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5.5. Deriving the autoencoder
The starting point for an autoencoder is generative modelling. Suppose we have a dataset x1, . . . , xn

and we decide to model it as independent samples from a random variable X , where X is generated
according to a latent variable model

Z fθ X

where Z is some standard random variable, fθ is a neural network, and X is a parametric random
variable whose distribution depends on fθ(Z).

The obvious way to train this model is maximum likelihood estimation, i.e. picking θ to maxi-
mize the log likelihood of the dataset, call it L(θ):

L(θ) = log Pr(x1, . . . , xn ; θ)

=
∑
i

log PrX(xi ; θ) since xi modelled as independent samples

=
∑
i

log
∫
z

PrX(xi | Z = z ; θ) PrZ(z) dz by law of total prob.

=
∑
i

logEhi(Z) where hi(z) = PrX(xi | Z = z ; θ)

=
∑
i

logEz∼Z PrX(xi | Z = z ; θ) in cleaner notation.

We could approximate this expectation using Monte Carlo. So why not try importance sampling?
Importance sampling is just a drop-in replacement for Monte Carlo.

Let’s pick some arbitrary sampling distribution Z̃. Then the log likelihood of a datapoint can
be rewritten

log PrX(xi | Z = z ; θ) = logEz∼Z̃

{
PrX

(
xi | Z = z ; θ

) PrZ(z)
PrZ̃(z)

}
.

So, what sampling distribution should we use? We know from general principles that the perfect
perfect sampling
distribution: section 5.3
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sampling distribution is

PrZ̃(z) = const × PrX(xi | Z = z ; θ)PrZ(z).

In other words, the perfect sampling distribution is the posterior distribution Z̃ ∼ (Z | X = xi). If
we were able to use this sampling distribution, then we’d only need one sample, because every sample
from z ∼ Z̃ would give exactly the same value—from which deduce that the constant would have to
be PrX(x; θ), and so finding this perfect sampling distribution is just as hard as calculating the log
likelihood in the first place! Nevertheless, the importance sampling method works for any sampling
distribution at all, and if we make some reasonable attempt at approximating the perfect sampling
distribution, we should still do well. At the very least, we ought to choose the sampling distribution
dependent on the datapoint xi.

Idea 1. The first big idea of probabilistic autoencoders is that we can use a neural network to give
us a sampling distribution:

xi gϕ Z̃(i,ϕ)

where gϕ is a neural network, and Z̃(i,ϕ) is the sampling distribution we’ll use for datapoint xi, a par-
metric random variable whose distribution depends on gϕ(xi). We’re writing it as Z̃(i,ϕ) to emphasize
that the sampling distribution depends on both xi and ϕ.

Idea 2. The second big idea of probabilistic encoders is that it’s possible to train both neural networks
jointly, both fθ and gϕ, by optimizing a single objective function. The first step is to get a lower bound
on the log likelihood:

Jensen’s inequality:
section 4.7 page 90
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L(θ) =
∑
i

logEz∼Z PrX(xi | Z = z ; θ)

=
∑
i

logEz∼Z̃(i,ϕ)

{
PrX

(
xi | Z = z ; θ

) PrZ(z)
PrZ̃(i,ϕ)(z)

}
imp. samp. change of var.

≥
∑
i

Ez∼Z̃(i,ϕ) log
{

PrX
(
xi | Z = z ; θ

) PrZ(z)
PrZ̃(i,ϕ)(z)

}
by Jensen’s inequality

= Llb(θ, ϕ) let this define the lower-bound log likelihood function Llb

The importance sampling change-of-variable is ‘safe’—it’s an equality—so the right hand side of the
importance sampling equation is insensitive to ϕ, so it has no ‘force’ to push towards a well-trained
network gϕ. What about the expression we get after applying Jensen’s inequality? We know that for
the perfect sampling distribution the term in braces {·} is constant, hence the inequality is an equality.
For an imperfect sampling distribution, the inequality is strict. Therefore Llb(θ, ϕ) is sensitive36 to ϕ.

To train the networks, we just find the θ̂ and ϕ̂ that maximize Llb(θ, ϕ). Why does this work?
We’ve shown that

L(θ) ≥ max
ϕ

Llb(θ, ϕ) for all θ

with equality if we have a perfectly expressive network gϕ, capable of achieving the perfect sampling
distribution by appropriate choice of ϕ. So

max
θ

L(θ) ≥ L(θ̂) since θ̂ may not be optimal for L

≥ max
ϕ

Llb(θ̂, ϕ) by the lower bound, above

= Llb(θ̂, ϕ̂) = max
θ

max
ϕ

Llb(θ, ϕ) since θ̂ is optimal for Llb

and, if g is perfectly expressive, this is

= max
θ

L(θ) since the lower bound, above, is tight.

If g is perfectly expressive, the inequalities make a ‘sandwich’ and hence θ̂ is a maximum likelihood
estimator for our original generative network. If g isn’t perfectly expressive, then θ̂ will be less than
optimal; but by choosing a more expressive g we can reduce the shortfall.

Idea 3. The third big idea is about how to turnLlb(θ, ϕ) into something that we can actually maximize
using gradient descent, and it’s known as the reparameterization trick. To use gradient descent, we
need to write the log likelihood lower-bound term

Ez∼Z̃(i,ϕ) log
{

PrX
(
xi | Z = z ; θ

) PrZ(z)
PrZ̃(i,ϕ)(z)

}
as a differentiable function of θ and ϕ. It’s tempting to simply write it out as a Monte Carlo approxi-
mation

Ez∼Z̃(i,ϕ) h(z ; θ, ϕ) ≈
1

m

m∑
j=1

h(zj ; θ, ϕ) where zj sampled from Z̃(i,ϕ)

and differentiate the terms in this sum with respect to θ and ϕ—but that’s no good because how we
choose zj depends on ϕ, and choosing isn’t a differentiable operation. The reparameterization trick
consists in writing out the sampling distribution as an explicit latent variable model

xi gϕ µi, σi Z̃(i,ϕ) = µi + σiF

F ∼ N(0, Id)

and then using the Monte Carlo approximation

Ez∼Z̃(i,ϕ) h
(
z ; θ, ϕ

)
≈ 1

m

m∑
j=1

h
(
µi + σifj ; θ, ϕ

)
where fj sampled from N(0, Id).

36It can be shown with some delicate but uninteresting algebra that the error introduced by Jensen’s inequality is
KL(PrZ̃(i,ϕ) ∥ Pr(Z | X=x)). This is an algebraic way of saying “the closer our importance sampling distribution is to the
perfect sampling distribution, the smaller the error.”
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This trick has turned the implicit dependency “zj is sampled from a distribution that depends on ϕ”
into an explicit dependency “zj is a deterministic function of ϕ and of a sampled noise term fj”, and
now it’s safe to differentiate. It doesn’t have to be based on a Normal distribution: we can use any
distribution for F , and any function for making Z̃ as long as it’s differentiable with respect to ϕ.

THE COMPLETE AUTOENCODER

Let’s put everything together. The probabilistic autoencoder consists of two networks, an encoder
network gϕ and a decoder network fθ. Training consists in finding θ and ϕ to maximize

Llb(θ, ϕ) =
∑
i

EF log
{

PrX
(
xi | Z̃(i,ϕ) ; θ

) PrZ(Z̃(i,ϕ))

PrZ̃(i,ϕ)(Z̃(i,ϕ))

}
where Z̃(i,ϕ) is a function of gϕ(xi) and F . This can be approximated using Monte Carlo sampling
from F . Alternatively, we can rewrite it as

Llb(θ, ϕ) =
∑
i

{[
EF log PrX

(
xi | Z̃(i,ϕ) ; θ

)]
− KL(PrZ̃(i,ϕ) ‖PrZ)

}
where

KL
(
PrZ̃(i,ϕ) ‖PrZ

)
= Ez∼Z̃(i,ϕ) log

(PrZ̃(i,ϕ)(z)

PrZ(z)

)
.

This version is useful for simple sampling distributions where there’s a closed-form solution for the
KL term. There’s no point using a computational approximation if we can calculate it exactly.

THE ENCODER AS A CERTIF ICATE OF FIT

We set out to fit a generative model

Z fθ X

We derived an approximating autoencoder system, which doesn’t find the perfect maximum likelihood
for θ, but which can get close. If the encoder network is perfectly expressive, i.e. if it’s capable of
producing Z̃ ∼ (Z |X = x), then the θ we find by training the autoencoder, call it θ̂, will be optimal:

L(θ̂) = max
θ

L(θ).

If the encoder network isn’t very expressive, for example if it’s just made up of a handful of nodes or
if it’s been inadequately trained, then there may be a large shortfall,

L(θ̂) � max
θ

L(θ).

There’s another way to think of the autoencoder setup: as a certificate for goodness of fit. The
whole point of generative modelling is to come up with a good model for the dataset, as measured by
log likelihood. We’ve discussed how to use this as an objective during training—but more importantly
we should use it as a metric for evaluation. In training we seek to maximize the log likelihood of the
training dataset; in evaluation we measure the log likelihood of the holdout dataset.

If you simply provide a generator network as a black box, which takes in Z and spits out X , then
your audience might not be able to evaluate it because they don’t have any way to compute the log
likelihood. But if you provide an (encoder, generator) pair, then your audience can use your encoder for
computing a lower bound on the log likelihood. They can then take this lower bound as the evaluation
metric.

• If your encoder is crummy, then the lower bound may be very poor. Your audience won’t know
whether it’s your generator that’s bad or your encoder, and they probably won’t give you the
benefit of the doubt. The burden of proof is on you, if you want to persuade people that your
generator is great.

• If your encoder is great, then the lower bound will be very close to the true log likelihood of
your generator. So, if the lower bound is great, your audience is forced to acknowledge that your
generator is great.

In effect, the encoder is a certificate of goodness-of-fit for the generator.


