Mobile and Sensor Systems

Lecture 6: Mobile Sensing Energy and
Systems Considerations
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In this Lecture

* We will study approaches to preserve energy in mobile
sensing systems

« We will look at aspects of local versus cloud computation

* We will look at how machine learning can be used on
mobile/wearable/powered devices

‘B UNIVERSITY OF

&% CAMBRIDGE



Devices have various proCcessors

« Locally ...and remotely (cloud)
« T[rading these off vs power is important
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MAUI

 MAUI is a mobile device framework which profiles code
components in terms of energy to decide if to run them
locally or remotely (considering latency requirements).

— Costs related to the transfer of code/data

— Programming framework

— Dynamic decisions based on network constraints
— CPU only
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MAUI Offloading
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Figure 9: A comparison of MAUI’s energy consumption. We compare the energy consumption of running three applications standalone
on the smartphone versus using MAUI for remote execution to servers that are successively further away (the RTT is listed for each case).
The graph on the left shows one run of the face recognition application; the graph in the middle shows running the video game for
400 frames; the graph on the right shows running the chess game for 30 moves. MAUI" is a slight modification to MAUI to bypass the
optimizer and to always offload code. Without this modification, MAUI would have not performed code offload in the case of the video
game and chess because offload ends up hurting energy performance.
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Continuous Audio Sensing Applications
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Sensor apps
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L ow overhead

* UuSses heuristics (fast runtime)
* runs on the LPU (low energy)

10 app ~100 ms <0.5% VS.
workload

scheduling in cloud
(next best alternative)
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Optimized GPU is

Optimized GPU is >6x faster than cloud

—fficient
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Optimized GPU is

—fficient

Optimized GPU with batching outperforms cloud energy-wise
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Machine Learning for Mobiles

* We have seen in the previous lecture that sensor data can
be analysed offline with machine learning

* This allows rich applications and understanding of user
behaviour
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Could We Perform
INnference On Device?

« Machine Learning models are often built with little
consideration of system resources...
« AlphaGo: 1920 CPUs and 280 GPUs, $3000 in electricity

per game...mhhhh.
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Resource Usage of Activity
Recognition Models
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Figure 5: Amount of memory required to store models for
computing representations on different datasets.

Zeng, M., Yu, T., Wang, X., Nguyen, L. T., Mengshoel, O. J., & Lane, I. (2017, December).
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Why Perform Inference On Device

« Performing Inference on device would allow for data not to
flow out of devices...(privacy)

« Limit how much bandwidth is used to send data out (at
the cost of processing usage for inference). ..

* Applications:
— Video applications on image sensors for traffic
characterization (comms costs reduced)

— Drone/robot navigation local processing for low latency
and security

Thinking of trade offs is essential.
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Resource requirements

Layer type Tunable Time
parameters | (%)
1 Convolution 34,944 37.20
2 Non-linear - 0.05
180 1.0 3 Normalization - 0.12
o 08 4 Pooling - 0.15
] T d ﬁ ' gm0 €, 5 Convolution 307,456 2.05
ra eo S - Z;?‘gg §os 6 Non-linear - 0.05
=% o 7 | Normalization - 0.21
2 8 Pooling - 1.11
- ACC u I’aCy pel’ E . TIEisumwB O RA WTTsassrssenew 9 | Convolution 885,120 30.89
(a) AlexNet (b) SVHN 10 Non-linear - 0.46
11 Convolution 663,936 13.56
— Memo ry / laten cy. : 12 | Non-linear : 0.08
' 50 o 13 | Convolution 442,624 7.45
9 oo 14 | Non-linear - 0.38
" " . 5., §o4 15 Pooling - 0.74
¢ C O n S I d e rat I O n S . 02 02 16 | Feed-forward 37,752,832 0.49
00 1 2 3 4 5 6 7 8 9 101 00 1 2 3 4 5 6 7 8 9 101 17 Non_linea'r - 0'15
Layers Layers 18 Dropout - 0.06
—_— M e m O ry (c) DeepEar (emotion only) (d) Deep KWS 19 | Feed-forward 16,781,312 0.19
) Figure 6: Memory requirements during inference on a per layer 20 Non-linear - 0.14
basis; only the layers of the model being operated upon are left in 21 Dropout - 0.07
_ E n e r memory to lower requirements. (Execution on Snapdragon CPU). 22 | Feed-forward 4,097,000 4.34
g y- 22 Softmax - 0.06

Table 5: Layer-by-layer runtime performance of AlexNet.

— Latency.

Tegra Snapdragon Edison

CPU GPU CPU DSP CPU

Deep KWS 0.8 1.1 7.1 7.0 63.1
DeepEar 6.7 3.2 71.2 | 379.2 109.0
AlexNet 600.2 | 49.1 | 159,383.1 - | 283,038.6
SVHN 15.1 2.8 1,616.5 - 3,562.3

Table 3: Execution Time (msec.)

Tegra Snapdragon | Edison
CPU GPU | CPU DSP CPU
Deep KWS | 14.34 9.16 5.00 | 134.41 27.78

DeepEar 21.74 | 22.02 | 16.93 | 342.47 30.99
AlexNet 3.49 | 10.36 | 3.80 - 13.88
SVHN 13.98 | 14.81 3.97 - 15.38
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How to iImprove
resource tradeoffs?

General methods

— Pruning — removing excess parameters.

— Quantization — decreasing parameter precision.
Fully connected layers

— Weight factorization — low rank approximation.
Architecture innovations

Other paths to resource efficiency.
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2runing

* Pruning removes, sets to zero, weights in NN base on
a pre-defined heuristic. Magnitude (abs. value) is the

most used criterion. It performs as well as a random
criterion.
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« Re-training is necessary to regain performance ...
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2runing

* Pruning followed by re-training performs very well and
doing it iteratively is best...

-O-L2 regularization w/o retrain ~4-L1 regularization w/o retrain
L1 regularization w/ retrain -0~ L2 regularization w/ retrain
~®-2 regularization w/ iterative prune and retrain
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Quantization

Is a lower precision representation of trained parameters.
« Post-training quantization.

— Usually applied after pruning.

— Varied options:

Weight distribution after pruning

* K-means - o0
* Hashing T
 Huffman Coding ~= °
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« Weight Sharing
* TJraining quantized models.

— Networks are quantized at each step in the training process
at the forward pass (but leaving the back propagation
parameters in higher precision): this limits accuracy loss.
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Training quantized models

« At train time quantization is achieved by:
— Truncation

— (Stochastic) Rounding

« MNIST dataset

fully connected DNNs
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Binary Weight Networks (BVWNSs)

« Weights set to {-a, + a} set based on original layer

values.

« Activations and last layer are 32-bit.

Network Variations Operations

used in Saving

Real-Value Inputs
Standard Real-Value Weights

Convolution |9 11-0.21 -0.34"" 012 12 5 041"
-0.250.61 ... 0.52~ 24 0 .

+,—-,X 1x

Real-Value Inputs
Binary Weights

r- | o

Binary Weight | .11 -0.21 . -0.34"
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Binary Inputs )
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Binary Input 1104 . ’ ~32X
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How to Improve
resource tradeoffs?

General methods
— Pruning — removing excess parameters.
— Quantization — decreasing parameter precision.
DNN computation improvements
— Weight factorization — low rank approximation.
Architecture Innovations
Other paths to resource efficiency.
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SVD weight approximation
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SVD weight approximation

Before
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SVD weight approximation
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SVD weight approximation

Ambient scene analysis and speaker detection tasks.
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How to Improve
resource tradeoffs?

General methods
— Pruning — removing excess parameters.
— Quantization — decreasing parameter precision.
Fully connected layers
— Weight factorization — low rank approximation.
Architecture Innovations
Other paths to resource efficiency.
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MobileNets

« Aimed to build small and low latency models

* |t works on simplifying the way kernel multiplications work
and uses “depthwise separable convolutions”
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Traditional Convolutions

 Traditional image convolutions
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Depthwise and Pointwise Separable
Convolutions

e
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B UNIVERSITY OF From https://towardsdatascience.com/a-basic-introduction-
3 CAMBRIDGE to-separable-convolutions-b99ec3102728 30




What’s the saving?

* |n the example we had:

 For traditional convolutions; 256 5x5x3 kernels that move
8x8 times. That’s 256x3x5x5x8x8=1,228,800
multiplications.

* In depthwise convolution, we have 3 5x5x1 kernels that
move 8x8 times. That’s 3x5x5x8x8 = 4,800 multiplications.
In the pointwise convolution, we have 256 1x1x3 kernels
that move 8x8 times. That’s 256x1x1x3x8x8=49,152
multiplications. Adding them up together, that’s 563,952
multiplications.

‘B UNIVERSITY OF

P CAMBRIDGE



Other parts towards efficiency

« Commodity processors and accelerators
— The elephant in the room In this discussion.

# of Publications over the Years

10 B Micro
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° System_|eve| So|utions 2010 2011 2012 2013 2014 2015 2016
— Including runtime.
« (Cross Models Optimization
‘Kr rewH Hexagon DSP‘
Kr: re 2 Adreno GPU
H |[emorv—coes| ooy
LEO / Kr: re 4 BT, FM, USB
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Summary

* We have looked at on device computation vs offloading to
cloud/edge

* We have studied how local resources and cloud offloading
have an impact on energy efficiency and could be used to
Improve it.

* We have explored the trade offs of accuracy and energy

and the technigues which can improve machine learning
on device.

[thanks to Prof Nic Lane for some material]
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