
Kernels and Tracing
Lecture 2, Part 3: Kernel Dynamics

Dr Robert N. M. Watson
2020-2021

The kernel: “Just a C program”?
• I claimed that the kernel was mostly “just a C program”
• This is indeed mostly true, especially in higher-level subsystems

2

Userspace Kernel

crt/csu locore

rtld Kernel linker

Shared objects Kernel modules

main() main(), platform_start()

libc libkern

POSIX threads API kthread KPI

POSIX filesystem API VFS KPI

POSIX sockets API socket KPI

DTrace DTrace

… …

The kernel: not just any C program

• Core kernel: ≈3.4M LoC in ≈6,450 files
• Kernel runtime: Run-time linker, object model, scheduler,

memory allocator, threads, debugger, tracing, I/O routines,
timekeeping

• Base kernel: VM, process model, IPC, VFS w/20+ filesystems,
network stack (IPv4/IPv6, 802.11, ATM, …), crypto framework

• Includes roughly ≈70K lines of assembly over ≈6 architectures
• Alternative C runtime – e.g., SYSINIT, curthread
• Highly concurrent – really very, very concurrent
• Virtual memory makes pointers .. odd
• Debugging features – e.g., WITNESS lock-order verifier
• Device drivers: ≈3.0M LoC in ≈3,500 files

• 415 device drivers (may support multiple devices)
3

Spelunking the kernel

• Kernel source lives in /usr/src/sys:
• kern/ – core kernel features
• sys/ – core kernel headers

• Useful resource: http://fxr.watson.org/
4

% ls
Makefile ddb/ libkern/ nfs/ teken/
amd64/ dev/ mips/ nfsclient/ tests/
arm/ dts/ modules/ nfsserver/ tools/
arm64/ fs/ net/ nlm/ ufs/
bsm/ gdb/ net80211/ ofed/ vm/
cam/ geom/ netgraph/ opencrypto/ x86/
cddl/ gnu/ netinet/ powerpc/ xdr/
compat/ i386/ netinet6/ riscv/ xen/
conf/ isa/ netipsec/ rpc/
contrib/ kern/ netpfil/ security/
crypto/ kgssapi/ netsmb/ sys/

% ls kern
Make.tags.inc kern_sendfile.c subr_prng.c
Makefile kern_sharedpage.c subr_prof.c
bus_if.m kern_shutdown.c subr_rangeset.c
capabilities.conf kern_sig.c subr_rman.c
clock_if.m kern_switch.c subr_rtc.c
cpufreq_if.m kern_sx.c subr_sbuf.c
...

How work happens in the kernel
• Kernel code executes concurrently in multiple threads

• User threads in the kernel (e.g., a system call)
• Shared worker threads (e.g., callouts)
• Subsystem worker threads (e.g., network-stack workers)
• Interrupt threads (e.g., Ethernet interrupt handling)
• Idle threads

5

procstat -at
PID TID COMM TDNAME CPU PRI STATE WCHAN

0 100000 kernel swapper -1 84 sleep swapin
0 100006 kernel dtrace_taskq -1 84 sleep -

...
10 100002 idle - -1 255 run -
11 100003 intr swi3: vm 0 36 wait -
11 100004 intr swi4: clock (0) -1 40 wait -
11 100005 intr swi1: netisr 0 -1 28 wait -

...
11 100018 intr intr16: ti_adc0 0 20 wait -
11 100019 intr intr91: ti_wdt0 0 20 wait -
11 100020 intr swi0: uart -1 24 wait -

...
739 100064 login - -1 108 sleep wait
740 100079 csh - -1 140 sleep ttyin
751 100089 procstat - 0 140 run -

Work processing and distribution
• Many operations begin with system calls in a user thread
• But may trigger work in many other threads; for example:

• Triggering a callback in an interrupt thread when I/O is complete
• Eventually writing back data to disk from the buffer cache
• Delayed transmission if TCP isn’t able to send immediately

• We will need to be careful about these things, as not all
work we are analysing will be in the obvious user thread
• Multiple mechanisms provide this asynchrony; e.g.:

6

callout Closure called after wall-clock delay

eventhandler Closure called for key global events

task Closure called .. eventually

SYSINIT Function called when module loads/unloads

* Where closure in C means: function pointer, opaque data pointer

Wrapping up
• In this lecture, we have:
• DTrace, the kernel tracing facility we will use
• The probe effect and its impact
• The dynamics of kernel execution (just a taster)

• Our next lecture will explore:
• The process model
• The practical implications of the process model

• Readings for the next lecture:
• McKusick, et al: Chapter 4 (Process Management)
• Anderson, et al. 1992. (L41 only)

7

