
The Process Model (2)
L41 Lecture 4, Part 1: Traps and System Calls

Dr Robert N. M. Watson
2020-2021

The process model (2)
• Traps and system calls
• Synchrony and asynchrony
• System-call structure
• Security and reliability

• System calls and traps in practice
• Virtual memory for the process model

2

Lecture 4, Part 1

Lecture 4, Part 2

Lecture 4, Part 3

Traps and system calls
• Asymmetric domain transition, trap, shifts control to kernel

• Asynchronous traps: e.g., timer, peripheral interrupts, Inter-
Processor Interrupts (IPIs)

• Synchronous traps: e.g., system calls, divide-by-zero, page faults

• $pc to interrupt vector: dedicated OS code to handle trap
• Key challenge: kernel must gain control safely, securely

3

RISC User $pc saved, kernel $pc installed, priv. state switched (MMU, …)
Kernel address space becomes available for insn fetch/load/store
Reserved registers in ABI ($k0, $k1 - MIPS) or banking ($pc, $sp, ...)
Software must save other state (i.e., GPRs, FPRs, status words, ...)

CISC HW saves context to in-memory trap frame (variably sized?)

• Thread/process context switch, with suitable atomicity:
• (1) trap to kernel, (2) save register context; (3) update kernel-

internal state, (4) optionally change address space, (5) restore
register context; (6) trap return

UNIX system calls
• User processes request kernel services via system calls:

• Traps that model function-call semantics; e.g.,
• open() opens a file and returns a file descriptor
• fork() creates a new process

• System calls appear to be library functions (e.g., libc)
1. Function triggers trap to transfer control to the kernel
2. System-call arguments copied into kernel
3. Kernel implements service
4. System-call return values copied out of kernel
5. Kernel returns from trap to (usually) next user instruction

• Some quirks relative to normal APIs; e.g.,
• C return values via normal ABI calling convention…
• ... But also per-thread errno to report error conditions
• ... EINTR: for some calls, work got interrupted, try again

4

System-call synchrony
• Most syscalls behave like synchronous C functions
• Calls with arguments (by value or by reference)
• Return values (an integer/pointer or by reference)
• Caller regains control when the work is complete; e.g.,

• getpid() retrieves the process ID via a return value
• read() reads data from a file: on return, data in buffer

• Except .. some syscalls manipulate control flow or
process thread/life cycle; e.g.:
• _exit() never returns
• fork() returns … twice
• pthread_create() creates a new thread
• setucontext() rewrites thread register state

5

System-call asynchrony
• Synchronous calls can perform asynchronous work
• Some work may not be complete on return; e.g.,
• write() writes data to a file or socket .. eventually

• Caller can re-use buffer immediately (copy semantics)
• File writes are visible to other processes .. unless OS/HW fails
• For IPC/socket writes, data may be enqueued but not yet sent

• mmap() maps a file but doesn’t load data
• Caller traps on access, triggering I/O (demand paging)

• Copy semantics mean that user program can be
unaware of asynchrony (… sort of)

• Some syscalls have asynchronous call semantics
• aio_write() requests an asynchronous write
• aio_return()/aio_error() collect results later
• Caller must wait to (re-)use buffer (shared semantics)

6

System-call invocation

kernel

libc

binary main()

getpid()

vector

syscall()

sys_getpid()

vdso __kernel_vsyscall()

• libc system-call stubs provide
linkable symbols
• Inline system-call instructions or

dynamic implementations
• Linux vdso
• Xen hypercall page

• Machine-dependent trap vector
• Machine-independent function
syscall()
• Prologue (e.g., breakpoints,

tracing)
• Actual service invoked
• Epilogue (e.g., tracing, signal

delivery)

7

Note: This is something of a mashup of the
system-call paths of different operating
systems, to illustrate how the ideas compose

FreeBSD system-call table:
syscalls.master

• If this looks like RPC stub generation .. that’s because it is.
• In fact, if you read some of the original work on the BSD kernel, this

design was intended to support system-call forwarding between hosts
8

...
33 AUE_ACCESS STD { int access(char *path, int amode); }
34 AUE_CHFLAGS STD { int chflags(const char *path, u_long flags); }
35 AUE_FCHFLAGS STD { int fchflags(int fd, u_long flags); }
36 AUE_SYNC STD { int sync(void); }
37 AUE_KILL STD { int kill(int pid, int signum); }
38 AUE_STAT COMPAT { int stat(char *path, struct ostat *ub); }
...

UserspaceKernel

init_
sysent.c

System-call
entry array

syscalls
.c

System-call
name array

systrace_
args.c

DTrace
‘systrace’
provider

type array

System-call
numbers and
prototypes

libc
stubs

System-call
stubs in libc

system-
call

headers

syscalls
.master

System-call
table

Security and reliability (1)
• User-kernel interface is a key Trusted Computing

Base (TCB) surface
• Minimum software required for the system to be secure

• Foundational security goal: isolation
• Used to implement integrity, confidentiality, availability
• Limit scope of system-call effects on global state
• Enforce access control on all operations (e.g., MAC, DAC)
• Accountability mechanisms (e.g., event auditing)

9

Security and reliability (2)
• System calls perform work on behalf of user code
• Kernel thread operations implement system call/trap

• Unforgeable credential tied to each process/thread
• Authorises use of kernel services and objects
• Resources (e.g., CPU, memory) billed to the thread
• Explicit checks in system-call implementation
• Credentials may be cached to authorise asynchronous

work (e.g., TCP sockets, NFS block I/O)

• Kernel must be robust to user-thread misbehaviour
• Handle failures gracefully: terminate process, not kernel
• Avoid priority inversions, unbounded resource

allocation, etc.
10

Security and reliability (3)
• Confidentiality is both difficult and expensive
• Explicitly zero memory before re-use between processes
• Prevent kernel-user data leaks (e.g., in struct padding)
• Correct implementation of process model via rings, VM
• Covert channels, side channels

• User code is the adversary – may try to break
access control or isolation
• Kernel must carefully enforce all access-control rules
• System-call arguments, return values are data, not code
• Extreme care with user-originated pointers, operations

11

Security and reliability (4)
• What if a process passes a kernel pointer as the buffer argument

to the read() system call?
• Without checks, the kernel might overwrite its own memory with data

from a file or socket – e.g., the process’s credential!
• Goal: User-originated pointers are accessed with user privilege

• Explicit copyin(), copyout() routines check pointer validity, copy data safely
– and return errors, rather than faulting, on failure

• What if the kernel generates and uses a user pointer by accident?
• Kernel bugs could cause the kernel to access user memory “by

mistake”, inappropriately trusting user code or data
• E.g., the kernel accidentally calls a NULL kernel function pointer
• Address 0 is in user-controlled memory, so the kernel runs whatever code is

there in privileged mode!
• Goal: Only permit intentional user memory access

• Intel Supervisor Mode Access Prevent (SMAP),
Supervisor Mode Execute Prevention (SMEP)

• ARM Privileged eXecute Never (PXN)

• These are all examples of the confused deputy problem
• Privileged code exercises its privilege in violation of a security policy
• This vulnerability pattern exists in many other contexts

12

