CPU — Core 2

Krait CPU — Core 3

Krait CPU — Core 4

Adreno GPU

Connectivity
4G LTE, WiFi
BT, FM, USBLEO 

SCHEDULER



Summary
• We have looked at on device computation vs offloading to 

cloud/edge
• We have studied how local resources and cloud offloading 

have an impact on energy efficiency and could be used to 
improve it.

• We have explored the trade offs of accuracy and energy 
and the techniques which can improve machine learning 
on device.

[thanks to Prof Nic Lane for some material]
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