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In this lecture

• We will talk about mobile sensing 
• We will describe the challenges in sensor inference
• We will talk about the steps involved in the sensor to 

inference process
• We will introduce traditional feature based and neural 

network based modelling
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Mobile and Wearable Sensing



Sensors
• Microphone
• Camera
• GPS
• Accelerometer
• Compass
• Gyroscope
• WiFi
• Bluetooth
• Proximity
• Light
• NFC (near field communication)
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Applications
• Individual sensing: 

– fitness and health applications
– behaviour intervention applications

• Group/community sensing:
– groups to sense common activities and help achieving group goals
– examples: assessment of neighbourhood safety, environmental sensing, 

collective recycling efforts
• Urban-scale sensing:

– large scale sensing, where large number of people have the same 
application installed

– examples: tracking speed of disease across a city, congestion and 
pollution in a city

5



Sensor Based Inference Systems
Characteristics

• Offline/Online Inference
• Continuous/Periodic/Isolated Inference
• In all cases,  collecting ground truth is key: 

– data needs precise labels…
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[Bulling et al 2013]



Sensor Data Analysis Challenges:
Differences in Users and Device Positions
• Users have differences which influence the readings on the 

sensors (eg different gait)
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Sensor Data Analysis Challenges:
Range of Activities

• Activities (classes) can often be many and sometimes very 
similar (or similar for some users)

• Collection of balanced data among those classes (for 
ground truth) can be challenging
– The nature of the data collection might impose 

imbalances in the data
• Ground Truth Annotation is hard.…
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Activity Recognition from Sensor Data

• Activity recognition aims to recognize the actions of an 
individual from a series of observations on the individual’s 
actions and the environmental conditions. 
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Activity Recognition
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• Wearables and mobiles produce sequential data



Sensor Inference Pipeline

11



Sensor Raw Data and Preprocessing
• Acquisition can happen 

– from different sensors (at different locations on the body 
or orientation, or from different sensors, acceleration or 
GPS…)

– At different sampling rate (eg for energy reasons)
• Sensor data can be corrupted or contain errors
• Preprocessing synchronizes and removes artifacts 

(calibration, unit conversion, normalization, resampling, 
synchronization..)
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Accelerometer Preprocessing
• Magnitude
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Sampling Rate
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Dataset #Classes Q q (S=0.99) Δ

Skoda 11 96Hz 12Hz -87.5%

PAMAP2-Hand

13 100Hz

32Hz -68%

PAMAP2-Chest 33Hz -67%

PAMAP2-Ankle 42Hz -58%

USC-HAD 12 100Hz 17Hz -83%

PHealth 10 100Hz 15Hz -85%

Walk8 4 250Hz 18Hz -92.8%

[Khan et a 2016]



Data Segmentation
• Localize temporal patterns of interest
• But you do not know what/where these are…
• Sliding window approach

– Issues: window length, stride, window label choice…
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Data Segmentation Example

16https://arxiv.org/pdf/1809.08113.pdf



Feature Extraction
Example:  Activity Recognition
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Physical Activity using Accelerometer

• Sensor: accelerometer
• Activities: sitting, standing, 

waking, running
• Features:

– Mean (can help distinguish 
between standing and 
sitting).

– Standard deviation
– Number of peaks (can help 

distinguish between waking 
and running).
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Feature Extraction: 
Conversation Detection

• FFT (Fast Fourier Transform) of audio (from microphone)

• Sound samples of human voice present most of their energy 
within the 0-4 KHz spectrum.

Human voice Noisy environment
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Feature Extraction: 
Conversation Detection

• Selecting as Features the mean and standard deviation of the 
FFT power

• Using a simple threshold line, could give a relatively accurate 
detection (with a high number of false positives, however)
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Inference
• The process of mapping raw sensor data to meaningful high-level 

events. Inference Pipeline:

• Designing an Inference Engine:
– Collecting raw sensor data, typically labelled with ground truth 

information.
– Data set should also cover states we are not trying to detect 

but look similar (e.g. detect walking : we need data also for 
running and standing).

– Train the inference engine with the collected data.
– Applying the inference engine to the target application.

Sensing Feature
Extraction Classification Detected 

Event
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Classification
• Feature extraction produces a feature vector.

• The classification matches the feature vector to a pre-
defined set of high-level classes.

• The classification engine is typically based on machine-
learning techniques and is trained using labelled training 
data.

• Common classification algorithms include:
– K Nearest Neighbour.
– Naive Bayes classifier.
– Decision Trees.
– Hidden Markov Models.
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Activity Recognition Classification
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Classification Results: 
Person Dependence and 

Multiple Sensors
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Confusion Matrix on Activities
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Beyond Features: Deep Learning

Sensing Feature
Extraction Classification Detected 

Event

• Movement away from hand-crafted experimentally driven features 
towards models that combine feature and classification phases

• Paradigm of learning discriminative representations (“feature 
representation learning”) directly from large amounts of relatively 
raw data (“end-to-end learning”)

• Modelling techniques (e.g., training algorithms, network 
architecture)  are less tied to specific domains and tasks.   

Sensing Deep Neural Network Detected 
Event



Representative Deep Neural Network
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Input Layer

Hidden Layers

Output
Layer

“Sad”

• Just one of dozens of types of deep 
learning that exist (CNNs, RNNs, etc.)



Example of 
Feature Representation Learning 
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(1) Mel frequency 
cepstral coefficients
• Result of decades of 

research into audio
• Dominant general purpose 

audio representation

(2) Representation 
learned directly from 
data



DL and AR
• Unlike other domains sensor data lacks large scale 

labelled datasets
– Difficult to collect large scale ground truth

• Can lead to overfitting! (DNN with many parameters will 
memorize small data)

• Solutions:
– Transfer learning 
– Classifier ensembles 
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No best architecture for DNN in AR
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Opportunity Dataset: wide range of activities. Convolutional autoencoder best

Statistical features perform well and have good performance in resource
constrained conditions. Next lesson!

[Haresamudram 19]



DNN in Activity Recognition
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[Hammerla et al 2016]

Bidirectional LSTMs considering temporal nature of the data worked very well on a 
large dataset (OPP). CNN work well on short term movement patterns. RNN better 
than CNN on short activities with temporal ordering: RNN contextualizes over longer 
timescales.



Semi Supervised Approaches for AR
• Semi-supervised learning methods can achieve similar 

performance to fully supervised ones using only a fraction 
of the labels
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Zheng17



Self Supervision using 
Transformation Recognition
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Saeed19



Results
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