
Dataset splitting

It is standard in ML to split data into training and test sets. The reason for
this is very straightforward: if you try and evaluate your system on data you
have trained it on, you are doing something unrealistic. The whole point of a
machine learning system is to be able to work with unseen data: if you know
you are going to see all possible values in your training data, you might as well
just use some form of lookup.

However, the two-way split is over-simplistic. Real ML typically involves four
phases:

1. Training
2. Development (also known as Validation or Tuning)
3. Testing (aka Evaluation)
4. Use

For supervised learning, the available labelled data is usually quite limited. This
data must be split to be used in the first three phases. The fourth phase is
usually not explicitly discussed in research, but of course the aim of real ML
is to get the best possible performance in actual use, where you do not have
ground truth values. This should always be born in mind when we talk about
evaluation and statistical methodology: the ultimate aim is to make sure that
the performance in the use phase is as high as possible and to avoid fooling
oneself into thinking one has a system that performs better than it actually does.
Evaluation and statistical methods are used to help us achieve that goal (and to
convince others that we’ve achieved it).

Why is the separate development/validation phase necessary? This is clearest in
those varieties of ML where parameters are automatically tuned on some data
which is separate from the training data. However, it is actually necessary to
make such a split in all cases where one might alter the experimental conditions
after the first test. Essentially this means one should always have a development
set. The number of times the evaluation can be run on the test data must be
strictly limited. Ideally, the test data should only be used once.

To see the problem with repeated tests, imagine a situation where you want to
compare the performance of two methods in a binary classification task. You
have a balanced dataset with 1000 items. Following the standard advice, you use
900 items for training and 100 for test. You discover that an existing method A
achieves 68% accuracy on the test data, while your own method B only achieves
64%. You are sad. But then you realise that you could alter a setting, which
might give you better results with method B. You do this and try again. You
get 62%. You are even sadder. But you persist, and after 8 experiments, you
achieve 77%: a massive improvement. You are happy, stop there, and report
your results.

What’s wrong with this? Are you fooling yourself? To put this another way, if

1



you are honest about the testing you had done, should a (healthily skeptical)
observer be convinced that with these new settings method B will deliver better
results on new data than method A? Ideally, you should think about this before
reading on.

Consider the possibility that the truth is that both methods can completely
reliably classify 40% of the real data, and perform at chance on the other 60%.
That is, although each method is deterministic (i.e., it will always give the same
result for a given item), for 60% of the data its classification accuracy is no
better that flipping a coin would be. Assume that the methods are not identical,
in that their ‘at chance’ prediction is different for different test items.

These assumptions lead to an overall accuracy of 70% for both methods when
tested on sufficiently large quantities of data. That is, both methods are really
accurate on 40% of the data, and just get lucky half the time on the remaining
60%. However, the results for a sample will vary somewhat from this true
accuracy, due to random variation. This also means that the results from
method A and B are likely to differ.

Now consider the possibility that the settings you alter in your experiments
on method B have the effect of randomly flipping some of the results on the
60% of the data where performance is at chance. The settings do not actually
improve the performance, but merely change the results for particular test items.
If you alter the settings in this way enough times on the same test set, you will
eventually get a run where method B is markedly superior to A. (If you are not
convinced, try simulating this situation: see the starred tick suggestion at the
end.)

Of course, one does not intentionally change parameters in a way which results
in random flipping of the classification function. But as anyone who has worked
with ML knows, it is almost impossible to reliably predict the effect of a change
in parameters or the use of different features. It is very often the case that
changing something in a system will fix one example in the test data and break
another. Hence, this thought experiment is not so implausible as it may initially
sound.

The conclusion is that the use of a separate development set is recommended
because it allows one to experiment without risking fooling oneself (and others)
in this way.

Note: This discussion has deliberately avoided talking about statistical methods
because this can obscure the essential point. However, we note here that it is
unfortunately very common for researchers to run multiple experiments and then
do a standard test for statistical significance on the best result. This is invalid
(it is known as the ‘Multiple Comparisons Problem’). This is not an issue if the
test set is only used once, of course.

Starred tick (recommended). Implement a simulation of the scenario described
above and investigate what sort of variation you get in the test runs. You should

2



also try simulating a scenario where altering the experimental settings leads to a
slight improvement in behaviour and look at the amount of test data you need
to reliably show an effect.

3


	Dataset splitting

