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3.2. Probabilistic deep learning
As per the usual supervised learning setup, suppose we have a labelled dataset (x1, y1), . . . , (xn, yn),
where xi is the input and yi is the label for record i.

The probabilistic modelling approach is to say “the labels are noisy, and we should model their
distribution”. To be precise, we’ll fit a parametric probability distribution PrY (yi ; f(xi)) whose
parameters are computed by a neural network f . Fitting a probability model means maximizing the
log likelihood of the dataset, and so that’s the objective we can use to train the neural network.

We’ll see that, for simple probability distributions at least, maximum likelihood estimation
does the same thing as the conventional “minimize prediction loss” procedure, as it’s used by non-
probabilistis who think the job of a neural network is just to make predictions.

It’s good machine learning practice to split the dataset into a training set and a holdout set, and
use the former for training and the latter for evaluation. Exactly the same is true for probabilistic deep
learning. The only difference is that evaluation means “evaluate how good a fit my model is”, and so
the evaluation metric is the log likelihood according to the fitted model of the holdout dataset.

LOG LIKELIHOOD AND PREDICTION ACCURACY

For simple probability models, fitting with maximum likelihood estimation boils down in the end to
minimizing prediction loss, for a suitable prediction loss function. Another way of saying this is: we
can use all the standard tools for training neural networks, but now we have a principled way of picking
sensible loss functions.

To see how this works, we’ll look at two examples. The first example is a regression with
Gaussian errors, a generalization of our model for iris petal length from section 2.4,

Petal.Lengthi ∼ α+ β Sepal.Lengthi + γ (Sepal.Lengthi)2 +N(0, σ2).

Example 3.2.1 (Regression with Gaussian errors).
Consider a regression model with Gaussian errors

Yi ∼ f(xi ; θ) +N(0, σ2)

where Yi is a random variable modelling the label, xi includes all relevant features, and f is
a neural network with parameters θ. Suppose we’ve observed values y1, . . . , yn for the labels.
Describe how to find maximum likelihood estimates θ̂ and σ̂.

The log likelihood of the entire dataset is

log Pr(y1, . . . , yn ; θ, σ) = −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(
yi − f(xi; θ)

)2
.

We want to maximize this over θ and σ. We can do the maximization over θ first: for this we need to
solve

This is exactly Gauss’s
calculation from
section 2.4minimize

n∑
i=1

(
yi − f(xi; θ)

)2 over θ

which is the same thing as training the neural network to mimimize the average loss for the prediction
loss function

L(label, pred) = (label − pred)2.

It’s then simple calculus to find the maximum likelihood estimate for the noise parameter σ̂—though
this last step doesn’t have a ‘prediction loss’ interpretation.
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The next example is classification, along the lines of the MNIST image classification problem in ex-
ample 3.1.2 above. In classification problems, the labels come from a discrete set. For our probability
model we’ll use a Categorical random variable. Let p⃗ be a probability vector, with an entry pk for

other uses of Categorical:
exercise 1.6.3 page 18. every possible outcome k, and let Y ∼ Cat(p⃗). This simply means P(Y = k) = pk. It is the simplest

most general model possible for a random variable with discrete outcomes.

Example 3.2.2 (Classification).
In classification, the labels come from a finite set, call it {1, . . . ,K}. Consider a probability
model based on a Categorical random variable,

Yi ∼ Cat
(
p⃗(xi; θ)

)
Here p⃗(x ; θ) is some arbitrary function that takes the predictor variables x, as well as parameters
θ, and returns a probability vector

p⃗(xi; θ) =
[
p1(xi; θ), . . . , pK(xi; θ)

]
.

Suppose we’ve observed values y1, . . . , yn for the labels. Describe how to find the maximum
likelihood estimator for θ.

When trying to maximize the likelihood, it’s awkward to maximize over a constrained domain—here
we’d have to ensure we only pick θ that results in a valid probability vector i.e. each probability
≥ 0 and all summing to one. It’s easier to transform to an unconstrained space, using the softmax
transform from section 1.2 page 8. Thus, let’s seek a different function f⃗(x ; θ) ∈ RK , and then let

pk(x ; θ) =
efk(x;θ)

ef1(x;θ) + · · ·+ efK(x;θ)
for k ∈ {1, . . . ,K}.

Then we’re free to choose any θ at all, and we’re guaranteed to end up with a probability vector p⃗.
To train this model we follow the standard maximum likelihood procedure: write out the log

likelihood, and maximize it. The likelihood of an individual observation y is

PrY (y ; x, θ) = py(x ; θ)

So the log likelihood of the whole dataset is

log Pr(y1, . . . , yn ; θ) =

n∑
i=1

log pyi(xi ; θ) =

n∑
i=1

K∑
k=1

1yi=k log pk(xi ; θ).

We want to pick θ to maximize this. Equivalently, sticking a minus sign in front and scaling by n, we
want to pick θ to minimize

loss =
1

n

n∑
i=1

crossentropy
(

onehot(yi), softmax
(
f⃗(xi ; θ)

))
where

onehot(y) =
[
1y=1, . . . , 1y=K

]
softmax(f⃗) =

[ ef1

ef1 + · · ·+ efK
, . . . ,

efK

ef1 + · · ·+ efK

]
crossentropy(q⃗, p⃗) = −

(
q1 log p1 + · · ·+ qK log pK

)
.

This is known as “minimizing softmax cross-entropy loss with onehot coding”. It’s a sesquipadelian
way of saying “I’m modelling this data with a Categorical random variable, the simplest possible
model for discrete outcomes; I’m using the simplest possible transform to make the optimization easy;
and I’m fitting using maximum likelihood estimation, the bog standard way of estimating parameters.”

Interestingly, the decomposition into crossentropy and onehot and softmax makes it clear that
the real prediction task here isn’t “predict the label yi”, it’s “predict the one-hot coded version of yi”.
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WHY PROBABIL ISTIC IS BEST

The ‘prediction accuracy’ mindset doesn’t involve any explicit probability modelling. Someone who
doesn’t believe in probability theory could perfectly well formulate a task as a problem of minimizing
prediction loss; they might even claim that deep learning is entirely about prediction and loss functions,
and doesn’t need any modelling at all.

Moreover, the probability interpretation takes some mental gymnastics. The probabilist can
look at a picture of a cat and say “The label for this picture is a random variable, and it takes value
‘cat’ with probability 92%”, when any normal person would say “What do you mean, random? it’s
a cat, for goodness sake!” The interpretation of probability is mind bending, and even experts get it
wrong, as the final example of this section will show.

In the author’s opinion, the probabilistic interpretation of deep learning is much better than the
‘prediction accuracy’ mindset …

• Without a probability model, different loss functions are just formulae that we have to memorize.
With a probability model, we still have to design a model, but the loss functions don’t look like
a laundry list of mystery.

• If we face a new type of dataset, it’s fairly intuitive to design a probability model for it, perhaps
in the form of simulation code. We can then derive the corresponding loss function, and since it
comes from our intuitive probability model, it should be well-behaved. On the other hand, if we
only think in terms of prediction loss, we might design a loss function that makes the learning
go haywire. Arguably, any sane loss function has a corresponding probability model.

• There are useful models that don’t have a natural interpretation as minimizing prediction loss,
but do have a natural probabilistic interpretation. For example, suppose we think that the noise
term σ in the iris petal-length model should depend on features of the iris, σ = σ(xi ; ϕ) for
some parameter ϕ to be learnt. It’s trivial to put this into the probability model and fit it, unclear
how to frame it as ‘minimize prediction loss’.

• If we think in terms of probability models, it’s easy to see how to train and evaluate unsupervised
neural network models, which we’ll turn to in the next section. If we think in terms of prediction
and loss, it’s hard to even begin to formulate what unsupervised learning is meant to achieve.

• Without the probabilistic perspective we can fall into traps of interpretation. The next example, a
summary of some ingenious research into adversarial attacks against neural network classifiers,
illustrates.

Example 3.2.3 (The adversarial panda23).

panda,
57.7%
confidence

+0.007×

nematode,
8.2%
confidence

=

gibbon,
99.3%
confidence

A neural network was trained to classify images. When shown the leftmost image, it reports
“panda, 57.7% confidence”. The center image is carefully chosen noise. By blending the
original panda with noise at 0.7% opacity, we obtain the rightmost image, which the neural
network interprets as “gibbon, 99.3% confidence”.

When we train a neural network classifier, we’re really just fitting a probability model. Given an input
image x, the neural network outputs a probability vector p⃗(x ; θ), where θ contains all the fitted
parameters of the network.

A thought experiment right at the beginning of our study of maximum likelihood, on page 1.1,
told us that estimated probabilities do not measure confidence. The thought experiment was this: If

23I. J. Goodfellow, J. Shlens, and C. Szegedy. “Explaining and Harnessing Adversarial Examples”. In: ArXiv e-prints (Dec.
2014). arXiv: 1412.6572 [stat.ML]

https://arxiv.org/abs/1412.6572
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we toss 4 coins and get 3 heads, the estimated probability of heads is 3/4. If we toss 4 million coins
and get 3 million heads, it’s still 3/4. We should surely be more confident in the latter case. Thus,
estimated probabilities do not measure confidence.

The neural network did not report a confidence, it reported a probability, and we don’t know
how confident it was in its guess. The tools for measuring confidence, which we’ll study in part III,
are all based on probability models, and without a probabilistic view of neural networks we will not
be able to extract confidence measures. (Confidence measures for neural networks are, however, still
a topic of active research.)


