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Autonomous Robots

¢ What is a robot?
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microrobots self-foldable / self-actuated lightweight aerial robots consumer-grade drones autonomous vehicles
[Wood, Harvard] [Sung and Rus; MIT] [Kumar et al.; UPenn] [Google]

e Challenges:
» How to model and perceive the world?
» How to process information and exert control?

» How to reason and plan in the face of uncertainty?
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Robots and Mobile Systems




In this Lecture

® [ntroduction to mobile robots
e Methods to create a robotic sensor network
|. How to deploy multiple robots to cover an area!
* Area tessellation
* Coverage control
* Lloyds algorithm
2. How to use multiple robots for pose estimation?
* Collaborative particle filter
3. How to move a robot!

* Basic principles of kinematics
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What is a Robot!

e Basic building block of autonomy: perception-action loop

@

decision-making and control W interaction with the world

Three main variants:

|. Reactive (e.g., nonlinear transform of sensor readings)
2. Reactive + memory (eg., filter, state variables)

3. Deliberative (e.g., planning)
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Sensors for Robots

e Proprioceptive vs. exteroceptive

» Proprioceptive: “body” sensors, e.g., motor speed,
battery voltage, joint angle

» Exteroceptive: “environment” sensors, e.g., distance
measurement, light intensity

® Passive vs. active

» Passive: “measure ambient energy”, e.g., temperature
probes, cameras, microphones

» Active: “emit energy, and measure the environmental
reaction”, e.g., infrared proximity sensors, ultrasound
sensors
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Sensor and Actuators

e Actuators

» For different purposes: e.g., locomotion, control of a body
part, heating, sound emission.

» Examples of electrical-to-mechanical actuators: DC motors,
stepper motors, servos, loudspeakers.

¢ Uncertainty and disturbances

» Causes for actuation noise:
e.g., wheel slip, slack in mechanism, “kidnapping”

» Causes for sensor noise:
e.g., environmental factors, cheap circuitry
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Multi-Robot Systems

e Terms used: robot swarms / robot teams / robot networks

e Why!
» Distributed nature of many problems
» Overall performance greater than sum of individual efforts
» Redundancy

® Numerous commercial, civil, military applications

Autoplay: On

search & rescue surveillance / monitoring product pickup / delivery
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Taxonomy of Multi-Robot Systems

e Architecture: centralized vs. decentralized

» Centralized: one control/estimation unit communicates
with all robots to issue commands; requires synchronized,
reliable communication channels; single-point failures

» Decentralized: scalable, robust to failure; often
asynchronous; sub-optimal performance (w.r.t centralized)
e Communication: explicit vs. implicit
» Implicit: observable states; information exchanged
through observation
» EXxplicit: unobservable states; need to be communicated
explicitly
¢ Heterogeneity: homogenenous vs. heterogeneous

» Robot teams can leverage inter-robot complementarities
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Decentralization

® Goal: Achieve similar (or same) performance as would be achievable
with an ideal, centralized system.

e Challenges:

» Communication: delays and overhead

» Input: asynchronous; with rumor propagation

» Sub-optimality with respect to the centralized solution
e Advantages:

» No single-point failure

» Can converge to optimum as time progresses

» ‘Any-comm’ algorithms exist (with graceful degradation)

» ‘Any-time’ algorithms exist (that guarantee gradual improvements)
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Robotic Sensor Networks

A key application of multi-robot systems: robotic sensor networks.
Three examples:
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Chlorophyll fluorescence (normalized)

I. Coordinated sampling of dynamic oceanographic features with
underwater vehicles [Das et al., 2012]:
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Robotic Sensor Networks
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2. Mobile Sensor Network Deployment using Potential
Fields: A Distributed, Scalable Solution to the Area Coverage
Problem; [Howard et al., 2002]

3. Underwater Data Collection Using Robotic Sensor
Networks; [Hollinger et al., 201 |]

Contour distance Contour distance

S

AUV tour

Sensors

AUV tour circles

Sensors neighborhoods  Neighborhoods
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How to obtain coverage of an area!



Coverage

e Coverage classes:

» Blanket: Deploy sensors, e.g. carried by networked
robots, in a static arrangement to cover an area.

» Barrier: Deploy sensors in a static arrangement that
minimizes the probability of undetected penetration
through the barrier.

» Sweep: Move a group of sensors across a coverage area to
achieve a balance between maximizing the number of
detections per time and minimizing the number of missed
detections per area.

[D.W. Gage, 1992]
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Blanket

58 UNIVERSITY OF
¥V CAMBRIDGE

Coverage Classes

Barrier
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Coverage Applications

Application Coverage Class
Target search & rescue Sweep
Reconaissance Sweep

.....................................................................................................................................................................

Sentry duty Barrier
Communications relay Blanket
Blanket

Maintenance / inspection
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Tessellation

e Voronoi diagram:

» Partitioning of a plane into regions based on distances to
points in a specific subset of the plane.

» A set of points (called seeds, sites, or generators) is
specified beforehand, and for each seed there is a
corresponding region consisting of all points closer to that
seed than to any other.

» Regions called Voronoi cells

generator P; /\

v.

cell

T UNIVERSITY OF

¥ CAMBRIDGE !




Voronoi Coverage

® A widely studied class of solutions to coverage use Voronoi
tessellations that optimize the configuration of n robots

e Assumption: One robot (generator) per Voronoi cell

e Optimization objective: minimize the average distance between robots
and all points in their respective cells.

generator position coincides
with cell centroids

e Centroidal Voronoi Tessellation (CVT):

Density function ¢)(X) describes importance of different areas in space

Mass of a cell: MVi = P(X) dx
Vi

Centroid of a cell: CVi = — X ¢(X) 7).
Vi v,
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Centroidal Voronoi Tessellation

e CVTs minimize this cost function (using Euclidean distance):

n

L 1
H®) = Y Hp) =5 Y | =B p) d
=1

K i=1 * Vi
position of robot i

®* AVoronoi tessellation becomes a CVT when all generators
coincide with the cell centroids.

OH(p;)
op,
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Coverage Control

- — V-(CV. — pi) =0

e Control strategy for |st order dynamics:

What kind of How to compute How to compute robot
controller is this? centroid positions!? positions in a MRS?
Robot control Lloyds algorithm Collaborative localization
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u; = p; = k(cy, — p,)

How to compute
centroid positions!?

Lloyds algorithm
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Lloyd’s Algorithm

® Lloyd’s algorithm:
» Deterministic way of constructing CVTs.
» lterates over 3 steps:
|. Construct the Voronoi partition for the generators
2. Compute the centroids of these regions

3. Move generators to centroids and start over.

- e
+ * 4+ + °
generators - %
—> 4 ° °
current centroid /_ + +
estimate *

® Convergence of Lloyd’s algorithm:

» A set of points in a given environment converges under the Lloyd
algorithm to a centroidal Voronoi configuration. (proof exists)

* image credit: Wikipedia
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How to compute robot
positions in a MRS?

Collaborative localization
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Collaborative Multi-Robot Systems

Communication Topologies:

fully connected star topology random mesh
centralized / decentralized centralized / decentralized decentralized
coordination coordination coordination
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Distributed Estimation

e Goal: Estimate a local or global variable in distributed manner
e Filters can be distributed

» Examples: Kalman filter, particle filter

» Method: fuse relative observations of other robots

» Correct implementation considers relative observations as
dependent measurements; the whole history of
measurements needs to be tracked (to avoid rumor
propagation)!

e Other mechanisms:
» Opportunistic mechanisms

» Consensus (agreement mechanism)
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Collaborative Localization

relative bearing

<

relative range

e Collaborative localization uses relative inter-robot observations
® Robots communicate their position estimate
¢ Fuse relative observation by transforming position into local frame
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Collaborative Localization

*
detected robot
\_'

e This example considers a particle filter (Kalman filter also possible)
e Detected robot weights its particles using belief of detecting robot
® Particles re-sampled according to new weights (standard filter)
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Range & Bearing Model

mmn - range with center X[ 1| to X,

. bearing from X[ i] with respect to X,

detection data

dmn — <Tmna Hmna Xm>

P(Xp|dmn) =1 - Z ) T‘q[?]n ; [ "mn ] 53 wkg
<XE§'§],w£fL]>€Xm - -
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Collaborative Localization Algorithm

Algorithm 1 MultiRob Recip MCU X, t1,Un t, 2nt, Dn.t)

I: Xn,t = Xn,t =10
2: for : =1 to M do

3 er:,t < Motion_Model (unp, ¢, X%Lﬁ—l)

4 w?[;’]t — Measurement_Model(XLﬂt)

5 wgt < Detection_Model(Dy, ¢, Xg],t’ wlﬁt)
6: Xn,t < Xn,t + <X9[:Z],t7w£:}t>

7: end for

8: for i =1to M do

9. r~U(0,1)

10:  if r < (1 — «) then

11: X%]’t < Sampling(Xp, +)

12: else

13: x%!t < Reciprocal_Sampling(Dy, ¢, X’n,t)
14: end if . '
15: Xnt — Xnt+ <x£,f],t,w7[ﬁt>
16: end for

17: return Xy, ¢

[Prorok et al., 201 1]
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Collaborative Localization

_ g

4 robots equipped with range & bearing modules
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What kind of
controller is this?

Robot control
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Control

* Goal: reach desired position / follow desired trajectory
* Example: trajectory tracking

* Assumption: robot receives feedback on distance to desired trajectory.

‘on-off’ or ‘bang-bang’ controller
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Control

A Simple Closed-Loop Controller:

Algorithm: Bang-Bang Controller

forever do:

error « reference - measured // Distance

if error < 0 // Too far left
left-motor-power « 100
right-motor-power « -100

if error > 0 // Too far right
left-motor-power « —-100
right-motor-power « 100

if error = 0 // Just right
left-motor-power « 100
right-motor-power « 100
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Bang-Bang Controller

® Example: trajectory tracking

e Assumption: robot receives feedback on distance to desired trajectory.

/
)
)
)

time

zig-zag behavior: we can do better! ‘on-off’ or ‘bang-bang’ controller

* image credit: Elements of Robotics
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Proportional Control (P-Control)

e Example: trajectory tracking
e Assumption: robot receives feedback on distance to line.

e Robot computes error, and adjusts control as a function of error

error = distance-to-trajectory

turning-control = K * error

previous slide: oscillatory behavior adjustment is proportional to error!
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Proportional Control (P-Control)

Algorithm: P-Controller

forever do:
error « reference - measured // Distance
power « gain * error // Control value
left-motor-power <« power left
right-motor-power « power right
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Proportional Control (P-Control)

e Behavior of P-control:

» Adapt control proportionally to your
perceived error to set-point.

> u(t) = er(t)

® Why is the target distance not reached!?

» Methods to overcome this:
PID control (advanced)

low gain high gain

e Behavior for varying gain values

e High gains not desirable! We call this an
unstable controller.

* image credit: Elements of Robotics
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What kind of How to compute How to compute robot
controller is this? centroid positions!? positions in a MRS?
Robot control Lloyds algorithm Collaborative localization
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Further Reading

Fundamental concepts:
® Elements of Robotics, F Mondada et al., 2018
®* Autonomous Mobile Robots, R Siegwart et al., 2004

State of the art:
® Springer Handbook of Robotics — library has a copy!

® The grand challenges of Science Robotics, Science,Yang et al. 2018

Further reading:
e Probabilistic Robotics, S Thrun et al, 2005
® Springer Handbook of Robotics, B Siciliano et al., 2008
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PID Control (Advanced)

* Pl-controller:

» takes into account accumulated error over
time

distance

t A,
u(r) = Kk,e(r) + Ki[ e(7)dr \/

0
» E.g., in presence of friction, error will be
integrated causing higher motor setting to
overcome remaining delta.

time

* PID-controller:

» take into account future error by
computing rate of change of error.

distance

» acts as a ‘dampener’ on control effort. ime
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