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5.3. Importance sampling *

Monte Carlo says that, if X is a random variable and h(-) is some function of interest, then we can
approximate E h(X) by

Z h(z;), «; sampled from X.

i=1

1
Eh(X) =~ -

Sometimes Monte Carlo doesn’t work too well. In this plot below, h(x) is a very spiky function and
X ~ Uniform[0, 1] (which means that E h(X) is the area under the curve in the top plot). It takes
very many samples before the sampled function even ‘sees’ the spikes, resulting in a Monte Carlo
approximation that underestimates the true answer.
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(What we actually see is more subtle than ‘always underestimates’. For most of the samples (z1, . . ., zp)

that we might draw we get an underestimate, but there’s a small probability of drawing a sample that
has lots of x; at the spikes, leading to a wild overestimate. When we’re using Monte Carlo, and we’ve
drawn a sample, we don’t know which of these two cases we’ve hit. In other words, our approximation
procedure produces noisy estimates.)

Importance sampling is a modification to Monte Carlo in which we sample the x; from a dif-
ferent distribution, call it X. The idea of X is to make it more likely to get samples in the regions
that matter most. In the example above, we had better make sure to get samples in the regions where
h(-) has spikes, if we want an accurate picture and an accurate estimate of E h(X). Of course we
have to do something to correct for this biased sampling, because otherwise we’d overestimate. The
appropriate correction is:

Importance sampling approximation. We can approximate I h(X) by picking some other dis-
tribution X, called the sampling distribution, and then

= Prx (z; >
Eh(X) ~ - ;h(%)l’r;Ex:;’ x; sampled from X .

The only restriction on the sampling distribution is that we require

Pry(z) >0 wherever h(z)Prx(x) # 0.




density for a Gaussian
mixture model: page 15
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HOW TO CHOOSE THE SAMPLING DISTRIBUTION

We have a whole design space of sampling distributions to choose from. A reasonable goal is to pick
it so as to minimize the noisiness of the approximation, for example to pick it to minimize

Var g(X) where  g(x) = h(at)PrX(x).

If h(z) > 0, as it is in many of the uses we’ll make of importance sampling, the answer is staring us
in the face: pick the sampling distribution so that

Pr ¢ (z) = const X h(z)Prx(z)

where the constant is whatever is needed to make Pr ¢ be a valid distribution. If we choose this then
g(X) is constant, so the variance is zero, and we only need a single sample! There is of course a catch.
We’d need to work out the constant, which is 1/ [ h(z) Prx (x) dz, which is the exactly the integral

that we're trying to approximate in the first place.

Nonetheless, this answer is morally right. If h(z) > 0 for all =, we should choose the sampling
distribution to be roughly proportional to h(x)Prx(x). In the example illustrated above, I picked
a two-component Gaussian mixture density roughly fitted to the shape of h(z)Prx(z). The nice
thing about Gaussian sampling distributions is that it’s very easy to write down Pr ¢ (z). We’ll use
this in section 5.4, where we train a neural network to find good parameters for a Gaussian sampling
distribution.

WHY IMPORTANCE SAMPLING WORKS

To justify the importance sampling approximation, let’s first define

Prx(z)
Prg (z)

and then use Monte Carlo integration to estimate E g(X ):

n

- 1 -
Eg(X) = - Zg(wi), x; sampled from X.

i=1

This gives the right hand side of the importance sampling approximation. To get the left hand side,

} substituting in the definition of g

P
= / h(z) rx(2) Pr¢(z)dz writing out [E as an integral (or sum)
z

= /h(z) Prx(z)dz since the Pr ¢ (z) terms cancel

z

=Eh(X) since E h(X) is just an integral (or sum).

(This argument was cavalier about points where Pr ¢ (x) = 0. It’s easy to fix, but not illuminating.)



