
14: Clique Finding
Machine Learning and Real-world Data (MLRD)

Simone Teufel



Last session: betweenness centrality

You implemented betweenness centrality.
This let you find “gatekeeper” nodes in the Facebook
network.
We will now turn to the task of finding clusters in networks.



Clustering and Classification

Clustering: automatically grouping data according to some
notion of closeness or similarity.
Classification (e.g., sentiment classification): assigning
data items to predefined classes.
Clustering: groupings can emerge from data,
unsupervised.
Clustering for documents, images etc: anything where
there’s a notion of similarity between items.
Most famous technique for hard clustering is k-means:
very general (also variant for graphs).
Also soft clustering: clusters have graded membership



Agglomerative vs. divisive clustering

agglomerative clustering works bottom-up.
divisive clustering works top-down, by splitting.
Newman-Girvan method — a form of divisive clustering.
Criterion for breaking links is edge betweenness centrality.



Dolphin data: different clustering layers

squares vs circles: first split
shades of blue: further splits

Newman and Girvan (2004)



Facebook circles dataset: McAuley and Leskovec
(2012)

Profile and network data from 10 Facebook ego-networks.
An ego network is a network emanating from one person.
Circles are defined as Facebook friends in a particular
social group.
Gold-standard circles are manually identified by the egos
themselves.



Facebook Circles task

Complete network consists of 4,039 nodes in 193 circles.
Average: 19 circles per ego, each circle with average of 22
alters.
You will cluster only a small network derived from one ego.



Doing the full Facebook Circles task

25% of circles are contained completely within another circle
50% overlap with another circle
25% have no members in common with any other circle

Requires more sophisticated methods than Newman-Girvan:

Nodes may be in multiple circles, so we need soft
clustering.
Use sociological/demographic data from outside the
network data.



Evaluating simple clustering

Assume data sets with gold standard or ground truth
clusters.
But: unlike classification, we don’t have labels for clusters,
number of clusters found may not equal true classes.
purity: assign label corresponding to majority class found
in each cluster, then count correct assignments, divide by
total elements (cf accuracy).
http://nlp.stanford.edu/IR-book/html/
htmledition/evaluation-of-clustering-1.html

But best evaluation (if possible) is extrinsic: use the system
to do a task and evaluate that.

http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html


Newman-Girvan method

while number of connected subgraphs < specified number of
clusters (and there are still edges):

1 calculate edge betweenness for every edge in the graph
2 remove edge(s) with highest betweenness
3 recalculate number of connected components

Note:
Treatment of tied edges: either remove all (today) or
choose one randomly.



Newman-Girvan Method: Stopping Criterion

The image below is called a dendrogram.
Either: stop at prespecified level (tick).
Or: complete process and choose best level by
‘modularity’ (Newman, 2004; starred tick).

Newman and Girvan (2004)



Edge betweenness centrality

Previously: σ(s, t|v) — the number of shortest paths
between s and t going through node v.
Now: σ(s, t|e) — the number of shortest paths between s
and t going through edge e.
Algorithm only changes in the bottom-up (accumulation)
phase: δ(v) much as before, but cB[(v, w)] is now



Edge Betweenness (Brandes 2008)

ignore last line



Final Task

Task 12:
Determine connected components
Change code for betweenness centrality (from node to
edge)
Implement the Newman-Girvan method to discover
clusters in the network provided.



Code for determining connected components

Today’s graph is disconnected: there are five connected
components.
Finding connected components: depth-first search, start at
an arbitrary node and mark the other nodes you reach.
Repeat with unvisited nodes, until all are visited.
Implementation hint: depth-first, so use recursion (the
program stack stores the search state).



End of Course

Thanks for your attention
Please fill in the evaluation questionnaire (we actually read
these carefully)
Two catch-up sessions to follow – everybody must get
every tick
Last-chance session in Easter term TBA
A pen will be waiting for you upon successful completion;
pick up at student reception once full access is restored.


