
10.6 Recurrent neural networks 179

10.6. Recurrent neural networks

Suppose we’re given a dataset of strings, and we want to be able to generate new strings of the same
general type.

aaron abraham admatha
abdiel achaia adria
abel adam ahab
abigail adlai . . .

Let’s write a string x as a sequence of characters, x = x1x2 · · ·xn. We want to be able to generate
random sequences X = X1X2 · · ·XN where both the characters and the length are random. We can
take exactly the same approach we’ve taken to every single probability modelling problem throughout
this course: first invent a parameterized distribution PrX(x ; θ), then fit the model, then use the fitted
model to generate new random sequences. The quality of the results will of course depend on the
model we choose. No model is true—but some models fit the data better than others, and we can
evaluate the fit in the usual way, by the log likelihood of holdout data.

OTHER PROBABIL ITY MODELS FOR SEQUENCES

The recurrent neural network can be thought of as a probability model for generating random se-
quences, designed to address shortcomings of other sequence models. It’s useful to first review those
other models. The simplest sequence model is a Markov chain.

Let’s augment the alphabet with ∅ to denote ‘start of string’ and □ to denote ‘end of string’,
and generate random strings by starting at ∅ and jumping from character to character until we
hit □. The causal diagram is

∅ → X1 → X2 → · · · → XN → □

and the likelihood function is

PrX(x1x2 · · ·xn ; θ) = pθ(x1 |∅) pθ(x2 | x1)× · · · × pθ(□ | xn)

where θ governs the character-to-character transition probabilities.

We’ll get better results if we include some history, as per Markov’s trigram model.

The causal diagram for Markov’s trigram model, example 10.2.2, is

∅∅

X1

∅X1

X2

· · · XN−2XN−1

XN

XN−1XN

□

and the likelihood function is

PrX(x1x2 · · ·xn ; θ) = pθ(x1 |∅∅)pθ(x2 |∅x1)× · · · × pθ(□ | xn−1xn).

In this diagram the solid arrows denote random generation of new values, and the dotted arrows
denote inputs to the deterministic function that updates the ‘last two characters’ state variable.

How much history should we keep? The more we keep, the more faithful our random sequences are
to the training dataset—but if we’re too faithful then we’ll just regurgitate the training data rather than
generate novel sequences, so we’ll assign a low likelihood to the novel datapoints in the holdout set, so
we’ll score badly on evaluation. Rather than hard-coding a fixed history window, a flexible alternative
is to use a hidden Markov model, where the hidden state is some abstract summary of everything that’s
worth remembering about the past.

180 10.6 Recurrent neural networks

0 Z1 Z2 · · · ZN ZN+1

X1 X2 XN □

In this particular version we’ve included an initial hidden state 0, to allow the first productive
hidden state Z1 to be random. The likelihood function is

PrX(x1x2 · · ·xn ; θ) =
∑

z1,...,zn+1

{
pθ(z1|0) qθ(x1|z1)× pθ(z2|z1) qθ(x2|z2)× · · ·

· · · × pθ(zn+1|zn) qθ(□|zn+1).

}

where p is the transition probabilities for the hidden state, and q is the emission probabilities
for reading off characters, and θ represents all the parameters that need to be estimated for both
these functions.

On one hand the hidden Markov is wonderfully flexible because we can choose the hidden state space
however we like. On the other hand this is a useless idea because it doesn’t solve anything, it just
passes the buck on to whoever has to design the hidden state transitions; and because we’ve ended up
with a horrible intractable sum for the likelihood function. This probability model will not be easy to
work with when it comes to fitting the distribution.

RECURRENT NEURAL NETWORKS TO DIGEST HISTORY

It’s useful to be able to keep track of the process’s history, but it’s hard to know exactly how history
should be represented. What if we could train a neural network to learn this? That’s exactly the idea
behind the recurrent neural network probability model. It has the same causal diagram structure as
the trigram model, but instead of a hard-coded history window it allows a flexible representation of
history via a neural network and a ‘history digest’ si that can have as many dimensions as we like.

0

∅

fθ s1

X1

fθ s2

X2

fθ s3

X3

· · · sN

XN

fθ sN+1

□

Here, fθ is some neural network that takes in the latest event Xi−1 and the previous history digest
si−1, and computes a new history digest si. The next event Xi is then generated randomly, using si
as its parameters. To save the bother of having to specify how Xi is to be generated, we might as
well split si into two parts, si = (pi, vi) where pi specifies the likelihood of Xi and vi is used for
computing si+1. This leads to the basic recurrence equations

(pi, vi) = fθ(xi−1, vi−1), Xi ∼ Cat(pi).

Generating random sequences. Once we’ve trained the neural network fθ it’s easy to generate a
random string.

def generate () :
x , v = ”∅” ,0
while x[−1] 6= □ :

p, v = fθ (x[−1], v)
newchar = np.random. choice(ALPHABET, p)
x = x + newchar

return x[1:−1] # strip out ∅ and □

Training the network. The neural network is easily trained because, like the trigram model, there
is an explicit formula for the log likelihood of a datapoint. The key is that the states are visible,
not hidden—they’re patent, not latent—in the sense that given a datapoint x = x1x2 · · ·xn we can
compute s1, . . . , sn. In pseudocode the log likelihood function looks like this:

def log l ik (x) :
res = 0
lastchar , v = ∅ ,0
for char in x + ”□” :

10.6 Recurrent neural networks 181

p, v = fθ (lastchar , v)
res = res + log(p[char])
lastchar = char

return res

Evaluating the model. The perfectly-fitted probability model for the training dataset is its empirical
distribution, which assigns probability 1/N to every one of the N datapoints in the whole dataset
(assuming no duplication). The best possible log likelihood we can possibly achieve during training
is thus N log(1/N). This can give us a hint about whether our network is overfitting, or whether it’s
too simple to overfit:

0 1 2 3 4 5 6
epoch

30

25

20

15

10

5
log likelihood per datapoint

training
holdout

• If the training loss gets close to this bound, it suggests the network is overfitted to the training
data, and so the log likelihood of the holdout dataset will be low. This suggests we need to add
a regularizing mechanism such as dropout.

• If the neural network can’t get close to this even with the regularizing mechanism turned off, it
suggests the network isn’t complex enough to describe the dataset, so we need more nodes or
layers.

∗ ∗ ∗

Here is PyTorch code, a bit more fussy than our pseudocode. The convention for PyTorch sequence
operations is to act on tensors of shape n × b × f where we’re working on a batch of b sequences
at a time, n is the maximum length of these sequences, and f is the dimensionality of each item in
a sequence. Also, PyTorch manages the iteration for us: we just call fθ(x0x1 · · ·xn−1, v0) and it
doesn’t just return (p1, v1) = fθ(x0, v0) it returns ((p1, . . . , pn), vn).

1 url = ”https://www. cl .cam.ac .uk/teaching/2021/DataSci/data/english_names . txt”
2 names = pandas. read_table(url , header=None, names=[’X’]) .X. str . lower()
3 alphabet = l i s t (set(’ ’ . join (names)))
4 alphabet_n = {c : i+1 for i , c in enumerate(alphabet)}
5 A = len(alphabet)+1
6
7 #Convert from strings to integer-coding (with 0 at beginning and end) then one-hot coding
8 names_n = [[0] + [alphabet_n[x] for x in name] + [0] for name in names]
9 names_n = [torch . tensor(n) for n in names_n]
10 names_oh = [nn. functional .one_hot(n, num_classes=A). f loat () for n in names_n]
11
12 class RSeq(nn.Module) :
13 def __init__(self , H=50, L=2):
14 super () .__init__()
15 #Use rnn for the iterative part, producing a vector of dim. H per timestep,
16 #then apply an additional map before turning it into a probability distribution of dim. A
17 se l f . rnn = nn.GRU(input_size=A, hidden_size=H, num_layers=L, dropout=.05)
18 se l f .map = nn. Linear(se l f . rnn . hidden_size , A)
19
20 def f (sel f , x , v=None): #x.shape m× b×A, v.shape L× b×H
21 assert x . shape[1]==1, ”This code only works with batch_size=1”
22 y ,v = se l f . rnn(x , v) #y.shape m× b×H, v.shape L× b×H
23 z = se l f .map(y) #z.shape m× b×A
24 logp = nn. functional . log_softmax(z , dim=2) #logp.shape m× b×A
25 return logp ,v
26
27 def forward(self , x) : #x.shape = (n+1)*b*A, x assumed to have ∅ and □
28 logp ,_ = se l f . f (x[:−1]) #logp.shape n× b×A
29 return torch .sum(logp ∗ x [1 :] , dim=(0,2)) #shape b
30
31 def generate(se l f) :
32 is_training = se l f . training

182 10.6 Recurrent neural networks

33 se l f . train (False)
34 with torch .no_grad():
35 res = ’ ’
36 x_n,v = 0,None
37 while True:
38 x_n = torch . tensor(x_n). reshape(1,1)
39 x_oh = nn. functional .one_hot(x_n, num_classes=A). f loat ()
40 logp ,v = model. f (x_oh, v)
41 p = torch .exp(logp [0 ,0])
42 x_n = np.random. choice(A, p=p.detach().numpy())
43 i f x_n == 0: break
44 res += alphabet [x_n−1]
45 se l f . train (is_training)
46 return res
47
48 model = RSeq()
49 model. train (True)
50 optimizer = optim.Adam(model. parameters())
51
52 with Interruptable () as check_interrupted :
53 while True:
54 for j in np.random.permutation(len(names_oh)):
55 check_interrupted()
56 optimizer . zero_grad()
57 e =− model(names_oh[j] [: ,None, :])
58 e .backward()
59 optimizer . step()

∗ ∗ ∗

Recurrent neural networks easily be used for supervised learning tasks. Suppose for example we want
to train a neural network to write captions for images. Let the the image be x, model the caption as
a random sequence Y = Y1Y2 · · ·Yn, and fit a model with an extra neural network gθ for processing
the image and converting it to an initial state s0.

x gθ s0

∅

fθ s1

Y1

fθ s2

Y2

· · · sn

Yn

fθ sn+1

□

The Transformer63 architecture, a neural network that generates text much more impressively
than does a recurrent neural network, also uses sequential generation with non-hidden state, but with
an even simpler design. It generates each item in the sequence one by one, using the model Xn ∼
Cat(fθ(x1x2 · · ·xn−1)). The cleverness consists in designing a neural network that can accept an
arbitrary length sequence as its input. But from the point of view of random variables, there’s barely
any difference between a recurrent neural network and a transformer.

63Ashish Vaswani et al. “Attention Is All You Need”. In: NIPS. 2017. URL: http://arxiv.org/abs/1706.03762.

http://arxiv.org/abs/1706.03762

