
3.4 Generative neural networks 57

3.4. Generative neural networks
How can we use neural networks for generating random values? Neural networks have the job of
taking an input and processing it to produce an output. This is an obvious fit for supervised learning,
where we aim to predict the output label given the input predictor variables. But how can we frame
generative modelling — in which we are given an unlabelled dataset x1, . . . , xn and we want to find
a probability model that might have generated these values — as an input/output problem?

There’s an almost embarrassingly simple trick: we simply decide to model the data asX = f(Z)
where Z is some standard random variable for example a Uniform[0, 1] and f is the neural network.
Here Z is called the latent random variable, meaning hidden, since we’re not told the zi that led to
each datapoint xi.

In principle it doesn’t matter what distribution we use for Z, whether it’s Uniform or Normal
or a collection of independent Normals. The neural network will (we hope) learn to transform Z into
something interesting like a photo or a piece of text, and in comparison the job of transforming from

the inversion method,
section 4.6, shows how
to transform between
U [0, 1] and any other
real-valued random
variable

a Uniform to a Normal distribution is trivial. It’s even possible, in principle, for the network to turn
a single random variable into a collection of independent random variables.24 In practice, there’s
no point making training more demanding than it needs to be, and neural networks ‘like to be fed
randomness’, so the pragmatic choice is to let Z have as many dimensions as there are free dimensions
in the dataset. This hand-wavey advice will be made quantifiable when we look at autoencoders in
section 5.4.

Training a generative neural network. Training a generative model is just the same as any other
probabilistic modelling task: it’s just maximum likelihood estimation. In other words, we’ll choose
the parameters of the network to maximize the log likelihood of the dataset,

∑
i log PrX(xi).

The challenge of generative neural networks, and the reason they are understudied compared
to neural networks for supervised learning, is that it takes mathematical subtlety to set things up so
that we can even compute PrX(xi). There are several approaches. We’ll see a very simple approach
here, only suitable for toy examples. In later chapters, after we’ve covered the necessary probability
tools, we’ll look at two other approaches: autoencoders in section 5.4 and recurrent neural networks
in section 10.6.

Evaluating a generative neural network. It’s good machine learning practice to set aside a holdout
dataset, and to evaluate a neural network’s performance by its prediction accuracy on the holdout data.
It never saw the holdout data during training, so it can’t cheat by memorizing the answers. But how
should we evaluate a generative model? We can’t measure its prediction accuracy on a holdout set,
since it’s not designed to make predictions.

We could conceivably ask humans to evaluate the outputs it generates, to judge whether they
are realistic. Or, better, take some machine-generated outputs and some holdout datapoints, and see if
a human can tell them apart. But this doesn’t scale—it’s hardly machine learning if it needs a human
in the loop. Instead, we could build a ‘discriminator’ neural network and measure how well it can tell
the difference. This is a powerful idea—the basis for Generative Adversarial Networks—but it’s hard
to get right. Did our generator do well because it’s a good generator, or because the discriminator we
trained was inadequate?

Probabilistic modelling rides in to the rescue. A generative neural network is nothing more
nothing less than a probability model, and a probability model can be evaluated by the log likelihood
of observed data. We simply train the network on the training dataset, then measure the log likelihood
of holdout data, and that is our evaluation metric. There’s no cleverness needed, no special treatment:
it’s exactly the same evaluation for supervised learning as for generative modelling, and it’s exactly
the same metric we use for training as for evaluation.

In Natural Language Processing this evaluation metric is widely used (or rather, an oddly-
transformed version of it), and it’s given the name perplexity. It’s woefully underused in other areas
of machine learning. We’ll discuss evaluation much more deeply in section 9.

24Here’s how to transform a single Uniform random variable into two independent Uniform random variables. Let the binary
expansion of U ∼ Uniform[0, 1] be 0.U1U2U3 . . . , and then simply let X1 = 0.U1U3U5 . . . and X2 = 0.U2U4U6
This is all well and good for infinite precision mathematics, not helpful for floating point computation.

58 3.4 Generative neural networks

Example 3.4.1.
Train a generative model for a collection of points x1, . . . , xn in R2. (The points shown here are
pixels from a handwritten MNIST digit.) The model should have the form “pick a random point
on a curved path, then offset it randomly”.

points xi path f(z) likelihood PrX(x)

To be precise, model the dataset as independent samples from

X ∼ f(Z) +N(0, σ2I)

where f : [0, 1] → R2 is a neural network to be trained, σ is a noise parameter to be fitted, and
Z is a discretized U [0, 1] random variable taking evenly spaced values25 {z1 = 0, . . . , zm = 1}
where m is given. The notation N(0, σ2I) means “generate two independent N(0, σ2) random
variables, one for each of the R2 coordinates”, and it’s a special case of the multivariate Normal
distribution.

The notation here obscures what the true latent variable is. It’s actually a pair (Z,E) where Z is
the discretized uniform random variable specified in the question, and E ∼ N(0, I) is made up of
two independent Normal(0, 1) random variables. The overall function we’re learning is g(Z,E) =
f(Z)+ σE. Latent variables are meant to capture all of the randomness of X; and their distributions
are not meant to depend on whatever it is we aim to learn. This isn’t terribly important—it’s a matter
of terminology, not a matter of modelling—but it’s good mental hygiene to be explicit about all the
sources of randomness in our model, and about what is learnt versus what is given.

Z

E

f

×σ
X = f(Z) + σE

latent vars

The first step is to derive a formula for the log likelihood of the dataset. As usual, we’re modelling
the datapoints as independent samples, so the total log likelihood is the sum of the log likelihoods of
individual datapoints. For an individual datapoint x ∈ R2,

log PrX(x) = log
(m∑

j=1

PrX(x | Z = zj)PrZ(zj)
)

by law of total prob.

= log
(

1

m

m∑
j=1

1

2πσ2
e−∥x−f(zj)∥2/2σ2

)
as X is normal with mean f(zj)

= − log(2πσ2) + log
(

1

m

m∑
j=1

e−∥x−f(zj)∥2/2σ2

)
.

(Remember that each datapoint x has two dimensions, and each dimension of x− f(z) is an indepen-
dent N(0, σ2) random variable, which is why there is 1/2πσ2 rather than 1/

√
2πσ2.)

Now we can fit the model. This code defines a PyTorch module corresponding to the random
variable, and its evaluation function computes the log likelihood:

forward([x1, . . . , xn]) = [log PrX(x1), . . . , log PrX(xn)].

25It would be more natural to let Z ∼ U [0, 1], but that needs more advanced probability for computing PrX(xi), and is left
to section 5.4.

3.4 Generative neural networks 59

1 class RCurve(nn.Module) :
2 def __init__(self , σ0=0.1, m=100):
3 super () .__init__()
4 se l f . f = nn. Sequential(#input.shape [m]
5 nn. Linear(1 ,4) , #→ [m× 4]
6 nn.LeakyReLU() ,
7 nn. Linear(4 ,20) ,
8 nn.LeakyReLU() ,
9 nn. Linear(20,20),
10 nn.LeakyReLU() ,
11 nn. Linear(20,2) #→ [m× 2]
12)
13 se l f .σ = nn.Parameter(torch . tensor(σ0))
14 se l f . z = torch . linspace (0 ,1 ,m)
15 def forward(self , x) : #x.shape [B × 2]
16 µ = se l f . f (se l f . z . reshape(−1,1)).reshape(1,−1,2)
17 x = x. reshape(−1,1,2)
18 d = torch . l inalg .norm(x − µ , dim=2)
19 l i k = torch .exp(− 0.5 ∗ torch .pow(d/se l f .σ , 2))
20 l i k = torch . log(torch .mean(l ik , dim=1)) − torch . log(2∗np. pi∗torch .pow(se l f .σ ,2))
21 return l i k #shape [B]
22
23 X = . . . #the datapoints, as a n× 2 torch tensor
24 m= RCurve(σ0=0.03)
25 optimizer = optim.Adam(m.parameters())
26
27 with Interruptable () as check_interrupted :
28 while True:
29 check_interrupted()
30 optimizer . zero_grad()
31 log l ik =m(X)
32 e =− torch .mean(logl ik)
33 e .backward()
34 optimizer . step()

You should ignore the contents of RCurve.f. It’s simply an arbitrary function [0, 1] → R2 plucked out
of thin air. I experimented before settling on this particular number of layers and nodes—too simple
and I only get trivial paths, too complex and I get messy wiggles rather than smooth lines.

