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5.3. Importance sampling *
Monte Carlo says that, if X is a random variable and h(·) is some function of interest, then we can
approximate Eh(X) by

Eh(X) ≈ 1

n

n∑
i=1

h(xi), xi sampled from X.

Sometimes Monte Carlo doesn’t work too well. In this plot below, h(x) is a very spiky function and
X ∼ Uniform[0, 1] (which means that Eh(X) is the area under the curve in the top plot). It takes
very many samples before the sampled function even ‘sees’ the spikes, resulting in a Monte Carlo
approximation that underestimates the true answer.
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(What we actually see is more subtle than ‘always underestimates’. For most of the samples (x1, . . . , xn)
that we might draw we get an underestimate, but there’s a small probability of drawing a sample that
has lots of xi at the spikes, leading to a wild overestimate. When we’re using Monte Carlo, and we’ve
drawn a sample, we don’t know which of these two cases we’ve hit. In other words, our approximation
procedure produces noisy estimates.)

Importance sampling is a modification to Monte Carlo in which we sample the xi from a dif-
ferent distribution, call it X̃ . The idea of X̃ is to make it more likely to get samples in the regions
that matter most. In the example above, we had better make sure to get samples in the regions where
h(·) has spikes, if we want an accurate picture and an accurate estimate of Eh(X). Of course we
have to do something to correct for this biased sampling, because otherwise we’d overestimate. The
appropriate correction is:

Importance sampling approximation. We can approximate Eh(X) by picking some other dis-
tribution X̃ , called the sampling distribution, and then

Eh(X) ≈ 1

n

n∑
i=1

h(xi)
PrX(xi)

PrX̃(xi)
, xi sampled from X̃.

The only restriction on the sampling distribution is that we require

PrX̃(x) > 0 wherever h(x)PrX(x) 6= 0.
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HOW TO CHOOSE THE SAMPLING DISTRIBUTION

We have a whole design space of sampling distributions to choose from. A reasonable goal is to pick
it so as to minimize the noisiness of the approximation, for example to pick it to minimize

Var g(X̃) where g(x) = h(x)
PrX(x)

PrX̃(x)
.

If h(x) ≥ 0, as it is in many of the uses we’ll make of importance sampling, the answer is staring us
in the face: pick the sampling distribution so that

PrX̃(x) = const × h(x)PrX(x)

where the constant is whatever is needed to make PrX̃ be a valid distribution. If we choose this then
g(X̃) is constant, so the variance is zero, and we only need a single sample! There is of course a catch.
We’d need to work out the constant, which is 1/

∫
x
h(x)PrX(x) dx, which is the exactly the integral

that we’re trying to approximate in the first place.

Nonetheless, this answer is morally right. If h(x) ≥ 0 for all x, we should choose the sampling
distribution to be roughly proportional to h(x)PrX(x). In the example illustrated above, I picked
a two-component Gaussian mixture density roughly fitted to the shape of h(x)PrX(x). The nice
thing about Gaussian sampling distributions is that it’s very easy to write down PrX̃(x). We’ll use

density for a Gaussian
mixture model: page 15 this in section 5.4, where we train a neural network to find good parameters for a Gaussian sampling

distribution.

WHY IMPORTANCE SAMPLING WORKS

To justify the importance sampling approximation, let’s first define

g(x) = h(x)
PrX(x)

PrX̃(x)

and then use Monte Carlo integration to estimate E g(X̃):

E g(X̃) ≈ 1

n

n∑
i=1

g(xi), xi sampled from X̃.

This gives the right hand side of the importance sampling approximation. To get the left hand side,

E g(X̃) = Ez∼X̃

{
h(z)

PrX(z)

PrX̃(z)

}
substituting in the definition of g

=

∫
z

h(z)
PrX(z)

PrX̃(z)
PrX̃(z) dz writing out E as an integral (or sum)

=

∫
z

h(z)PrX(z) dz since the PrX̃(z) terms cancel

= Eh(X) since Eh(X) is just an integral (or sum).

(This argument was cavalier about points where PrX̃(x) = 0. It’s easy to fix, but not illuminating.)


