
L41 - Advanced Operating Systems:
Lab 3 - TCP

Dr Robert N. M. Watson

2020-2021

This is L41 Lab 3. If you are a Part II student, please see the other lab variant.

Your lab report will analyse how network latency impacts TCP throughput, with a particular interest in its
effects on congestion control. You will do this using the tcp socket mode of the IPC benchmark, using DUM-
MYNET to simulate various network latencies.

Students may also wish to investigate latency and state-machine interactions explored in the corresponding
Part II assignment, and are welcome to do so. However, they should not submit that work as part of this lab report.

Hypotheses
In this lab, we provide you with these hypotheses that you will test and explore through benchmarking:

1. Longer round-trip times extend the period over which TCP slow start takes place, but peak bandwidths
achieved at different latencies rapidly converge once slow start has completed.

2. Socket buffer auto-resizing uniformly improves performance by allowing the TCP window to open more
quickly during slow start.

We will test these hypotheses by measuring net throughput between two IPC endpoints in two different threads.
We will use DTrace to establish the causes of divergence from these hypotheses, and to explore the underlying
implementations leading to the observed performance behavior. We will also be interested in how the probe effect,
as well as potential simulation effects (e.g., due to using DUMMYNET), affect the fidelity of our analysis.

1 Background: TCP transmission control

1.1 TCP flow control and congestion control
TCP specifies two rate-control mechanisms:

Flow control allows a receiver to limit the amount of unacknowledged data transmitted by the remote sender,
preventing receiver buffers from being overflowed. This is implemented via window advertisements sent
via acknowledgments back to the sender. When using the sockets API, the advertised window size is based
on available space in the receive socket buffer, meaning that it will be sensitive to both the size configured
by the application (using socket options) and the rate at which the application reads data from the buffer.

Contemporary TCP implementations auto-resize socket buffers if a specific size has not been requested
by the application, avoiding use of a constant default size that may substantially limit overall performance
(as the sender may not be able to fully fill the bandwidth-delay product of the network)1. Note that this
requirement for large buffer sizes is in tension with local performance behaviour explored in prior IPC labs.

1Bandwidth (bits/s) * Round Trip Time (s)

1



Congestion control allows the sender to avoid overfilling the network path to the receiving host, avoiding unnec-
essary packet loss and negative impacting on other traffic on the network (fairness). This is implemented
via a variety of congestion-detection techniques, depending on the specific algorithm and implementation –
but most frequently, interpretation of packet-loss events as a congestion indicator. When a receiver notices
a gap in the received sequence-number series, it will return a duplicate ACK, which hints to the sender that
a packet has been lost and should be retransmitted2.

TCP congestion control maintains a congestion window on the sender – similar in effect to the flow-control
window, in that it limits the amount of unacknowledged data a sender can place into the network. When a
connection first opens, and also following a timeout after significant loss, the sender will enter slow start, in
which the window is ‘opened’ gradually as available bandwidth is probed. The name ‘slow start’ is initially
confusing as it is actually an exponential ramp-up. However, it is in fact slow compared to the original TCP
algorithm, which had no notion of congestion and overfilled the network immediately!

In slow start, TCP performance is directly limited by latency, as the congestion window can be opened only
by receiving ACKs – which require successive round trips. These periods are referred to as latency bound
for this reason, and network latency a critical factor in effective utilisation of path bandwidth.

When congestion is detected (i.e., because the congestion window has gotten above available bandwidth
triggering a loss), a cycle of congestion recovery and avoidance is entered. The congestion window will be
reduced, and then the window will be more slowly reopened, causing the congestion window to continually
(gently) probe for additional available bandwidth, (gently) falling back when it re-exceeds the limit. In the
event a true timeout is experienced – i.e., significant packet loss – then the congestion window will be cut
substantially and slow start will be re-entered.

The steady state of TCP is therefore responsive to the continual arrival and departure of other flows, as
well as changes in routes or path bandwidth, as it detects newly available bandwidth, and reduces use as
congestion is experienced due to over utilisation.

TCP composes these two windows by taking the minimum: it will neither send too much data for the remote
host (flow control), nor for the network itself (congestion control). One limit is directly visible in the packets
themselves (the advertised window from the receiver), but the other must either be intuited from wire traffic,
or given suitable access, monitored using end-host instrumentation – e.g., using DTrace. Two further informal
definitions will be useful:

Latency is the time it takes a packet to get from one endpoint to another. TCP implementations measure Round-
Trip Time (RTT) in order to tune timeouts detecting packet loss. More subtlely, RTT also limits the rate
at which TCP will grow the congestion window, especially during slow start: the window can grow only
as data is acknowledged, which requires round-trip times as ACKs are received. As latency increases,
congestion-window-size growth is limited.

Bandwidth is the throughput capacity of a link (or network path) to carry data, typically measured in bits or bytes
per second. TCP attempts to discover the available bandwidth by iteratively expanding the congestion-
control window until congestion is experienced, and then backing off. The rate at which the congestion-
control window expands is dependent on round trip times; as a result, it may take longer for TCP to achieve
peak bandwidth on higher latency networks.

1.2 TCP and the receive socket buffer
The TCP stack will not advertise a receive window that will not fit in the available space in the socket buffer. This
is calculated by subtracting current buffer occupancy from the socket-buffer limit. In early TCP, the advertised
window was solely present to support flow control, allowing the sender to avoid transmitting data that the recipient
could not reliably buffer.

However, the size of the buffer also has a secondary effect: It limits bandwidth utilization by constraining
the bandwidth-delay product, which must fit within that window. As latency increases, TCP must have more
unacknowledged data in flight in order to fill the pipe, and hence achieve maximum bandwidth. More recent TCP

2This is one reason why it is important that underlying network substrates retain packet ordering for TCP flows: misordering may be
interpreted as packet loss, triggering unnecessary retransmission.

2



and sockets implementations allow the socket buffer to be automatically resized based on utilization: as it becomes
more full, the socket-buffer limit is increased to allow the TCP window to open further.
The IPC benchmark allows socket buffers to be configured in one of two ways:

Automatic socket-buffer sizing The default configuration for this benchmark, the kernel will detect when socket-
buffer sizes become full, and automatically expand them.

Fixed socket-buffer sizes When run using the -s argument, the benchmark will automatically set the sizes of
the send and receive socket buffers to the buffer size passed to the benchmark.

2 Background: Using DTrace to trace TCP state
The tcp do segment FBT probe allows us to track TCP input in the steady state. In some portions ofo
this lab, you will take advantage of access to the TCP control block (tcpcb structure – args[3] to the
tcp do segment FBT probe) to gain additional insight into TCP behaviour. The following fields may be
of interest:

snd wnd On the sender, the last received advertised flow-control window.

snd cwnd On the sender, the current calculated congestion-control window.

snd ssthresh On the sender, the current slow-start threshold – if snd cwnd is less than or equal to
snd ssthresh, then the connection is in slow start; otherwise, it is in congestion avoidance.

When writing DTrace scripts to analyse a flow in a particular direction, you can use the port fields in the TCP
header to narrow analysis to only the packets of interest. For example, when instrumenting tcp do segment
to analyse received acknowledgments, it will be desirable to use a predicate of /args[1]->th dport ==
htons(10141)/ to select only packets being sent to the server port (e.g., ACKs), and the similar (but subtly
different) /args[1]->th sport == htons(10141)/ to select only packets being sent from the server
port (e.g., data). Note that you will wish to take care to ensure that you are reading fields from within the tcpcb
at the correct end of the connection – the ‘send’ values, such as last received advertised window and congestion
window, are properties of the server, and not client, side of this benchmark, and hence can only be accessed from
instances of tcp do segment that are processing server-side packets.

To calculate the length of a segment in the probe, you can use the tcp:::send probe to trace the ip length
field in the ipinfo t structure (args[2]):

typedef struct ipinfo {
uint8_t ip_ver; /* IP version (4, 6) */
uint16_t ip_plength; /* payload length */
string ip_saddr; /* source address */
string ip_daddr; /* destination address */

} ipinfo_t;

As is noted in the DTrace documentation for this probe this ip plength is the expected IP payload length
so no further corrections need be applied.

Data for the two types of graphs described above is typically gathered at (or close to) one endpoint in order
to provide timeline consistency – i.e., the viewpoint of just the client or the server, not some blend of the two
time lines. As we will be measuring not just data from packet headers, but also from the TCP implementation
itself, we recommend gathering most data close to the sender. As described here, it may seem natural to collect
information on data-carrying segments on the receiver (where they are processed by tcp do segment), and
to collect information on ACKs on the server (where they are similarly processes). However, given a significant
latency between client and server, and a desire to plot points coherently on a unified real-time X axis, capturing
both at the same endpoint will make this easier.

It is similarly worth noting that tcp do segment’s entry FBT probe is invoked before the ACK or data
segment has been processed – so access to the tcpcb will take into account only state prior to the packet that
is now being processed, not that data itself. For example, if the received packet is an ACK, then printed tcpcb
fields will not take that ACK into account.

3



3 Plotting TCP connections
TCP time-bandwidth graphs plot time on a linear X axis, and bandwidth achieved by TCP on a linear or log Y
axis. Bandwidth may be usefully calculated as the change in sequence number (i.e., bytes) over a window of time
– e.g., a second. Care should be taken to handle wrapping in the 32-bit sequence space; for shorter measurements
this might be accomplished by dropping traces from experimental runs in which sequence numbers wrap.

This graph type may benefit from overlaying of additional time-based data, such as specific annotation of trace
events from the congestion-control implementation, such as packet-loss detection or a transition out of slow start.
Rather than directly overlaying, which can be visually confusing, a better option may be to “stack” the graphs:
place them on the same X axis (time), horizontally aligned but vertically stacked. Possible additional data points
(and Y axes) might include advertised and congestion-window sizes in bytes.

Approach
You will run a series of experience using the IPC benchmark using the tcp IPC type, using DUMMYNET to
simulate varying network latency. Configure the benchmark as follows:

• To use TCP: -i tcp

• To use a 2-thread configuration: 2thread

• To set (or not set) the socket-buffer size: -s

• Flush the TCP host cache between all benchmark runs

4 Experimental questions: Latency and TCP bandwidth
Explore the following experimental questions, which consider only the TCP steady state (ESTABLISHED), and
not the three-way handshake or connection close. For both questions, use a fixed 1MiB buffer (-b 1048576):

1. Plot latency (0ms .. 40ms in 5ms intervals) on the X axis, and effective bandwidth on the Y axis, considering
two cases: where the socket-buffer size is set, and where it auto-resizes.

Characterize the two performance behaviours. Explain why socket-buffer auto-resizing helps, hurts, or fails
to affect performance as latency varies, in comparison to the fixed buffer size.

2. Plot time on the X axis, and effective bandwidth on the Y axis, considering the effects of auto-resizing
and fixed socket-buffer sizes (-s) at synthetic latencies of 0ms and 20ms. Stack additional graphs show-
ing the sender last received advertised window and congestion window on the same X axis, and use
snd ssthresh to label portions of the plot as being in slow start. For readability reasons, you may
wish to generate two independent sets of plots, one for each latency, rather than overload a single set.

Characterise the two performance behaviours. Document their differences, and explaining how the two
buffering stratgies affect performance.

Be sure, in your lab report, to describe any apparent simulation or probe effects.

Notes
Graphs and tables should be used to illustrate your measurement results. Ensure that, for each question, you
present not only results, but also a causal explanation of those results – i.e., why the behaviour in question occurs,
not just that it does. For the purposes of performance graphs in this assignment, use achieved bandwidth, rather
than total execution time, for the Y axis, in order to allow you to more directly visualise the effects of configuration
changes on efficiency.

4


