
5.4 Probabilistic autoencoders 99

5.4. Probabilistic autoencoders
An autoencoder is a pair of neural networks, an encoder which takes an input (for example an image)
and compresses it down to a low-dimensional latent representation; and a decoder which takes the
latent representation and expands back to something like the original.

enc

 0.384

−0.062

0.209

0.426

 dec

What’s the point in training a neural network just to reproduce its input? There are all sorts of ways that
this could be useful. If we’re lucky, the latent representation learns to pick up ‘meaningful axes’ for
our dataset. There may be a lot of redundancy in each datapoint, for example most pixels in an image
are much like their neighbours, and it’s useful to get a meaningful summary with all the redundancy
removed.

As a corollary, the autoencoder can fill in gaps. For example, if you see a picture of a stoat and
part of it is missing, you can generally fill in the rest because you know what a stoat looks like—you’re
making use of the redundancy. Similarly it can remove noise:

We can generate novel synthetic datapoints by simply sampling a random point in the low-
dimensional space (called the latent space) and feeding it into the decoder.

If we have a huge amount of unlabelled data and only a little bit of labelled data, we can first
train the encoder and decoder on the full dataset, and then we can train a classifier which takes as
its input the latent representation. The encoder has already done the hard work of learning the key
features, and it’s had a huge dataset to work on so it can do a good job, and this makes it easier to train
the classifier.

All this is the unicorns and sparkles view of autoencoders. But neural networks aren’t magic,
they’re just probability models that are trained using maximum likelihood estimation. Anything we
want them to do, we have to fight for by setting up the right probability model. The probabilistic model
behind autoencoding was laid out in two seminal papers34. They are nothing more than generative

generative neural
networks: section 3.4
page 57

neural networks, with a clever trick based on importance sampling for computing the log likelihood
function.

AUTOENCODERS AS PROBABIL ISTIC GENERATIVE MODELS

Suppose we have a dataset x1, . . . , xn and we decide to model it as independent samples from a
random variable X , where X is generated according to a latent variable model

Z fθ X

where Z is some standard random variable, fθ is a neural network, and X is a parametric random
variable whose distribution depends on fθ(Z). As a concrete illustration, perhaps the datapoints are
in Re, and we decide to model them with a d-dimensional latent representation plus noise:

34Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In: ICLR. 2014. URL: https://arxiv.
org/abs/ 1312.6114; Danilo Jiminez Rezende, Shakir Mohamed, and Daan Wierstra. “Stochastic backpropagation and
approximate inference in deep generative models”. In: ICML. 2014. URL: https://arxiv.org/abs/1401.4082. The present
description is a simplified account that owes more to Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. “Importance
Weighted Autoencoders”. In: ICLR. 2016. URL: https://arxiv.org/abs/1509.00519.

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1401.4082
https://arxiv.org/abs/1509.00519

100 5.4 Probabilistic autoencoders

Z ∼ N(0, Id) fθ X ∼ fθ(Z) +N(0, ρ2Ie)

(The noise parameter ρ might be known, or it might be another parameter to be trained along with
θ.) This is exactly the generative neural we looked at in section 3.4, for generating points scattered
around a path, where we used d = 1 and e = 2. If we want to generate MNIST images, we should let
e = 28 × 28 and let d be as small or as large as we like. It’s modeller’s choice: it’s up to us to pick
d, and to decide the number of layers and nodes etc. for fθ, to come up with a useful model for the
dataset in front of us.

Training. We’d like to fit this model in the usual way, by choosing θ to maximize the log likelihood
of the dataset:

log Pr(x1, . . . , xn ; θ)

=
∑
i

log PrX(xi ; θ) modelling the data as independent samples

=
∑
i

log
∫
z

PrX(xi | Z = z ; θ) PrZ(z) dz by law of total prob.

We could approximate this integral using Monte Carlo integration, and indeed that’s exactly how we
trained this model when we first looked at generative neural networks in section 3.4. But it can take
lots of samples for the Monte Carlo approximation to be any good, especially when the latent variable
Z has more than one dimension. There is some remarkably clever maths that gives a better way of
training the model, and this maths is described in the next section.

For now, we’ll simply state the conclusion. The probabilistic autoencoder consists of two net-
works, the encoder network gϕ and the decoder network fθ. There are two separate configurations,
one for generating values, the other for training.

Z fθ X

Z̃ fθ Xgϕx

F

decoder

encoder
(generating)

(training)

• For generating, the latent variable Z is some standard random variable, fθ(Z) computes the
parameters for a distribution, and X is generated from that distribution.

• For training, gϕ(x) computes the parameters for a distribution, and Z̃ is generated from that
distribution—generated explicitly as a deterministic function of gϕ(x) and F where F is some
standard random variable.

Training consists in finding θ and ϕ to maximize

Llb(θ, ϕ) =
∑
i

{[
E log PrX

(
xi | Z̃(i,ϕ) ; θ

)]
− KL(PrZ̃(i,ϕ) ‖PrZ)

}
where Z̃(i,ϕ) is short for Z̃(gϕ(xi), F), where the expectation is over F , where the expectation can be
approximated using Monte Carlo, and where

KL
(
PrZ̃ ‖PrZ

)
= Ez∼Z̃(i,ϕ) log

(PrZ̃(i,ϕ)(z)

PrZ(z)

)
.

The KL term is called the Kullback-Leibler divergence from PrZ to PrZ̃(i,ϕ) , and it measures the
difference between the two distributions.

To make all this concrete, let’s pick some explicit distributions. Here is an autoencoder that
we might use to model the MNIST images at the beginning of this section, a dataset in which each
datapoint is a black-and-white image 35 xi ∈ {0, 1}28×28.

35Technically the images are greyscale, xi ∈ [0, 1]28×28. The log likelihood function in this code technically corresponds
to a continuous analogue of the Bernoulli random variable. But the distribution of pixels is heavily concentrated—most are 0
or 1, and so there’s little harm in just pretending they’re Bernoulli. A more refined model might take account of the remaining
8% or so of pixels which are roughly uniform in [0, 1]. But the real deficiency of this model is that it treats the pixels as
independent; it’s this deficiency that leads to the blurred outputs of the autoencoder.

5.4 Probabilistic autoencoders 101

Example 5.4.1 (Bernoulli outputs, Gaussian latent variables).
Consider a dataset x1, . . . , xn with datapoints xi ∈ {0, 1}e. We wish to model it using a
Bernoulli generative model:

def rx () :
z = np.random.normal(s ize=d) #vector in Rd

p = f (z) #vector in [0, 1]e

return np.random.binom(1 ,p) #vector in {0, 1}e

Z ∼ N(0, Id) fθ X ∼ Binom
(
1, fθ(Z)

)
Here the neural network is a function fθ : Rd 7→ [0, 1]e, and each component of X ∈ {0, 1}e is
generated independently from the corresponding component of fθ(Z).

Explain how to fit this model, using the following Gaussian encoder:

x gϕ µ, σ Z̃ = µ+ σF

F ∼ N(0, Id)

where the neural network gϕ(x) outputs two vectors, µ ∈ Rd and σ ∈ Rd
≥0, and where the

expression for Z̃ is componentwise addition and multiplication.

First let’s implement the generator and its log likelihood function. The conditional log likelihood is

log PrX(x | Z = z) =

e∑
k=1

[
xk log pk + (1− xk) log(1− pk)

]
where p = fθ(z).

Here’s code. The neural network f and the log likelihood function have been written to work on batches
of datapoints, B of them per batch, since that’s the PyTorch convention.

1 class BernoulliImageGenerator(nn.Module) :
2 def __init__(self , d=4):
3 super () .__init__()
4 se l f .d = d
5 se l f .f = . . . # f : RB×d → [0, 1]B×e

6
7 def forward(self , z) :
8 return se l f .f (z)
9
10 def logl ik (sel f , x , z) : #x ∈ {0, 1}B×e and z ∈ RB×d

11 xr = se l f (z)
12 return (x∗torch . log(xr) + (1−x)∗torch . log(1−xr)) .sum(1) #∈ RB

Next, the encoder. The autoencoder training objective Llb is implemented on line 25. There are two
terms in the expression for Llb, an expected log likelihood term and a KL term. The expected log
likelihood is computed on lines 27–28, using Monte Carlo with just a single sample (!).

13 class GaussianEncoder(nn.Module) :
14 def __init__(self , decoder):
15 super () .__init__()
16 se l f .d = decoder .d
17 se l f . f = decoder
18 se l f .g = . . . # g : {0, 1}B×e → RB×2d

19
20 def forward(self , x) :
21 µτ = se l f .g(x)
22 µ,τ = µτ [: , : se l f .d] , µτ [: , se l f .d :]
23 return µ, torch .exp(τ/2) µ ∈ RB×d , σ ∈ RB×d

≥0

24
25 def loglik_lb(self , x) : #x ∈ {0, 1}B×e

26 µ,σ = se l f (x)
27 ε = torch . randn_like(σ)
28 l l = se l f . f . log l ik (x , z = µ + σ∗ε)

102 5.4 Probabilistic autoencoders

29 kl = 0.5 ∗ (µ∗∗2 + σ∗∗2 − torch . log(σ∗∗2) − 1).sum(1)
30 return l l − kl #∈ RB

As for the KL term, the distributions we’re using in this model are so simple that it’s easy to calculate
an exact formula, in line 29. Here’s the derivation. We’ve chosen to let Z̃(i,ϕ) consist of d independent
Normal(µk, σ

2
k) random variables, k = 1, . . . , d, and to letZ consist of d independentN(0, 1) random

variables. (The concise notation for this is Z̃ ∼ N(µ, σ2Id) and Z ∼ N(0, Id).) The KL divergence
KL(PrZ̃ ‖PrZ) is

KL(PrZ̃ ‖PrZ) = Ez∼Z̃ log
(PrZ̃(z)

PrZ(z)

)

= Ez∼Z̃ log
d∏

k=1

1√
2πσ2

k

e−(zk−µk)
2/2σ2

k

1√
2π

e−z2
k/2

= Ez∼Z̃

d∑
k=1

(
−1

2
logσ2

k − (zk − µk)
2

2σ2
k

+
z2k
2

)
=

1

2

d∑
k=1

(
σ2
k + µ2

k − logσ2
k − 1

)
.

Finally, we can train it in the standard PyTorch way. The objective is to maximize LlbPyTorch optimization:
see section 3.3 page 55

31 model = GaussianEncoder(BernoulliImageGenerator(d=4))
32 optimizer = optim.Adam(model. parameters())
33
34 for epoch in range(5):
35 for batch_num,(imgs , lb l s) in enumerate(mnist_batched):
36 optimizer . zero_grad()
37 loglik_lb = torch .mean(model. loglik_lb(imgs))
38 (−loglik_lb).backward()
39 optimizer . step()

WHY DOES IT EVEN WORK?

Where on earth does the objective function for an autoencoder come from? Let’s look at the terms
that make it up.

Llb(θ, ϕ) =
∑
i

{[
E log PrX

(
xi | Z̃(i,ϕ) ; θ

)]
− KL(PrZ̃(i,ϕ) ‖PrZ)

}
The first term is a likelihood term. It will be high when the latent variable Z̃ makes xi more likely.
This will happen when the encoder and decoder are matched: when the encoder maps xi onto Z̃ in
some small part of the latent space, and when the decoder maps that specific part of the latent space
to xi.

Why does there need to be randomness in the encoder? This is to encourage the autoencoder to
learn ‘meaningful representations’, in the sense that we’d like to be able to tweak components of the
latent representation z, and get slightly tweaked outputs fθ(z), not radically different outputs. If the
decoder were discontinuous, then depending on the exact value that the random variable Z̃ happens to
take we might end up with a high likelihood PrX(xi|Z̃; θ) or we might end up with a low likelihood.
The only way the autoencoder can get a reliably high likelihood is if it learns a reasonably continuous
decoder.

The KL term is a penalty for badly-distributed Z̃. Suppose the autoencoder learnt to put all
the encoded values into weird disconnected parts of the latent space. This wouldn’t be any good at
generating new values. We want to be able to synthesize new values by sampling a random Z and
feeding it into the generator—and so we need to penalize the network if it doesn’t use all parts of the
latent space. That’s what the KL term does.

It’s useful to have intuition about what the terms do, especially when it comes to debugging;
but this is all arguing by analogy, and it’s weak argument. Jesus taught in parables because he taught
ineffable wisdom; but in machine learning we should stick to describing what things are not what
they are like. It’d be almost impossible to derive the autoencoder from hand-waving intuition like this.

5.4 Probabilistic autoencoders 103

The autoencoder is a beautiful and precise balance, and its only real justification is the probabilistic
derivation in section 5.5. If we want to modify the setup to achieve different goals, we should go via
the probability derivation and not via intuition, else we’re liable to mess things up.

