Mobile and Sensor Systems

Lecture 5: Sensor Data Inference
Prof C Mascolo
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In this lecture

« We will talk about mobile sensing
« We will describe the challenges in sensor inference

« We will talk about the steps involved in the sensor to
Inference process

 We will introduce traditional feature based and neural
network based modelling
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Mobile and Wearable Sensing




Sensors

* Microphone
« Camera

¢« GPS

« Accelerometer
 (Compass

« (Gyroscope

o WiFi

* Bluetooth

* Proximity

« Light

 NFC (near field communication)
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Applications

 Individual sensing:
— fitness and health applications
— behaviour intervention applications
« Group/community sensing:
— groups to sense common activities and help achieving group goals

— examples: assessment of neighbourhood safety, environmental sensing,
collective recycling efforts

« Urban-scale sensing:

— large scale sensing, where large number of people have the same
application installed

— examples: tracking speed of disease across a city, congestion and
pollution in a city
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Sensor Based Inference Systems
Characteristics

o Offline/Online Inference
e (Continuous/Periodic/Isolated Inference

* Inall cases, collecting ground truth is key:
— data needs precise labels...

[Bulling et al 2013]
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Sensor Data Analysis Challenges:
Differences in Users and Device Positions

« Users have differences which influence the readings on the
sensors (eg different gait)




Sensor Data Analysis Challenges:
Range of Activities

« Activities (classes) can often be many and sometimes very
similar (or similar for some users)

« (Collection of balanced data among those classes (for
ground truth) can be challenging

— The nature of the data collection might impose
Imbalances in the data

 Ground Truth Annotation is hard....
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Activity Recognition from Sensor Data

« Activity recognition aims to recognize the actions of an
individual from a series of observations on the individual’s
actions and the environmental conditions.
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« Wearables and mobiles produce sequential data
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Sensor Inference Pipeline

Raw data Preprocessing

Sensors
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Sensor Raw Data and Preprocessing

« Acquisition can happen

— from different sensors (at different locations on the body

or orientation, or from different sensors, acceleration or
GPS...)

— At different sampling rate (eg for energy reasons)
* Sensor data can be corrupted or contain errors

* Preprocessing synchronizes and removes artifacts
(calibration, unit conversion, normalization, resampling,
synchronization..)
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Accelerometer Preprocessing

« Magnitude
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Sampling Rate

Dataset #Classes  Q q (5=0.99)
Skoda

PAMAP2-Hand

PAMAP2-Chest

PAMAP2-Ankle
USC-HAD
PHealth
Walk8
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Data Segmentation

* |Localize temporal patterns of interest
« But you do not know what/where these are...
« Sliding window approach
— Issues: window length, stride, window label choice...




Data Segmentation Example

class1 class2
Groundtruth —_—
Sensor channell N A Nl a _;I

Sensor channel2 /\/V\ /\V\/\/\/ v\/_/V\k
' I /\NA—/!_/‘
Sensor channel3 /\M :
S, Szl [

S, Label:class1 .
Strategy 1: S Label:class? El)Usmg The frequent
.- : : s abel over the sequence
Sliding window labelling ’
S, Label:class2 _ }(Z)Using the label
S, Label:class2 at the last time step
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Feature Extraction
—xample: Activity Recognition

overall close dishwasher open drawer drink cup

g 0.02 g 0.02 g 0.02 g 0.02
~ 0.01 = 0.01 = 0.01 = 0.01 m

0 0 0 0
-2000 O 2000 -2000 O 2000 -2000 O 2000 -2000 0 2000
acc [mg] acc [mg] acc [mg] acc [mg]
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Physical Activity using Accelerometer

* Sensor: accelerometer , __wom
* Activities: sitting, standing,

waking, running
® I: e atU res: . *&Wwwwﬁwwwvmmﬁﬂww!

— Mean (can help distinguish
between standing and

ADC

sitting).
— Standard deviation
— Number of peaks (can help o

distinguish between waking il
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Feature Extraction;
Conversation Detection

FFT (Fast Fourier Transform) of audio (from microphone)

Human voice Noisy environment
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Sound samples of human voice present most of their energy
within the 0-4 KHz spectrum.
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Feature Extraction;
Conversation Detection

« Selecting as Features the mean and standard deviation of the
FFT power

X Talking
© No talking

2000
1

1

Standard Deviation

500 1000 1500 2000 2500

Mean

« Using a simple threshold line, could give a relatively accurate
detection (with a high number of false positives, however)
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Inference

« The process of mapping raw sensor data to meaningful high-level
events. Inference Pipeline:

Detected
actic Event

« Designing an Inference Engine:

— Collecting raw sensor data, typically labelled with ground truth
information.

— Data set should also cover states we are not trying to detect
but look similar (e.g. detect walking : we need data also for
running and standing).

— Train the inference engine with the collected data.
— Applying the inference engine to the target application.
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Classification

* Feature extraction produces a feature vector.

* The classification matches the feature vector to a pre-
defined set of high-level classes.

* The classification engine is typically based on machine-
learning techniques and is trained using labelled training
data.

« Common classification algorithms include:

— K Nearest Neighbour.
— Naive Bayes classifier.
— Decision Trees.

— Hidden Markov Models.
B8 UNIVERSITY OF
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Activity
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Recognition Classification

Activities
opening a window
closing a window
watering a plant
turning book pages

drinking from a bottle
cutting with a knife
chopping with a knife

stirring 1n a bowl

forehand
backhand

and smash
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Sensors
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Classification

Person

Results:

Dependence and

Multiple Sensors

60 -

50 -

100
90
80
70

94.1

62.4

B All data

Precision
Recall

63.0

39.5

person-dependent
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Confusion Matrix on Activities

D
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& Q Nclassification S & o
oY & & & I a R & o~ &é'o C"ig &

N LR~ S v L< L N R R SR AR > S
NULL 24267 216 444 3228 48 24 60 75 45 3 85.42
Open window 3849 1938 453 291 48 12 9 24 29.26
Drink 3984 927 | 3780 321 3 9 41.89
Water plant 3984 726 774 57 15 40.11
§ Close window 3891 381 1173 19.35
= Cut 2940 264 450 PEsEEN 456 3 61.55
S Chop 2895 168 435 153 909 | 5742 126 55.06
% Stir 4947 39 135 42 21 474 se1 |GG 207 40.60
Book 4560 27 144 951 354 1725 eo [EEETN 46.09
Forehand 3195 330 144 609 9 66 3 969 6 3 18.17

Backhand 3003 207 21 21 3 6 24 33

Smash 1860 57 78 185 42 45

/precision 38.29 38.64 49.59 36.13 61.59 78.06 66.14 95.56 93.81 38.21 89.92 98.71
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Seyond Features: Deep Learning

 Movement away from hand-crafted experimentally driven features
towards models that combine feature and classification phases

Detected
- Event

Detected
- Event

« Paradigm of learning discriminative representations (“feature
representation learning”) directly from large amounts of relatively

raw data (“end-to-end learning”)

* Modelling technigques (e.g., training algorithnms, network
architecture) are less tied to specific domains and tasks.
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Representative Deep Neural Network
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—xample of
Feature Representation Learning

Log-Mel Filter Bank Features

input
speech Multiply by Fourier Magni-
Brief Window Transform tude

g 7 Inverse MFCCs
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DL and AR

« Unlike other domains sensor data lacks large scale
labelled datasets

— Difficult to collect large scale ground truth

« (Can lead to overfitting! (DNN with many parameters will
memorize small data)

e Solutions:
— Transfer learning
— Classifier ensembles
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No best architecture for
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DNN In AR

Vanilla AE - Raw
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Convolutional AE - Raw
ECDF features

Deep ConvLSTM - Raw
Recurrent AE (LSTM) - Raw
Recurrent AE (GRU) - Raw

- Statistical features

DeepConvLSTM baseline
(see discussion for details)

Figure 3: Classification performance (F1) results.

Opportunity Dataset: wide range of activities. Convolutional autoencoder best

Statistical features perform well and have good performance in resource
constrained conditions. Next lesson!
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[Hammerla et al 2016]

DNN In Activity Recognition
PAMAP2 DG OPP

Performance F,, F4 F,, F,
DNN 0.904 0.633 0.575 0.888
CNN 0.937 0.684 0.591 0.894
LSTM-F 0.929 0.673 0.672 0.908
LSTM-S 0.882 0.760 0.698 0.912
b-LSTM-S 0.868 0.741 0.745 0.927 |
CNN [Yang et al., 2015] — 0.851
CNN [Ordé6iiez and Roggen, 2016]  0.535 0.883
DeepConvLSTM [Ordéiiez and Roggen, 2016] 0.704 0.917
Delta from median AF,, AF; AF,, mean
DNN 0.129 0.149 0.357 0.221
CNN 0.071 0.122 0.120 0.104
LSTM-F 0.10 0.281 0.085 0.156
LSTM-S 0.128 0.297 0.079 0.168
b-LSTM-S 0.087 0.221 0.205 0.172

Bidirectional LSTMs considering temporal nature of the data worked very well on a
large dataset (OPP). CNN work well on short term movement patterns. RNN better
than CNN on short activities with temporal ordering: RNN contextualizes over longer

timescales.



Semi Supervised Approaches for AR

« Semi-supervised learning methods can achieve similar

performance to fully supervised ones using only a fraction
of the labels

ActiTracker PAMAP2 mHealth
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75% 4 £ © i
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w
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60
S5p =6-CNN on all 100000+ labeled frames —6-CNN on all 10000+ labeled frames s —6—CNN on all 8000+ labeled frames
-4~ CNN 5 -4-CNN -4-CNN
50 ~©- CNN-Encoder-Decoder ~©-CNN-Encoder-Decoder 6 ~©-CNN-Encoder-Decoder
4 -#-CNN-Ladder 5 -#-CNN-Ladder . —$-CNN-Ladder
4
%O 100 500 1000 0 100 500 1000 %0 100 500 1000
Amount of Iabeled data Amount of Iabeled data Amount of Iabeled data

Figure 2: The F,, scores of CNN, CNN-Encoder-Decoder, and CNN-Ladder, with varying number of labeled examples. The
F,, scores of supervised CNN on all labeled training examples are also shown as red lines.
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Self Supervision using
Transformation Recognition

Task-specific
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gg U N IVERS ITY OF Fig. 1. Illustration of the proposed multi-task self-supervised approach for feature learning. We train a temporal convolutional

network for transformation recognition as a pretext task as shown in Step 1. The learned features are utilized by (or transferred
CAM BRI DGE to) the activity recognition model (Step 2) for improved detection rate with a small labeled dataset.



Results
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Fig. 6. Generalization of the self-supervised learned features under semi-supervised setting. The TPN is pre-trained on an
entire set of unlabeled data in a self-supervised manner and the activity classifier is trained from scratch on 2, 5, 10, 20, 50,
and 100 labeled instances per class. The blue curve (baseline) depicts the performance when an entire network is trained in a
standard supervised way while the orange curve shows performance when we keep the transferred layers frozen. The green

UNIVERSITY OF curve illustrates the kappa score when the last layer is fine-tuned along with the training of a classifier on the available set
of labeled instances. The reported results are averaged over 10 independent runs for each of the evaluated approaches. The

CAM BRI DGE results with weighted f-score are provided in Figure 12 of the Appendix.




References

« N.D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, A. Campbell. A survey of mobile phone
sensing. IEEE Computer Magazine. Vol. 48. No 9. September 2010.

« A Bulling, U. Blanke, and B. Schiele, “A Tutorial on Human Activity Recognition Using Body-worn
Inertial Sensors,” ACM Computing Surveys, vol. 46, no. 3, Jan. 2013.

« A Khan, N. Hammerla, S. Mellor, and T. Ploetz, “Optimising sampling rates for accelerometer-based
human activity recognition,” Pattern Recognition Letters, 2016.

« Nils Y. Hammerla, Shane Halloran, and Thomas PI6tz. 2016. Deep, convolutional, and recurrent
models for human activity recognition using wearables. In Procs of Int. Joint Conference on Artificial
Intelligence (IJCAI'16.) AAAI Press.

«  Deep learning for human activity recognition in mobile computing. T Pl6tz, Y Guan - Computer, 2018

«  Haresamudram, H., Anderson, D. V., & Pl6tz, T. (2019, September). On the role of features in human
?ctiviné rgg)ognition. In Proceedings of the 23rd International Symposium on Wearable Computers
pp. 78-88).

« Zeng, M., Yu, T., Wang, X., Nguyen, L. T., Mengshoel, O. J., & Lane, |. (2017, December). Semi-
supervised convolutional neural networks for human activity recognition. In 2017 IEEE International
Conference on Big Data (Big Data) (pp. 522-529). IEEE.

« Saeed, A., Ozcelebi, T., & Lukkien, J. (2019). Multi-task self-supervised learning for
human activity detection. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 3(2), 1-30.

8 UNIVERSITY OF lack to Prof T. Plotz and lan Tang for some material]

P CAMBRIDGE 36



