8: Hidden Markov Models
 Machine Learning and Real-world Data

Simone Teufel (some slides by Helen Yannakoudakis)

Department of Computer Science and Technology
University of Cambridge

■ So far we've looked at (statistical) classification.
■ Experimented with different ideas for sentiment detection.
■ Let us now talk about...

■ So far we've looked at (statistical) classification.
■ Experimented with different ideas for sentiment detection.
■ Let us now talk about . . . the weather!

Weather prediction

- Two types of weather: rainy and cloudy

■ The weather doesn't change within the day

Weather prediction

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day

■ Can we guess what the weather will be like tomorrow?

Weather prediction

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day

■ Can we guess what the weather will be like tomorrow?
■ We can use a history of weather observations:

$$
\begin{gathered}
P\left(w_{t}=\text { Rainy } \mid w_{t-1}=\text { Rainy }, w_{t-2}=\right.\text { Cloudy } \\
\left.w_{t-3}=\text { Cloudy }, w_{t-4}=\text { Rainy }\right)
\end{gathered}
$$

Weather prediction

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day
- Can we guess what the weather will be like tomorrow?

■ We can use a history of weather observations:

$$
\begin{gathered}
P\left(w_{t}=\text { Rainy } \mid w_{t-1}=\text { Rainy }, w_{t-2}=\right.\text { Cloudy } \\
\left.w_{t-3}=\text { Cloudy }, w_{t-4}=\text { Rainy }\right)
\end{gathered}
$$

■ Markov Assumption (first order):

$$
P\left(w_{t} \mid w_{t-1}, w_{t-2}, \ldots, w_{1}\right) \approx P\left(w_{t} \mid w_{t-1}\right)
$$

Weather prediction

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day
- Can we guess what the weather will be like tomorrow?
- We can use a history of weather observations:

$$
\begin{gathered}
P\left(w_{t}=\text { Rainy } \mid w_{t-1}=\text { Rainy }, w_{t-2}=\text { Cloudy },\right. \\
\left.w_{t-3}=\text { Cloudy }, w_{t-4}=\text { Rainy }\right)
\end{gathered}
$$

- Markov Assumption (first order):

$$
P\left(w_{t} \mid w_{t-1}, w_{t-2}, \ldots, w_{1}\right) \approx P\left(w_{t} \mid w_{t-1}\right)
$$

- The joint probability of a sequence of observations / events is then:

$$
P\left(w_{1}, w_{2}, \ldots, w_{t}\right)=\prod_{t=1}^{n} P\left(w_{t} \mid w_{t-1}\right)
$$

Markov Chains

	Tomorrow
Today	Rainy
Rainy	Cloudy
	Cloudy

0.3 \& 0.7\end{array}\right]\)

Transition probability matrix

Markov Chains

Transition probability matrix
Two states: rainy and cloudy

Markov Chains

Transition probability matrix

Two states: rainy and cloudy

- A Markov Chain is a stochastic process that embodies the Markov Assumption.
- Can be viewed as a probabilistic finite-state automaton.

■ States are fully observable, finite and discrete; transitions are labelled with transition probabilities.
■ Models sequential problems - your current situation depends on what happened in the past

Markov Chains

■ Useful for modeling the probability of a sequence of events
■ Valid phone sequences in speech recognition

- Sequences of speech acts in dialog systems (answering, ordering, opposing)
- Predictive texting

Markov Chains

■ Useful for modeling the probability of a sequence of events that can be unambiguously observed

■ Valid phone sequences in speech recognition

- Sequences of speech acts in dialog systems (answering, ordering, opposing)
- Predictive texting

Markov Chains

- Useful for modeling the probability of a sequence of events that can be unambiguously observed

■ Valid phone sequences in speech recognition

- Sequences of speech acts in dialog systems (answering, ordering, opposing)
- Predictive texting
- What if we are interested in events that are not unambiguously observed?

Markov Model

Markov Model: A Time-elapsed view

Hidden Markov Model: A Time-elapsed view

■ Underlying Markov Chain over hidden states.

- We only have access to the observations at each time step.

■ There is no $1: 1$ mapping between observations and hidden states.

- A number of hidden states can be associated with a particular observation, but the association of states and observations is governed by statistical behaviour.
■ We now have to infer the sequence of hidden states that correspond to a sequence of observations.

Hidden Markov Model: A Time-elapsed view

Transition probabilities

$$
P\left(w_{t} \mid w_{t-1}\right)
$$

Emission probabilities $P\left(o_{t} \mid w_{t}\right)$
(Observation likelihoods)

Hidden Markov Model: A Time-elapsed view - start and end states

Hidden

Observed

■ Could use initial probability distribution over hidden states.
■ Instead, for simplicity, we will also model this probability as a transition, and we will explicitly add a special start state.
■ Similarly, we will add a special end state to explicitly model the end of the sequence.

■ Special start and end states not associated with "real" observations.

More formal definition of Hidden Markov Models; States and Observations

$$
\left.\left.\begin{array}{c}
S_{e}=\left\{s_{1}, \ldots, s_{N}\right\} \\
s_{0} \\
s_{f}
\end{array} \quad \begin{array}{l}
\text { a set of } N \text { emitting hidden states, } \\
\text { a special start state, } \\
\text { a special end state. }
\end{array}\right\} \begin{array}{ll}
& \begin{array}{l}
\text { an output alphabet of } M \text { observations } \\
\text { ("vocabulary"). } \\
k_{0} \\
k_{f}
\end{array} \\
\text { a special start symbol, } \\
\text { a special end symbol. }
\end{array}\right\} \begin{aligned}
& \text { a sequence of } T \text { observations, each } \\
& \text { one drawn from } K .
\end{aligned}
$$

More formal definition of Hidden Markov Models;

 First-order Hidden Markov Model1 Markov Assumption (Limited Horizon): Transitions depend only on current state:

$$
P\left(X_{t} \mid X_{1} \ldots X_{t-1}\right) \approx P\left(X_{t} \mid X_{t-1}\right)
$$

2 Output Independence: Probability of an output observation depends only on the current state and not on any other states or any other observations:

$$
P\left(O_{t} \mid X_{1} \ldots X_{t}, \ldots, X_{T}, O_{1}, \ldots, O_{t}, \ldots, O_{T}\right) \approx P\left(O_{t} \mid X_{t}\right)
$$

More formal definition of Hidden Markov Models; State Transition Probabilities

$a_{i j}$ is the probability of moving from state s_{i} to state s_{j} :

$$
\begin{gathered}
a_{i j}=P\left(X_{t}=s_{j} \mid X_{t-1}=s_{i}\right) \\
\forall_{i} \sum_{j=0}^{N+1} a_{i j}=1
\end{gathered}
$$

Special Start state s_{0} and end state s_{f} :
■ Not associated with "real" observations.
■ $a_{0 i}$ describe transition probabilities out of the start state into state s_{i}.

- $a_{i f}$ describe transition probabilities into the end state.

■ Transitions into start state ($a_{i 0}$) and out of end state ($a_{f i}$) undefined.

More formal definition of Hidden Markov Models; State Transition Probabilities

A: a state transition probability matrix of size $(N+2) \times(N+2)$.

$$
A=\left[\begin{array}{ccccccccc}
- & a_{01} & a_{02} & a_{03} & \cdot & \cdot & \cdot & a_{0 N} & - \\
- & a_{11} & a_{12} & a_{13} & \cdot & \cdot & \cdot & a_{1 N} & a_{1 f} \\
- & a_{21} & a_{22} & a_{23} & \cdot & \cdot & \cdot & a_{2 N} & a_{2 f} \\
- & \cdot & \cdot & \cdot & & & & \cdot & \cdot \\
- & \cdot & \cdot & \cdot & & & & \cdot & \cdot \\
- & \cdot & \cdot & \cdot & & & & \cdot & \cdot \\
- & a_{N 1} & a_{N 2} & a_{N 3} & \cdot & \cdot & \cdot & a_{N N} & a_{N f} \\
- & - & - & - & - & - & - & - & -
\end{array}\right]
$$

$a_{i j}$ is the probability of moving from state s_{i} to state s_{j} :

$$
\begin{gathered}
a_{i j}=P\left(X_{t}=s_{j} \mid X_{t-1}=s_{i}\right) \\
\forall_{i} \sum_{j=0}^{N+1} a_{i j}=1
\end{gathered}
$$

More formal definition of Hidden Markov Models; State Transition Probabilities

A: a state transition probability matrix of size $(N+2) \times(N+2)$.

$$
A=\left[\begin{array}{ccccccccc}
- & a_{01} & a_{02} & a_{03} & \cdot & \cdot & \cdot & a_{0 N} & - \\
- & a_{11} & a_{12} & a_{13} & \cdot & \cdot & \cdot & a_{1 N} & a_{1 f} \\
- & a_{21} & a_{22} & a_{23} & \cdot & \cdot & \cdot & a_{2 N} & a_{2 f} \\
- & \cdot & \cdot & \cdot & & & & \cdot & \cdot \\
- & \cdot & \cdot & \cdot & & & & \cdot & \cdot \\
- & \cdot & \cdot & \cdot & & & & \cdot & \cdot \\
- & a_{N 1} & a_{N 2} & a_{N 3} & \cdot & \cdot & \cdot & a_{N N} & a_{N f} \\
- & - & - & - & - & - & - & - & -
\end{array}\right]
$$

$a_{i j}$ is the probability of moving from state s_{i} to state s_{j} :

$$
\begin{gathered}
a_{i j}=P\left(X_{t}=s_{j} \mid X_{t-1}=s_{i}\right) \\
\forall_{i} \sum_{j=0}^{N+1} a_{i j}=1
\end{gathered}
$$

More formal definition of Hidden Markov Models; State Transition Probabilities

A: a state transition probability matrix of size $(N+2) \times(N+2)$.

$$
A=\left[\begin{array}{ccccccccc}
- & a_{01} & a_{02} & a_{03} & \cdot & \cdot & \cdot & a_{0 N} & - \\
- & a_{11} & a_{12} & a_{13} & \cdot & \cdot & \cdot & a_{1 N} & a_{1 f} \\
- & a_{21} & a_{22} & a_{23} & \cdot & \cdot & \cdot & a_{2 N} & a_{2 f} \\
- & \cdot & \cdot & \cdot & & & & \cdot & \cdot \\
- & \cdot & \cdot & \cdot & & & & \cdot & \cdot \\
- & \cdot & \cdot & \cdot & & & & \cdot & \cdot \\
- & a_{N 1} & a_{N 2} & a_{N 3} & \cdot & \cdot & \cdot & a_{N N} & a_{N f} \\
- & - & - & - & - & - & - & - & -
\end{array}\right]
$$

$a_{i j}$ is the probability of moving from state s_{i} to state s_{j} :

$$
\begin{gathered}
a_{i j}=P\left(X_{t}=s_{j} \mid X_{t-1}=s_{i}\right) \\
\forall_{i} \sum_{j=0}^{N+1} a_{i j}=1
\end{gathered}
$$

More formal definition of Hidden Markov Models; State Transition Probabilities

A: a state transition probability matrix of size $(N+2) \times(N+2)$.

$$
A=\left[\begin{array}{ccccccccc}
- & a_{01} & a_{02} & a_{03} & \cdot & \cdot & \cdot & a_{0 N} & - \\
- & a_{11} & a_{12} & a_{13} & \cdot & \cdot & \cdot & a_{1 N} & a_{1 f} \\
- & a_{21} & a_{22} & a_{23} & \cdot & \cdot & \cdot & a_{2 N} & a_{2 f} \\
- & \cdot & \cdot & \cdot & & & & \cdot & \cdot \\
- & \cdot & \cdot & \cdot & & & & \cdot & \cdot \\
- & \cdot & \cdot & \cdot & & & & \cdot & \cdot \\
- & a_{N 1} & a_{N 2} & a_{N 3} & \cdot & \cdot & \cdot & a_{N N} & a_{N f} \\
- & - & - & - & - & - & - & - & -
\end{array}\right]
$$

$a_{i j}$ is the probability of moving from state s_{i} to state s_{j} :

$$
\begin{gathered}
a_{i j}=P\left(X_{t}=s_{j} \mid X_{t-1}=s_{i}\right) \\
\forall_{i} \sum_{j=0}^{N+1} a_{i j}=1
\end{gathered}
$$

More formal definition of Hidden Markov Models; Emission Probabilities

B: an emission probability matrix of size $(M+2) \times(N+2)$.

$b_{i}\left(k_{j}\right)$ is the probability of emitting vocabulary item k_{j} from state s_{i} :

$$
b_{i}\left(k_{j}\right)=P\left(O_{t}=k_{j} \mid X_{t}=s_{i}\right)
$$

Our HMM is defined by its parameters $\mu=(A, B)$.

More formal definition of Hidden Markov Models; Emission Probabilities

B: an emission probability matrix of size $(M+2) \times(N+2)$.

$b_{i}\left(k_{j}\right)$ is the probability of emitting vocabulary item k_{j} from state s_{i} :

$$
b_{i}\left(k_{j}\right)=P\left(O_{t}=k_{j} \mid X_{t}=s_{i}\right)
$$

Our HMM is defined by its parameters $\mu=(A, B)$.

Examples where states are hidden

■ Speech recognition
■ Observations: audio signal
■ States: phonemes
■ Part-of-speech tagging (assigning tags like Noun and Verb to words)

■ Observations: words
■ States: part-of-speech tags
■ Machine translation
■ Observations: target words
■ States: source words

Today's task: the dice HMM

■ Imagine a fraudulous croupier in a casino where customers bet on dice outcomes.

- She has two dice - a fair one and a loaded one.
- The fair one has the standard distribution of outcomes $P(O)=\frac{1}{6}$ for each number 1 to 6 .
■ The loaded one has a different distribution.
■ She secretly switches between the two dice.
- You don't know which dice is currently in use. You can only observe the numbers that are thrown.

Today's task: the dice HMM

- States: fair and loaded, plus special states s_{0} and s_{f}.
- Distribution of observations differs between the states

Today's task: the dice HMM

- States: fair and loaded, plus special states s_{0} and s_{f}.
- Distribution of observations differs between the states

Today's task: the dice HMM

- States: fair and loaded, plus special states s_{0} and s_{f}.
- Distribution of observations differs between the states

Today's task: the dice HMM

- States: fair and loaded, plus special states s_{0} and s_{f}.
- Distribution of observations differs between the states

Today's task: the dice HMM

- States: fair and loaded, plus special states s_{0} and s_{f}.
- Distribution of observations differs between the states

Fundamental tasks with HMMs

■ Problem 1 (Labelled Learning)
■ Given a parallel observation and state sequence O and X, learn the HMM parameters A and $B . \rightarrow$ today
■ Problem 2 (Unlabelled Learning)
■ Given an observation sequence O (and only the set of emitting states S_{e}), learn the HMM parameters A and B.
■ Problem 3 (Likelihood)
■ Given an HMM $\mu=(A, B)$ and an observation sequence O, determine the likelihood $P(O \mid \mu)$.
■ Problem 4 (Decoding)
■ Given an observation sequence O and an $\mathrm{HMM} \mu=(A, B)$, discover the best hidden state sequence $X . \rightarrow$ Task 8

Your Task today

Task 7:
■ Your implementation performs labelled HMM learning, i.e. it has

■ Input: dual tape of state and observation (dice outcome) sequences X and O.

$\left(s_{0}\right)$	F	F	F	F	L	L	L	F	F	F	F	L	L	L	L	F	F	$\left(s_{f}\right)$
$\left(k_{0}\right)$	1	3	4	5	6	6	5	1	2	3	1	4	3	5	4	1	2	$\left(k_{f}\right)$

■ Output: HMM parameters A, B.
■ Note: you will in a later task use your code for an HMM with more than two states. Either plan ahead now or modify your code later.

Parameter estimation of HMM parameters A, B

- Transition matrix A consists of transition probabilities $a_{i j}$

$$
a_{i j}=P\left(X_{t+1}=s_{j} \mid X_{t}=s_{i}\right) \sim \frac{\text { count }_{\text {trans }}\left(X_{t}=s_{i}, X_{t+1}=s_{j}\right)}{\operatorname{count}_{\text {trans }}\left(X_{t}=s_{i}\right)}
$$

- Emission matrix B consists of emission probabilities $b_{i}\left(k_{j}\right)$

$$
b_{i}\left(k_{j}\right)=P\left(O_{t}=k_{j} \mid X_{t}=s_{i}\right) \sim \frac{\text { count }_{\text {emission }}\left(O_{t}=k_{j}, X_{t}=s_{i}\right)}{\operatorname{count}_{\text {emission }}\left(X_{t}=s_{i}\right)}
$$

- (Add-one smoothed versions of these)

Literature

■ Manning and Schutze (2000). Foundations of Statistical Natural Language Processing, MIT Press. Chapters 9.1, 9.2.

■ We use state-emission HMM instead of arc-emission HMM

- We avoid initial state probability vector π by using explicit start and end states (s_{0} and s_{f}) and incorporating the corresponding probabilities into the transition matrix A.
■ (Jurafsky and Martin, 2nd Edition, Chapter 6.2 (but careful, notation!))
■ Fosler-Lussier, Eric (1998). Markov Models and Hidden Markov Models: A Brief Tutorial. TR-98-041.
■ Smith, Noah A. (2004). Hidden Markov Models: All the Glorious Gory Details.
■ Bockmayr and Reinert (2011). Markov chains and Hidden Markov Models. Discrete Math for Bioinformatics WS 10/11.

