The Network Stack (2)

Lecture 6, Part 1: TCP
Dr Robert N. M. Watson
2020-2021
The Network Stack (2)

• The Transmission Control Protocol (TCP)
 • The TCP state machine
 • TCP congestion control
 • TCP implementations and performance
 • The evolving TCP stack
 • Lab 3 on TCP

• Wrapping up the Advanced Operating Systems lecture series
The Transmission Control Protocol (TCP)

TCP: an approximation to the real state diagram

TCP principles and properties

- Assumptions: Network may delay, (reorder), drop, corrupt IP packets
- TCP implements reliable, ordered, stream transport protocol over IP
- Three-way handshake: SYN / SYN-ACK / ACK (mostly!)
- Steady state
 - Sequence numbers ACK’d
 - Round-Trip Time (RTT) measured to time out loss
 - Data retransmitted on loss
 - Flow control via advertised window size in ACKs
 - Congestion control (‘fairness’) detects congestion via loss (and, recently, via delay: BBR)
- NB: “Half close” allows communications in one direction to end while the other continues
TCP congestion control and avoidance

- 1986 Internet CC collapse
 - 32Kbps → 40bps
- Van Jacobson, SIGCOMM 1988
 - Don’t send more data than the network can handle!
 - Conservation of packets via ACK clocking
 - Exponential retransmit timer, slow start, aggressive receiver ACK, dynamic window sizing on congestion, and (later) ABC
- ECN (RFC 3168), ABC (RFC 3465), Compound (Tan, et al, INFOCOM 2006), Cubic (Rhee and Xu, ACM OSR 2008), BBR (Cardwell, ACM Queue 2016)

Same conditions as the previous figure (same time of day, same Suns, same network path, same buffer and window sizes), except the machines were running the 4.3+TCP with slow-start. No bandwidth is wasted on retransmits but two seconds is spent on the slow-start so the effective bandwidth of this part of the trace is 16 KBps — two times better than figure 3. (This is slightly misleading: Unlike the previous figure, the slope of the trace is 20 KBps and the effect of the 2 second offset decreases as the trace lengths. E.g., if this trace had run a minute, the effective bandwidth would have been 19 KBps. The effective bandwidth without slow-start stays at 7 KBps no matter how long the trace.)
TCP time/sequence graphs (Van Jacobson)

- Extracted from TCP packet traces (e.g., via tcpdump)
- Visualize windows, congestion response, buffering, RTT, etc:
 - X: Time
 - Y: Sequence number
- We can extract this data from the network stack directly using DTrace
 - Allows correlation/plotting with respect to other variables / events
 - E.g., TCP and socket-buffer state
- TCP time/sequence diagrams have since been extended to represent additional information
 - E.g., SACK (selective acknowledgement) blocks