8: Hidden Markov Models Machine Learning and Real-world Data

Simone Teufel (some slides by Helen Yannakoudakis)

Department of Computer Science and Technology University of Cambridge

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < ○</p>

- So far we've looked at (statistical) classification.
- Experimented with different ideas for sentiment detection.

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < ○</p>

■ Let us now talk about ...

- So far we've looked at (statistical) classification.
- Experimented with different ideas for sentiment detection.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

■ Let us now talk about ... the weather!

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day
- Can we guess what the weather will be like tomorrow?

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day
- Can we guess what the weather will be like tomorrow?

• We can use a history of weather observations: $P(w_t = Rainy | w_{t-1} = Rainy, w_{t-2} = Cloudy, w_{t-3} = Cloudy, w_{t-4} = Rainy)$

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day
- Can we guess what the weather will be like tomorrow?

- We can use a history of weather observations: $P(w_t = Rainy | w_{t-1} = Rainy, w_{t-2} = Cloudy, w_{t-3} = Cloudy, w_{t-4} = Rainy)$
- Markov Assumption (first order): $P(w_t | w_{t-1}, w_{t-2}, \dots, w_1) \approx P(w_t | w_{t-1})$

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day
- Can we guess what the weather will be like tomorrow?
- We can use a history of weather observations: $P(w_t = Rainy | w_{t-1} = Rainy, w_{t-2} = Cloudy, w_{t-3} = Cloudy, w_{t-4} = Rainy)$
- Markov Assumption (first order): $P(w_t | w_{t-1}, w_{t-2}, \dots, w_1) \approx P(w_t | w_{t-1})$
- The joint probability of a sequence of observations / events is then:

$$P(w_1, w_2, \dots, w_t) = \prod_{t=1}^{n} P(w_t \mid w_{t-1})$$

Transition probability matrix

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Transition probability matrix

Two states: rainy and cloudy

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Transition probability matrix

Two states: rainy and cloudy

- A Markov Chain is a stochastic process that embodies the Markov Assumption.
- Can be viewed as a probabilistic finite-state automaton.
- States are fully observable, finite and discrete; transitions are labelled with transition probabilities.
- Models sequential problems your current situation depends on what happened in the past

Useful for modeling the probability of a sequence of events

- Valid phone sequences in speech recognition
- Sequences of speech acts in dialog systems (answering, ordering, opposing)

Predictive texting

Useful for modeling the probability of a sequence of events that can be unambiguously observed

- Valid phone sequences in speech recognition
- Sequences of speech acts in dialog systems (answering, ordering, opposing)

Predictive texting

- Useful for modeling the probability of a sequence of events that can be unambiguously observed
 - Valid phone sequences in speech recognition
 - Sequences of speech acts in dialog systems (answering, ordering, opposing)

- Predictive texting
- What if we are interested in events that are not unambiguously observed?

Markov Model

Markov Model: A Time-elapsed view

Hidden Markov Model: A Time-elapsed view

- Underlying Markov Chain over hidden states.
- We only have access to the observations at each time step.
- There is no 1:1 mapping between observations and hidden states.
- A number of hidden states can be associated with a particular observation, but the association of states and observations is governed by statistical behaviour.
- We now have to *infer* the sequence of hidden states that correspond to a sequence of observations.

Hidden Markov Model: A Time-elapsed view

	Rainy	Cloudy
Rainy	0.7	0.3
Cloudy	0.3	0.7

	Umbrella	$No \ umbrella$			
Rainy	0.9	0.1			
Cloudy	0.2	0.8			

Transition probabilities $P(w_t|w_{t-1})$

Emission probabilities $P(o_t|w_t)$ (Observation likelihoods) Hidden Markov Model: A Time-elapsed view – start and end states

- Could use initial probability distribution over hidden states.
- Instead, for simplicity, we will also model this probability as a transition, and we will explicitly add a special start state.
- Similarly, we will add a special end state to explicitly model the end of the sequence.
- Special start and end states not associated with "real" observations.

More formal definition of Hidden Markov Models; States and Observations

$$S_e = \{s_1, \dots, s_N\}$$
 a set of N emitting hidden states,

- s_0 a special start state,
- s_f a special end state.
- $K = \{k_1, \dots, k_M\}$ an output alphabet of M observations ("vocabulary").
 - k_0 a special start symbol,
 - k_f a special end symbol.
 - $O = O_1 \dots O_T$ a sequence of *T* observations, each one drawn from *K*.
 - $X = X_1 \dots X_T$ a sequence of T states, each one drawn from S_e .

More formal definition of Hidden Markov Models; First-order Hidden Markov Model

1 Markov Assumption (Limited Horizon): Transitions depend only on current state:

$$P(X_t|X_1...X_{t-1}) \approx P(X_t|X_{t-1})$$

2 Output Independence: Probability of an output observation depends only on the current state and not on any other states or any other observations:

 $P(O_t|X_1...X_t, ..., X_T, O_1, ..., O_t, ..., O_T) \approx P(O_t|X_t)$

 a_{ij} is the probability of moving from state s_i to state s_j :

$$a_{ij} = P(X_t = s_j | X_{t-1} = s_i)$$
$$\forall_i \sum_{j=0}^{N+1} a_{ij} = 1$$

Special Start state s_0 and end state s_f :

- Not associated with "real" observations.
- a_{0i} describe transition probabilities out of the start state into state s_i .
- a_{if} describe transition probabilities into the end state.
- Transitions into start state (a_{i0}) and out of end state (a_{fi}) undefined.

A: a state transition probability matrix of size $(N+2) \times (N+2)$.

$$A = \begin{bmatrix} - & a_{01} & a_{02} & a_{03} & . & . & . & a_{0N} & - \\ - & a_{11} & a_{12} & a_{13} & . & . & . & a_{1N} & a_{1f} \\ - & a_{21} & a_{22} & a_{23} & . & . & . & a_{2N} & a_{2f} \\ - & . & . & . & . & . & . \\ - & . & . & . & . & . & . \\ - & a_{N1} & a_{N2} & a_{N3} & . & . & a_{NN} & a_{Nf} \\ - & - & - & - & - & - & - & - \end{bmatrix}$$

$$a_{ij} = P(X_t = s_j | X_{t-1} = s_i)$$

$$\forall_i \sum_{j=0}^{N+1} a_{ij} = 1$$

A: a state transition probability matrix of size $(N+2) \times (N+2)$.

	[—]	a_{01}	a_{02}	a_{03}				a_{0N}	-]
	_	a_{11}	a_{12}	a_{13}				a_{1N}	a_{1f}
	—	a_{21}	a_{22}	a_{23}			•	a_{2N}	a_{2f}
<i>A</i> —	—	•		•					
7 1 —	—								.
	—	•							
	—	a_{N1}	a_{N2}	a_{N3}		•	•	a_{NN}	a_{Nf}
	_	_	_	_	_	_	_	_	-

$$a_{ij} = P(X_t = s_j | X_{t-1} = s_i)$$

$$\forall_i \sum_{j=0}^{N+1} a_{ij} = 1$$

A: a state transition probability matrix of size $(N+2) \times (N+2)$.

$$a_{ij} = P(X_t = s_j | X_{t-1} = s_i)$$

$$\forall_i \sum_{j=0}^{N+1} a_{ij} = 1$$

A: a state transition probability matrix of size $(N+2) \times (N+2)$.

	[—]	a_{01}	a_{02}	a_{03}				a_{0N}	-]
	_	a_{11}	a_{12}	a_{13}				a_{1N}	a_{1f}
	—	a_{21}	a_{22}	a_{23}			•	a_{2N}	a_{2f}
<i>A</i> —	—	•		•					
7 1 —	—								.
	—	•							
	—	a_{N1}	a_{N2}	a_{N3}		•	•	a_{NN}	a_{Nf}
	—	_	_	_	_	_	_	_	-

$$a_{ij} = P(X_t = s_j | X_{t-1} = s_i)$$

$$\forall_i \sum_{j=0}^{N+1} a_{ij} = 1$$

More formal definition of Hidden Markov Models; Emission Probabilities

B: an emission probability matrix of size $(M + 2) \times (N + 2)$.

 $b_i(k_j)$ is the probability of emitting vocabulary item k_j from state s_i :

$$b_i(k_j) = P(O_t = k_j | X_t = s_i)$$

Our HMM is defined by its parameters $\mu = (A, B)$.

▲□▶▲□▶▲□▶▲□▶ □ ● ●

More formal definition of Hidden Markov Models; Emission Probabilities

B: an emission probability matrix of size $(M + 2) \times (N + 2)$.

 $b_i(k_j)$ is the probability of emitting vocabulary item k_j from state s_i :

$$b_i(k_j) = P(O_t = k_j | X_t = s_i)$$

Our HMM is defined by its parameters $\mu = (A, B)$.

・ロト・西ト・ヨト・ヨー うへぐ

Examples where states are hidden

Speech recognition

- Observations: audio signal
- States: phonemes
- Part-of-speech tagging (assigning tags like Noun and Verb to words)

- Observations: words
- States: part-of-speech tags
- Machine translation
 - Observations: target words
 - States: source words

- Imagine a fraudulous croupier in a casino where customers bet on dice outcomes.
- She has two dice a fair one and a loaded one.
- The fair one has the standard distribution of outcomes $P(O) = \frac{1}{6}$ for each number 1 to 6.
- The loaded one has a different distribution.
- She secretly switches between the two dice.
- You don't know which dice is currently in use. You can only observe the numbers that are thrown.

States: fair and loaded, plus special states s_0 and s_f .

States: fair and loaded, plus special states s_0 and s_f .

■ Distribution of observations differs between the states (Distribution of observations differs between the states (Distribution of each states) (Distribut

- States: fair and loaded, plus special states s_0 and s_f .
- Distribution of observations differs between the states B > (= > (= >) < C

- States: fair and loaded, plus special states s_0 and s_f .
- Distribution of observations differs between the states → (=) (=) () ()

- States: fair and loaded, plus special states s_0 and s_f .
- Distribution of observations differs between the states B > (= > (= >) < C

Fundamental tasks with HMMs

Problem 1 (Labelled Learning)

- Given a parallel observation and state sequence O and X, learn the HMM parameters A and B. \rightarrow today
- Problem 2 (Unlabelled Learning)
 - Given an observation sequence *O* (and only the set of emitting states *S_e*), learn the HMM parameters *A* and *B*.

Problem 3 (Likelihood)

- Given an HMM $\mu = (A, B)$ and an observation sequence O, determine the likelihood $P(O|\mu)$.
- Problem 4 (Decoding)
 - Given an observation sequence O and an HMM $\mu = (A, B)$, discover the best hidden state sequence $X \rightarrow \text{Task 8}$

Your Task today

Task 7:

 Your implementation performs labelled HMM learning, i.e. it has

Input: dual tape of state and observation (dice outcome) sequences X and O.

■ Output: HMM parameters *A*, *B*.

Note: you will in a later task use your code for an HMM with more than two states. Either plan ahead now or modify your code later.

Parameter estimation of HMM parameters A, B

Transition matrix A consists of transition probabilities a_{ij}

$$a_{ij} = P(X_{t+1} = s_j | X_t = s_i) \sim \frac{count_{trans}(X_t = s_i, X_{t+1} = s_j)}{count_{trans}(X_t = s_i)}$$

Emission matrix B consists of emission probabilities $b_i(k_j)$

$$b_i(k_j) = P(O_t = k_j | X_t = s_i) \sim \frac{count_{emission}(O_t = k_j, X_t = s_i)}{count_{emission}(X_t = s_i)}$$

(Add-one smoothed versions of these)

Literature

- Manning and Schutze (2000). Foundations of Statistical Natural Language Processing, MIT Press. Chapters 9.1, 9.2.
 - We use state-emission HMM instead of arc-emission HMM
 - We avoid initial state probability vector π by using explicit start and end states $(s_0 \text{ and } s_f)$ and incorporating the corresponding probabilities into the transition matrix A.
- (Jurafsky and Martin, 2nd Edition, Chapter 6.2 (but careful, notation!))
- Fosler-Lussier, Eric (1998). Markov Models and Hidden Markov Models: A Brief Tutorial. TR-98-041.
- Smith, Noah A. (2004). Hidden Markov Models: All the Glorious Gory Details.
- Bockmayr and Reinert (2011). Markov chains and Hidden Markov Models. Discrete Math for Bioinformatics WS 10/11.