14: Clique Finding Machine Learning and Real-world Data (MLRD)

Simone Teufel

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Last session: betweenness centrality

- You implemented betweenness centrality.
- This let you find "gatekeeper" nodes in the Facebook network.
- We will now turn to the task of finding clusters in networks.

Clustering and Classification

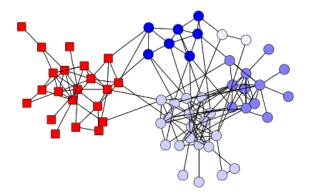
- Clustering: automatically grouping data according to some notion of closeness or similarity.
- Classification (e.g., sentiment classification): assigning data items to predefined classes.
- Clustering: groupings can emerge from data, unsupervised.
- Clustering for documents, images etc: anything where there's a notion of similarity between items.
- Most famous technique for hard clustering is k-means: very general (also variant for graphs).
- Also soft clustering: clusters have graded membership

Agglomerative vs. divisive clustering

- agglomerative clustering works bottom-up.
- divisive clustering works top-down, by splitting.
- Newman-Girvan method a form of divisive clustering.
- Criterion for breaking links is edge betweenness centrality.

Dolphin data: different clustering layers

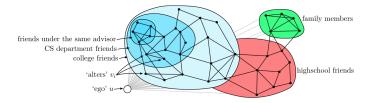
- squares vs circles: first split
- shades of blue: further splits



Facebook circles dataset: McAuley and Leskovec (2012)

- Profile and network data from 10 Facebook ego-networks.
- An ego network is a network emanating from one person.
- Circles are defined as Facebook friends in a particular social group.
- Gold-standard circles are manually identified by the egos themselves.

Facebook Circles task



- Complete network consists of 4,039 nodes in 193 circles.
- Average: 19 circles per ego, each circle with average of 22 alters.
- You will cluster only a small network derived from one ego.

Doing the full Facebook Circles task

25% of circles are contained completely within another circle50% overlap with another circle25% have no members in common with any other circle

Requires more sophisticated methods than Newman-Girvan:

- Nodes may be in multiple circles, so we need soft clustering.
- Use sociological/demographic data from outside the network data.

Evaluating simple clustering

- Assume data sets with gold standard or ground truth clusters.
- But: unlike classification, we don't have labels for clusters, number of clusters found may not equal true classes.
- purity: assign label corresponding to majority class found in each cluster, then count correct assignments, divide by total elements (cf accuracy). http://nlp.stanford.edu/IR-book/html/

htmledition/evaluation-of-clustering-1.html

But best evaluation (if possible) is extrinsic: use the system to do a task and evaluate that.

Newman-Girvan method

while number of connected subgraphs < specified number of clusters (and there are still edges):

- 1 calculate edge betweenness for every edge in the graph
- 2 remove edge(s) with highest betweenness
- 3 recalculate number of connected components

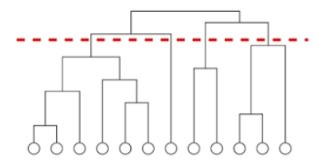
Note:

Treatment of tied edges: either remove all (today) or choose one randomly.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Newman-Girvan Method: Stopping Criterion

- The image below is called a dendrogram.
- Either: stop at prespecified level (tick).
- Or: complete process and choose best level by 'modularity' (Newman, 2004; starred tick).



Edge betweenness centrality

- Previously: \(\sigma(s,t|v)\) the number of shortest paths between s and t going through node v.
- Now: $\sigma(s,t|e)$ the number of shortest paths between s and t going through edge e.
- Algorithm only changes in the bottom-up (accumulation) phase: $\delta(v)$ much as before, but $c_B[(v, w)]$ is now

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Edge Betweenness (Brandes 2008)

```
 \begin{array}{|c|c|c|} \hline \mathbf{v} & \mathbf{accumulation} \ // - \mathsf{back-propagation} \ of \ dependencies \\ \hline \mathbf{for} \ v \in V \ \mathbf{do} \ \delta[v] \leftarrow 0 \\ \hline \mathbf{while} \ S \ not \ empty \ \mathbf{do} \\ \hline pop \ w \leftarrow S \\ \hline \mathbf{for} \ v \in Pred[w] \ \mathbf{do} \ \delta[v] \leftarrow \delta[v] + \frac{\sigma[v]}{\sigma[w]} \cdot (1 + \delta[w]) \\ \hline \mathbf{if} \ w \neq s \ \mathbf{then} \ c_B[w] \leftarrow c_B[w] + \delta[w] \\ \end{array}
```

Edge betweenness

output: betweenness $c_B[q]$ for $q \in V \cup E$ (initialized to 0)

```
▼ accumulation
```

```
\left[\begin{array}{c} \mathbf{for} \ v \in V \ \mathbf{do} \ \delta[v] \leftarrow 0 \\ \mathbf{while} \ S \ not \ empty \ \mathbf{do} \\ pop \ w \leftarrow S \\ \mathbf{for} \ v \in Pred[w] \ \mathbf{do} \\ \left[\begin{array}{c} c \leftarrow \frac{\sigma[w]}{\sigma[w]} \cdot (1 + \delta[w]) \\ c_B[(v,w)] \leftarrow c_B[(v,w)] + c \\ \delta[v] \leftarrow \delta[v] + c \\ \mathbf{if} \ w \neq s \ \mathbf{then} \ c_B[w] \leftarrow c_B[w] + \delta[w] \end{array}\right]
```

ignore last line

Final Task

Task 12:

- Determine connected components
- Change code for betweenness centrality (from node to edge)

▲ロト ▲□ ト ▲ 三 ト ▲ 三 ト つ Q ()

Implement the Newman-Girvan method to discover clusters in the network provided.

Code for determining connected components

- Today's graph is disconnected: there are five connected components.
- Finding connected components: depth-first search, start at an arbitrary node and mark the other nodes you reach.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Repeat with unvisited nodes, until all are visited.
- Implementation hint: depth-first, so use recursion (the program stack stores the search state).

End of Course

- Thanks for your attention
- Please fill in the evaluation questionnaire (we actually read these carefully)
- Two catch-up sessions to follow everybody must get every tick
- Last-chance session in Easter term TBA
- A pen will be waiting for you upon successful completion; pick up at student reception once full access is restored.

