1: Sentiment Classification Machine Learning and Real-world Data (MLRD)

Simone Teufel

Lent 2021

This course: Machine Learning and Real-world Data (MLRD)

Goals of the course:

- Three different types of machine learning
 - Naive Bayes
 - Hidden Markov Models
 - Clique finding / clustering
- Straightforward approaches you can implement quickly and then experiment with
- Emphasis on methodology: relevant for all approaches.
- Coupling with Algorithms and Data structures
- Practical-based, but each session contains a short lecture introducing the main concepts.

Topics and Real-world Data

■ Three Topics:

- Classification according to sentiment (7 sessions)
- Sequence analysis of proteins (4 sessions)
- Network analysis of social networks (5 sessions)
- Plenty of data:
 - thousands of movie reviews
 - hundreds of amino acid sequences
 - thousands of users and links between them

Computer Science as an empirical subject

- The style of solving tasks in this course is *empirical*.
- You will start from a hypothesis or an idea which you will test.
- Then you perform some manipulations on your data.
- You observe and record the results.
- You need a lab book to record your manipulations, observations and measurements.
 - physical book (many advantages) or electronic record
 - be prepared to show your lab book to your demonstrator

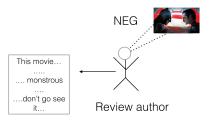
Topic 1: Sentiment classification

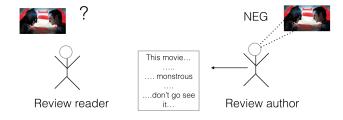
- IMDb (= Internet Movie Data Base) has about 4.7 million titles (http://www.imdb.com/pressroom/stats/).
- Reviews: written in natural language by the general public.
- Sentiment classification the task of automatically deciding whether a review is positive or negative, based on the text of the review.
- Standard task in Natural Language Processing (NLP).
- The evaluative language used is interesting from a linguistic viewpoint.

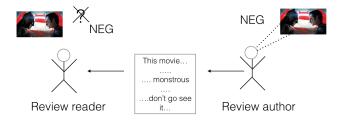
IMDb

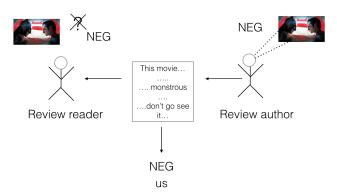


900









From a good review

... He's incredible in fights. ... Also his relationship with Irons, who plays Alfred, is just wonderful in general. Irons was exceptional in the role.

A bad review

This movie tries so hard... It completely fails on every single level. The movie is tedious and boring with characters that I just did not care about at all. ...

Experiments with movie reviews

- Lots of possible NLP experiments . . .
- Today: use data about individual words to find sentiment.
 - Sentiment lexicon lists over 8000 words as positive or negative.
 - Hypothesis: a review that contains more positive than negative words is positive overall.

Experiments with movie reviews

- Lots of possible NLP experiments . . .
- Today: use data about individual words to find sentiment.
 - Sentiment lexicon lists over 8000 words as positive or negative.
 - Hypothesis: a review that contains more positive than negative words is positive overall.

word=foul intensity=weak polarity=negative word=mirage intensity=strong polarity=negative word=aggression intensity=strong polarity=negative word=eligible intensity=weak polarity=positive word=chatter intensity=strong polarity=negative

Note: a lexicon is a list of words with some associated information.

Sentiment lexicon words in the good review

... He's incredible in fights. ... Also his relationship with Irons, who plays Alfred, is just wonderful in general. Irons was exceptional in the role.

- incredible positive
- wonderful positive
- exceptional positive

Sentiment lexicon words in the bad review

This movie tries so hard... It completely fails on every single level. The movie is tedious and boring with characters that I just did not care about at all. ...

- try negative
- fail negative
- tedious negative
- boring negative
- care positive

But it doesn't always work ...

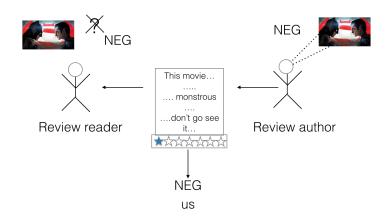
This movie tries so hard... The ending should be exciting and fun and amazing.. and it just... wasn't. It completely fails on every single level. The movie is tedious and boring with characters that I just did not care about at all. ...

- try negative
- exciting positive
- fun positive
- amazing positive
- fail negative
- tedious negative
- boring negative
- care positive

Evaluation

- No system predicts sentiment perfectly.
- How do we know the extent to which we've got it right?
- The author of the review told us the truth explicitly via a star rating (that's why NLP researchers like movie reviews).
- The rating has been extracted along with the review text.
- We will calculate a metric called A (accuracy).

Star rating



Accuracy

■ The number of correct decisions *c* divided by total decisions (correct plus incorrect (*i*)):

$$A = \frac{c}{c+i}$$

- \blacksquare This metric is called A (accuracy).
- We know which decisions are "correct" because we can use the star rating as our definition of truth.

Tokenisation: getting the words out

- Your code will look up words from your review document in the lexicon.
- So it needs to divide the text into words.
- Splitting on whitespace is not enough.
 - Words at the beginning of a sentence appear in upper case.
 - Words occurring before and after punctuation may be directly attached to the punctuation.
 - and many other things . . .
- Your code will use a well-known basic tokeniser to split the text into individual words.
- Note: **type** vs **token** (see 'Further notes' in Session 2)

Your tasks for today

Task 1:

- explore the review data (1800 documents)
- make judgment about sentiment of 4 reviews
- explore the sentiment lexicon
- guess 10 sentiment-indicating words
- write a program that tests the sentiment lexicon approach
- write a program for using the star ratings to evaluate how well your program is doing
- and keep a record of what you do

Example lab book page

Simple Classif	16/1/18				
Dataset: 9	00 positive, "	100 negative re	wieros		
Simple Classif	er .				
Method:		4 1	. /		
			d negative word	ls	
- [gnore neut	ral words	1.71.	1 1 1	/
- Ic	nop Akrough	dutant, incr	meneng pecetinen P lun I lu	nong a sentiment	value otherwise negative
- /	of thould	to 0 as	t seurmeur vouu LPLIL	ic s uniconaro,	otherwise negative.
	of months		(i.e litteor		
Improving Class	lifer Option	ns .			
000	hange thre	sheld to accou	ut for a natur	al bias to use	more +/- tive word
Ø 1	Jeighted 1	exion relativ	to strong/wa	ak subj.	more +/- live work
	'		U		
Results	(1.8.4	/25	0/		
5 imple	Jossifier Ac	шису : 63.5	/6		
Improveo	Classifier				
Option 1:		Option 2	(Threshold=0)	Options 1+2	(Threshold= 10)
Threshold	Accoracy	Weight	Aawaay 63.5%	Weight.	Agwacy
0	63.5%			1	68.0%
5	64.9%		64.3%	a	68.8%
10	68.0%	5	65.8%	5	68.6%
Ohmali	/Discussion				

Practicalities

- 16 lectures (approx 25 minutes) live at 2:05 [Mo, Fr] or watch video before 2:30pm
- 16 demonstrated Zoom sessions: from 2:30pm to 4:30pm [Mo, Fr]
- 12 tasks and 4 catch-up sessions
- 12 ticks: you should get them all
- Interactive sessions for help, questions and ticking
- Most tasks have automated tester: pass this first!
- Ticking session with some screensharing
- Tester will close on midnight of deadline. Unlock via DOS.
- Students out of Timezone arrange ticking and help via email.
- Lots more on Moodle . . .

Sessions, Ticks, Deadlines

,				
Session	Date	Tick	Task	Tester Deadline
S1	22/1	T1	Sentiment Lexicon	11/2
S2	25/1	T2	NB	15/2
S3	29/1	T3	Zipf	11/2
S4	1/2	T4	Sign Test	15/2
S5	5/2	T5	CrossVal	19/2
S6	8/2	T6	Kappa	22/2
S7 (catch up)	11/2	_	-	_
S8	15/2	T7	HMM Training	1/3
S9	19/2	T8	Viterbi	5/3
S10	22/2	T9	Proteins	8/3
S11 (catch up)	26/2	_	_	_
S12	1/3	T10	Network Properties	15/3
S13	5/3	T11	Brandes' Algo	15/3
S14	8/3	T12	Clustering	15/3
S15 (catch up)	12/3	-	_	_
S16 (catch up)	15/3	_	_	_
Last Chance Session	30/4			